International Scientific Micro-satellite RISESAT based on Space Plug and Play Avionics
Small satellite development at SRL

#1: SPRITE-SAT (RISING-1)
- Launch: Jan. 2009 (H-IIA)
- Demonstration of
 - Image acquisitions by mission camera
 - Coarse attitude control
 - Deployment of the boom

#2: RISING-2
- FM ready. Launch in 2013 (H-IIA)
 - Mission
 - Multi-spectrum observation with a Liquid Crystal Tunable Filter (650-1000nm)
 - High resolution stereo observation of cumulonimbus clouds
 - Detection of terrestrial luminous events in upper atmosphere

#3: RAIKO
- Launch: July 2012
 (Deployment from the ISS: Sep. 2012)
- Mission
 - Technology demonstrations (Communication URX, S, Ku, Image acquisition, De-orbit)

#4: RISESAT (2013~)
- International Scientific Missions
RISESAT Project Background

Hodoyoshi Program (Professor Nakasuka, The University of Tokyo)
- Development of multiple 50kg class micro-satellites
- Launch is planned in the Japanese fiscal year of 2013
- One of the satellites is an international scientific micro-satellite (RISESAT) (Tohoku University is responsible for the project management)

RISESAT: Rapid International Scientific Experiment Satellite
Mission Objectives
- Demonstrate international scientific missions by inviting instruments from abroad
- Investigation on advanced bus system technologies for future scientific micro-satellites
- Development of a reliable, robust and cost effective micro-satellite bus system

Expected effects
- Realization of mechanism of rapid demonstration of scientific missions in the future
- Improvement of microsatellite technologies which enables future challenging scientific missions
- Commercial spin-off of providing cost-effective microsatellite bus systems

>> Apply technological heritages of SRL
RISING-2 High-Precision Telescope

- Earth observation
 - New development of a 5-m resolution cassegrain mirror telescope system
 - Liquid Crystal Tunable Filter (650-1000 nm) for Multi-spectrum observation

- Scientific objectives
 - high resolution stereo images of cumulonimbus clouds

➢ Expected achievements
 ➢ reveal the mechanism of cumulonimbus and guerrilla heavy rains
 ➢ quick observation of, e.g. worldwide disasters
RISESAT Payload Instruments

Camera Instruments
- High Precision Telescope - HPT (Taiwan (NCU))
- Ocean Observation Camera - OOC (Hokkaido University)
- TLE detection camera - DOTCam (Taiwan (NCKU))

Sensor Instruments
- TriTel – 3D Dosimeter (Hungary)
- TIMEPIX – Particle counter (Czech)
- MEMS Magnetometer (Sweden)

Technology Demonstration
Laser Communication Transmitter (NICT, Japan)
Mission Objectives

Scientific Missions

S1. Astronomical Observation with HPT (NCU)
 • Successor of PRISING-2’ HPT
 • LCTF(s) will be installed

S2. Earth Observation with HPT (NCU)
S3. TLE Detection with DOTCam (NCKU)
 • Detect Meteor/ Lightning/ TLE at the night side

S4. Ocean Observation with OOC (TBC)
 • Three to four filters for ocean observation with wide FOV.

S5. Radiation Environment Monitoring with 3 axis Dosimeter (KFKI)
 • Silicon detector with 4π coverage
 • Mapping of radiation environment
 • Dual observation with another TriTel on ISS.

S6. Micro Magnetic Field Sensor (ASTC)
 • Originally scientific mission planned. → Re-arranged as engineering mission.

S8. Store&Forward
 • Global environment monitoring with distributed sensors.
 • International partner wanted.

Engineering Missions

E1. High performance three axes attitude control
 • Enable accurate scientific observation
 • Sensors and Actuators partly newly designed/developed.
 • Achieve robustness and high reliability

E2. New Development of Panel Deployment Mechanism
 • Tohoku University’ original development.
 • Improve power generation performance for higher scientific observation/experiment capability

E3. New Development of Thin Film Deployment Mechanism
 • De-orbit after mission completion

E4. Micro-monitoring camera
 • Visual intuitive operation

E5. X-band high-speed downlink

E6. Redundant and robust main computer
 • Higher reliability and strategic new technology demonstration

E7. Store&Forward demonstration
 • Receive upcoming information from distributed sensor network
 • Application in global monitoring expected

E8. Advanced optical communication
 • Collaborative research topic between NICT and Tohoku University.
 • Downlink of real scientific data
RISESAT System Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size and weight</td>
<td></td>
</tr>
<tr>
<td>size</td>
<td>Smaller than W 500 x D 500 x H 500 mm</td>
</tr>
<tr>
<td>weight</td>
<td>Max. 60, Typ. less than 55 kg</td>
</tr>
<tr>
<td></td>
<td>Payload: ~12 kg</td>
</tr>
<tr>
<td>Orbit</td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>Sun Synchronous Orbit</td>
</tr>
<tr>
<td>local time</td>
<td>9:00–15:00 (Default LTN 11:00)</td>
</tr>
<tr>
<td>altitude</td>
<td>between 500 – 900 km</td>
</tr>
<tr>
<td>inclination</td>
<td>approx. 98 deg</td>
</tr>
<tr>
<td>Attitude determination and control</td>
<td></td>
</tr>
<tr>
<td>method</td>
<td>3-axis stabilization</td>
</tr>
<tr>
<td>pointing accuracy</td>
<td>< 0.1° (3σ) (Reqs.), < 0.04° (3σ) (Objectives)</td>
</tr>
<tr>
<td>pointing stability</td>
<td>6”/s for 200ms</td>
</tr>
<tr>
<td>sensors</td>
<td>star sensor (2), FOG (3-axes),</td>
</tr>
<tr>
<td></td>
<td>magnetometer (3-axes), GPS receiver (1),</td>
</tr>
<tr>
<td></td>
<td>course and accurate sun sensors(4π)</td>
</tr>
<tr>
<td>actuator</td>
<td>reaction wheels (4)</td>
</tr>
<tr>
<td></td>
<td>magnetic torquers (3-axes)</td>
</tr>
<tr>
<td>Power supply</td>
<td></td>
</tr>
<tr>
<td>solar cells</td>
<td>GaAs multijunction cell</td>
</tr>
<tr>
<td></td>
<td>10 series x 5 parallel x 3 panels</td>
</tr>
<tr>
<td></td>
<td>(Deployable panels and one body panel)</td>
</tr>
<tr>
<td>battery unit</td>
<td>10 series x 1 parallel + 10 series x 2 parallel</td>
</tr>
<tr>
<td>max. power generation</td>
<td>> 100 W</td>
</tr>
<tr>
<td>max. power consumption</td>
<td>> 50 W</td>
</tr>
<tr>
<td>Communication</td>
<td></td>
</tr>
<tr>
<td>command uplink</td>
<td>UHF, 2400bps at Sendai station, Japan</td>
</tr>
<tr>
<td>HK downlink</td>
<td>S-Band, 0.1W, 38400bps – max. 500Kbps</td>
</tr>
<tr>
<td></td>
<td>main: Sendai station, Japan</td>
</tr>
<tr>
<td></td>
<td>sub: Fukui Univ. of Tech. station, Japan</td>
</tr>
<tr>
<td></td>
<td>sub: Kiruna station, Sweden</td>
</tr>
<tr>
<td>Mission Data downlink</td>
<td>X-band, max. 2.4Mbps</td>
</tr>
<tr>
<td></td>
<td>main: Fukui Univ. of Tech. station, Japan</td>
</tr>
<tr>
<td></td>
<td>sub: Sendai station, Japan</td>
</tr>
</tbody>
</table>

Launch configuration

After panel deployment
System Architecture

Telemetry, Tracking & Command
- UHF antenna hybrid
- UHF receiver
- S-band transmitter
- De-orbit Mechanism
- Battery unit
- X-band transmitter

Command & Data Handling
- Telecommand, telemetry, and recovery
- Power control unit
- Solar cells
- Data Decoder
- Satellite central unit
- Processor unit (nominal)
- Processor unit (redundant)
- Command and telemetry router

Orbit determination
- GPS receiver
- Magnetic Torquers (3-axes)
- Geomagnetic Sensor (3-axes)
- Coarse sun sensors

Payload
- Micro monitor camera
- Laser Link Terminal VSOTA

Fine Attitude Control System
- Attitude Control Unit
- Reaction wheels (4)
- Star Trackers (2)
- Gyroscope (3-axes)
- Sun earth sensors (4)

Power Supply System
- High-speed Downlink
- Power Supply System
- Main Bus Com. Line
- Scientific Data Line
- Power Line
- Other General Lines
- Main computing unit
- Antifuse FPGA
Mechanical Configuration

Launcher Interface

Payload Segment
RISESAT Engineering Model

Bus System Side

Payload Side

SHU Integration
Conclusions

- On the basis of technological heritages obtained by microsatellites RISING-1/2, and Cubesat RAIKO, RISESAT aims to demonstrate application of SPA to international collaborative scientific missions.

- RISESAT provides clear standardized interface to payload instruments for easy integration, tests, and operation.

- RISESAT bus system has a potential to serve as a flexible high-performance bus system for future international scientific missions.
Thank you for your attention.

International students are very welcome!