Electric Multipole Interactions in an Extended BEG Model

Teresa Burns
JR Dennison
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/mp_post
Part of the Physics Commons

Recommended Citation
https://digitalcommons.usu.edu/mp_post/14
Electric multipole interactions in an extended BEG model

Teresa Burns1 and J.R. Dennison2

1 Coastal Carolina University
2 Physics Department, Utah State University

Abstract

General 2D dielectric phase diagrams and phase transitions for multipolar molecules adsorbed to a square ionic crystal are presented. The adsorbed molecules are modeled using a dilute spin-one Ising model in the Blume-Emery-Griffiths formalism, using a mean-field approximation. Physical constants such as the electric multipole moments and binding energies are used to uniquely determine the interaction parameters over the full range of physically-relevant values. We find that temperature- and coverage-dependent antiferroelectric to ferroelectric, coverage-dependent ferroelectric up to ferroelectric down, reentrant ferroelectric to ferrielectric, and order-disorder dipole phase transitions can occur. The results are presented as a quasi-continuous set of phase diagrams. Extensions into ferro-electric parameter space are discussed and connections to analytical solutions are explored.