8-2014

Problem Set 5

Charles G. Torre
charles.torre@usu.edu

Follow this and additional works at: https://digitalcommons.usu.edu/foundation_wave

Part of the Physics Commons

To read user comments about this document and to leave your own comment, go to
https://digitalcommons.usu.edu/foundation_wave/30

Recommended Citation
https://digitalcommons.usu.edu/foundation_wave/30
PROBLEM SET 5

Problem 5.1

Let \(\vec{A} \) be a given constant vector field (Cartesian components are constants) and let \(c \) a given constant scalar. Show that the equation \(\vec{A} \cdot \vec{r} = c \) is the equation of a plane. If \(\vec{A} = \hat{x} + \hat{y} + \hat{z} \), and \(c = 0 \), where is the plane?

Problem 5.2

Prove that the gradient of a function \(f(\vec{r}) \) is always orthogonal to the surfaces \(f(\vec{r}) = \text{constant} \). (Hint: This one is easy; think about the directional derivative of \(f \) along any direction tangent to the surface.)

Problem 5.3

Consider the sphere defined by \(x^2 + y^2 + z^2 = 1 \). Compute the gradient of the function
\[
f(x, y, z) = x^2 + y^2 + z^2
\]
and check that it is everywhere orthogonal to the sphere. Consider a linear function
\[
f(\vec{r}) = \vec{a} \cdot \vec{r},
\]
where \(\vec{a} \) is a fixed, constant vector field. Compute the gradient of \(f \) and check that the resulting vector field is perpendicular to the plane \(f(\vec{r}) = 0 \).

Problem 5.4

Compute the divergence of the following vector fields:
(a) \(\vec{E}(\vec{r}) = \frac{\vec{r}}{r^3}, \quad r = \sqrt{x^2 + y^2 + z^2} > 0, \quad \text{(Coulomb electric field)} \)
(b) \(\vec{B}(\vec{r}) = -\frac{y}{x^2 + y^2} \hat{x} + \frac{x}{x^2 + y^2} \hat{y}, \quad x^2 + y^2 > 0, \quad \text{(magnetic field outside a long straight wire)} \)
(c) \(\vec{D}(\vec{r}) = \vec{r} \) (electric field inside a uniform ball of charge).

Problem 5.5

Derive (9.15) and (9.20).
Problem 5.6

Consider a spherically symmetric function \(f = f(r), r = \sqrt{x^2 + y^2 + z^2} \). Show that its Fourier transform takes the following form:

\[
h(\vec{k}) = \frac{1}{(2\pi)^{3/2}} \int_{\text{all space}} d^3 x \ e^{-i\vec{k} \cdot \vec{r}} f(r) = \sqrt{\frac{2}{\pi}} \frac{1}{k} \int_0^\infty dr \ r f(r) \sin(kr).
\]

(*Hint:* Use spherical polar coordinates, choosing your \(z \) axis along \(\vec{k} \).) Note that the transform is spherically symmetric also in \(\vec{k} \) space. Use this formula to compute the Fourier transform of a 3-dimensional Gaussian

\[
f = e^{-a^{-2}(x^2+y^2+z^2)}.
\]

Problem 5.7

Derive (9.25) from (9.21). In particular, express \(c(\vec{k}) \) in terms of the initial data.

Problem 5.8

Let \(f \) and \(g \) be two functions. We can take the gradients of \(f \) and \(g \) to get vector fields, \(\nabla f \) and \(\nabla g \). We can multiply these vector fields by the functions \(f \) and \(g \) to get more vector fields, e.g., \(f \nabla g \). As with any vector field, we can make a function by taking a divergence, e.g., \(\nabla \cdot (f \nabla g) \). Using the definitions of gradient, divergence and Laplacian show that

\[
\nabla \cdot (f \nabla g) = \nabla f \cdot \nabla g + f \nabla^2 g.
\] (10.3)

and

\[
f \nabla^2 g - g \nabla^2 f = \nabla \cdot (f \nabla g - g \nabla f).
\]