Spring 4-14-2016

UV Degradation Effects: Terrestrial versus Space Environment

Katie Gamaunt
Utah State University

Krysta Moser
Utah State University

Alex Souvall
Utah State University

JR Dennison
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/mp_post

Part of the [Condensed Matter Physics Commons](https://digitalcommons.usu.edu/mp_post)

Recommended Citation
https://digitalcommons.usu.edu/mp_post/38
UV Degradation Effects: Terrestrial versus Space Environment

Katie Gamaunt, Krysta Moser, Alexander Souvall and JR Dennison
Material Physics Group, Physics Department, Utah State University

Materials Tested

Glasses
- Sodium Glass
- Borosilicate Glass
- Quartz
- Fused Silica

Polymers
- Low Density Polyethylene (LDPE)
- Polyimide (PI)
- Polyethylene Terephthalate (PET)
- Polycarbonate (PC)

Overview

UV light has shorter wavelengths (100 nm – 400 nm) which in turn means that it has more energy. The more energy it has the more electrons can be excited to create ions that can have detrimental effects on materials. This project looked at the effects that the atmosphere has in regards to blocking UV radiation and thus, slowing down the UV degradation process. Materials such as quartz, borosilicate glass, sodium glasses, polyethylene, polyimide, and polyethylene terephthalate polymers were exposed to radiation from a focused high intensity deuterium lamp source, which generates radiation in the UVA (315 nm – 400 nm) and UVB (280 nm – 315 nm) spectrum. The materials’ UV/VIS/NIR (~200 nm to 1700 nm) transmission spectra were examined with a fiber optic spectrometer.

Light Interactions

Fig. 1. As light hits a material some of the light goes through the material (transmitted) some is absorbed by the material and the rest is reflected back. There are two places for the light to be reflected at the point the incident light hits or at the back of the material.

Experimental Setup

(A) deuterium light source
(B) lens expander
(C) fiber optic cable
(D) sample holder
(E) lens expander
(F) spectrometer
(G) sample

Polycarbonate (Terrestrial) Transmission

![Intensity of Polycarbonate over time](image)

![Change in transmission](image)

Focusing on the wavelengths that are in the UV range, it can be seen from Fig. 3 that there was a change in transmission. Over the 60 minute radiation period the polycarbonates percent change in transmission decreased the most at about 200 nm. Overall the transmission decreased in the UV wavelength range. These changes would be more apparent if the sample was exposed to the deuterium source for a longer amount of time. Using the specs from Ocean Optics, the light source is about 0.6% of AM0 Solar Intensity. When equivocating the exposure time to that of the sun, it would only take 20 seconds in the sun to achieve this amount of change.

Calculations

- For these calculations the data sets were imported into Excel.
- To find the initial amount of transmission the intensity of the UV source through the polycarbonate just as it was turned on was corrected by the intensity of the background radiation with no UV.
- That was then divided by the background with UV corrected by the intensity of the background with no UV (see Fig. 2).
- For the final transmission, it is the same except using the data from the polycarbonate after being irradiated for 60 minutes (see Fig. 2).
- The initial transmission subtracted from the final transmission yields the change in transmission (see Fig. 3).

Conclusion

In the future, analysis of the effect of being exposed to the radiation will be complete and to the pressure atmospheric gases puts on a material. A particularly severe effect might result from atmospheric oxygen exposed to intense UV radiation which can produce atomic oxygen. It would be ideal to have the materials be irradiated for long periods of time in order to be more realistic to the mission time of different satellites.

Future Work

Acknowledgments and References

Samples courtesy of Material Physics Group.