Finding the Appropriate Forage Value for Analyzing the Feasibility of Public Range Improvements

United States Department of Agriculture, Forest Service
Finding the Appropriate Forage Value for Analyzing the Feasibility of Public Range Improvements

Fred J. Wagstaff
C. Arden Pope III

RESEARCH SUMMARY
To complete economic analysis of range improvements completed on the Oak Creek Management area of central Utah, we needed an estimate of the value of forage. A review of the literature revealed several methods of estimating forage values. These methods yielded eight estimates of public rangeland forage ranging from $1.23 to $30 per animal unit month (AUM). Six of the estimates were based on actual market transactions or current administered prices and were the most reflective of actual economic processes. The best estimates of value were those for leasing similar rangeland in the immediate area.

THE AUTHORS
FRED J. WAGSTAFF is a range economist with the Intermountain Research Station, Shrub Sciences Laboratory, Forest Service, U.S. Department of Agriculture, Provo, UT. He received his Ph.D. degree in range and wildlife science at Brigham Young University in 1983. He has served in the Forest Service in various planning and administrative capacities for approximately 20 years. He has conducted research primarily relating to range and resource economics.

C. ARDEN POPE III is an associate professor of agricultural and resource economics at Brigham Young University, Provo, UT. He received his Ph.D. degree in agricultural economics from Iowa State University in 1981. Previously, he worked as a research associate and staff economist for the Center for Agricultural and Rural Development, and as an assistant professor of agricultural economics at Texas A & M University. He has conducted and published research findings dealing with a broad range of issues and topics relating to production and natural resource economics.
Finding the Appropriate Forage Value for Analyzing the Feasibility of Public Range Improvements

Fred J. Wagstaff
C. Arden Pope III

INTRODUCTION

The concern about finding the value of range forage on public lands has been with us for many years. The Federal Government has long been concerned with determination of grazing fees based on fair market values (Sutton 1988; Andrus and Berglund 1977). The search for the value of forage for public land grazing has led to many studies throughout the years using different approaches and resulting in a multitude of recommendations (Clawson 1962; 1963; Roberts 1963, 1967; Nielsen 1972; Bartlett 1983). The results of these evaluation studies have been tempered by the political process involved in forage fee determination and have resulted in an administrative fee based largely on political compromises that generally underestimate the value of public land grazing benefits.

Using an appropriate level of forage value or benefit is crucial in economic analysis because use of unsupported and unrealistic values casts doubt on the validity of the conclusions. Currently, there is considerable variation in the values used in planning and analysis purposes even within a single agency (USDA 1982). Brown (1984) points out that there are numerous assumptions in any method of determining values, and "the value" probably does not exist. Viewing forage from a static value concept differs from a standard economic viewpoint. Forage values are continuously fluctuating around a dynamic equilibrium due to supply and demand forces (Watson and Holman 1977).

Economic analysis of range improvement practices and comparison of alternative uses for rangeland require reasonable and appropriate estimates of the value of livestock grazing benefits. These estimates, however, differ greatly depending upon the method used and the critical assumptions. This paper will briefly discuss the most common approaches to valuing livestock grazing on public lands. The variability and results are demonstrated in a case study based on the Oak Creek Range Evaluation Project in central Utah (Pope and Wagstaff 1987).

EVALUATION METHODS

Currently, the forage value that is used to establish the grazing fees charged by the Bureau of Land Management (BLM) and Forest Service is based on a predetermined formula. This formula consists of a base value of $1.25 per animal unit month (AUM) and is adjusted annually based upon charges in private grazing leases, value of beef cattle, and the cost of production. The base value of $1.25 is based on leases of forage from 1964 to 1968. In 1985, grazing fees were set at $1.35, and based on this formula, grazing fees in 1990 would be about $2.35. A recent executive order by President Reagan maintains the current fee formulas but sets a floor of $1.35 per AUM. This ceiling fee has not been set at a level reflecting full market value in the past, nor does it appear this will happen in the near future. The practice of underpricing has caused the grazing permits to take on value through capitalization of the surplus.

Budgeting Procedures

Several methods of ranch firm or enterprise budgeting can be used to estimate the value of forage. These methods range from hand-driven computations of firm expenses and income to highly computerized linear programming models. Recent publications by the Economic Research Service show the results of applying linear programming in Western States (Gee 1981, 1983). Values obtained from linear programming studies where producer estimates of values are grouped consistently, and often considerably, higher than the results of other methods. This probably reflects the results of using small samples of producers and the fact that other methods underestimate the full value of forage in the production process.

The budgeting approach to estimating value has appeal because of the straightforward procedure, but it rests on several assumptions that need to be understood. The budget approach depends on the correct allocation of income and expenses to many variables used in a livestock firm, and without large amounts of expense and accounting data it is questionable (Bartlett 1983). During times of rapid price change, results may be highly uncertain and may be biased toward a higher estimate of value. This procedure is highly questionable to allocate residual income to a single factor such as grazing forage (Gee 1983). Indeed, to arbitrarily price management and unpaid family labor at some prescribed level and then allocate remaining value to another factor seems highly questionable.

In practice, budgeting can be used to give some rapid first approximations - i.e., values and as a check on other methods. Because budgets require considerable data, many analysts rely on secondary sources for many items and supplement this with primary data. This tends to decrease accuracy of results.

Substitute Feed Method

Economic theory holds that if two factors are perfect substitutes for each other in a production process and the value of one is known, the value of the other in the process is set at the same level (Watson and Holman 1977). There have been attempts to value range forage by this approach (Roberts 1967; Bartlett 1983). In these studies, relatively high values were derived due to the strict assumptions of the model.

The substitute feed approach rests upon determining a price for the substitute, which is commonly hay because market prices are recorded. This price then must be adjusted for quality differences, location, and other costs incurred in using the substitute, and considerable judgment is required as well as some assumptions concerning the profitability and feasibility of such a practice (Wagstaff 1983).

Market Comparisons

Several studies conclude that there is an established market for public range forage and that the value of forage can be determined through market analysis (Gardner 1962; Bartlett and others 1961; Bartlett 1983). Estimates of value are made by comparing the item in question to the value of prices for which similar items have been exchanged. The larger the number of market transactions and the more homogenous the item, the more reliable the estimate will be. Range forage is a location specific livestock must be moved to where the forage is. Also, certain ranges have climatic attributes that allow use only during a specific season.

If a range forage market does exist and public land forage prices are determined by Nielsen and Westergren (1970), Bartlett (1983), Gardner (1962), and Roberts (1967) then exchange price could be used to estimate the value. This approach is true that adjustments must be made and care exercised to compare transactions that are as similar as possible to the subject area.

The literature details two approaches to market comparisons. One approach uses sales of forage itself through rentals or leases with required adjustments. The other approach uses the capitalized value of Federal grazing permit transfers between individuals.

For this study, the forage value due to the fee being set at a level below the value of the forage to livestock owners. These permits are bought and sold even though they are not recognized as a vestige right by the grazing agencies (Andrus and Berglund 1977; USDA and USDI 1985). This estimate is valid per the fee and nonfee costs will yield an estimate of the willingness to pay value of the forage.

Case Example

In 1978, the Oak Creek Range Management Project was established under an accelerated range management program spearheaded by the Forest Service (Pope and Wagstaff 1987). The project included 117,200 acres of the Fillmore District of Fillmore National Forest in central Utah. Economic analyses were to be completed for various practices and improvements. An integral part of these analyses was a reasonable estimate of the value of public rangeland forage for livestock grazing.

Eight estimates of AUM values on the Oak Creek Project Area are provided in table 1. These estimates have resulted from different studies using alternative methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>AUM Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grazing fee from current formula (1980)</td>
<td>$1.35</td>
</tr>
<tr>
<td>Grazing fee per rental unit</td>
<td>9.48</td>
</tr>
<tr>
<td>Grazing fee per rental unit (1982)</td>
<td>10.00</td>
</tr>
<tr>
<td>Grazing fee per rental unit (1983)</td>
<td>15.00</td>
</tr>
<tr>
<td>Grazing fee per rental unit (1985)</td>
<td>5.97</td>
</tr>
<tr>
<td>Grazing fee per rental unit (1986)</td>
<td>6.89</td>
</tr>
<tr>
<td>Grazing fee per rental unit (1987)</td>
<td>6.93</td>
</tr>
</tbody>
</table>

Estimate 1 is the grazing fee for 1985 established by the current formula. Estimate 2 is the grazing fee per rental unit. Because the indices upon which this fee is determined have not proven highly reliable, and political considerations have held the fee at levels different from those shown by the indexing, the fee as an estimate of full forage value for livestock production. This value is an average value and would be low as an estimate of additional forage value. Estimate 2 comes from budget/linear programming. The figure is from an Economic Research Service (ERS) study using linear programming to estimate grazing fee (See 1981). The AUM value of $9.46 is basically the estimated residual income to the forage as determined by this approach. This value reflects the higher values because a panel of producers generated the coefficient for the budgets, and they probably reflect a higher than average efficiency in livestock production.

Estimates 3 and 4 are based upon the substitute feeding approach to determine the value of the forage.
in crude estimates. These estimates exaggerate the value of forage due to the shortage of substitute feed in the form of hay in the high areas of hay due to strong demand from the California dairy industry and export to Japan. Hay prices in 1960 and 1964 were $78 and $73 per ton, so the use of hay to produce calves is clearly not reasonable because this would be roughly $30 per AUM and, other estimates suggested. Irrigated pasture is limited and rents for about $15 per AUM. Also, comparability is a problem in using either hay or irrigated pasture to value range forage because animal performance, services included, and other factors differ greatly from pastureland.

Estimates 5 through 8 are estimates of AUM values that resulted from actual market comparisons. They are also measures of the value for substitute forage. Estimates 5 and 6 are based on private range lease rates as reported in the 1965 Grazing Fee Review and Evaluation (USDA 6 ad 1985). In 1986, 6 to 10 permits were added for additional costs associated with grazing on public land and a parametric estimate. Estimates 7 and 8 are based on data more specific to the Oak Creek Project Area. To obtain estimate 7, information was obtained on the number of grazing permits on the Fillmore District that occurred from 1978 through June 1986. These were transfers of permits on National Forest lands within or directly surrounding the project area. In this period, 38 transfers occurred. During 1985, buyers of these permits were contacted to establish the actual amount paid for the permits alone. Of the 38 transfers, there were 24 bonafide transactions in which the permits were actually bought and sold and the price paid for the permits could be verified. All 24 transactions involved only the permit and cattle. On nine of the transfers the price of the permit could not be verified because the whole ranch was sold with no reliable breakdown of price of permit. The seller or buyer did not know the breakdown between cows and permits, or the transaction occurred between family members at a "less than arm's length" transaction. Five of the buyers could not be contacted. All of the ranchers contacted willingly verified the transaction and provided the price paid for permits.

The price paid for permits on an AUM basis ranged from $29.70 to $56.45 with an average of $57.29. The average permit price for a National Forest AUM on the Fillmore District for 1978 through 1985 are given in table 2. These compare closely with 1960 public permit values used in 1986 Grazing Fee Review and Evaluation (USDA 6, 1985). The average was assumed annualizing a perpetual interest in the permit, using 8 percent interest rate and added to the annual grazing fee.

To obtain estimate 8, prices for grazing on State of Utah Division of Wildlife Resource lands were obtained. State lands, similar to those in the project area that are included in an open bidding process, are used to calculate average bid prices for each year. A large tract of land managed by the State of Utah lies adjacent to the southwest of the development area. It is similar in topography and vegetation, is used during the same season, and

<table>
<thead>
<tr>
<th>Year</th>
<th>Average lease or bid</th>
<th>Change from previous year</th>
<th>Dollars</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>3,948</td>
<td>28</td>
<td>1977</td>
<td>3,920</td>
</tr>
<tr>
<td>1979</td>
<td>4,367</td>
<td>475</td>
<td>1978</td>
<td>3,902</td>
</tr>
<tr>
<td>1980</td>
<td>3,937</td>
<td>220</td>
<td>1979</td>
<td>3,902</td>
</tr>
<tr>
<td>1981</td>
<td>3,944</td>
<td>85</td>
<td>1980</td>
<td>3,864</td>
</tr>
<tr>
<td>1983</td>
<td>3,945</td>
<td>176</td>
<td>1982</td>
<td>3,941</td>
</tr>
<tr>
<td>1984</td>
<td>4,015</td>
<td>84</td>
<td>1983</td>
<td>3,945</td>
</tr>
<tr>
<td>1985</td>
<td>5,336</td>
<td>1,652</td>
<td>1984</td>
<td>4,015</td>
</tr>
<tr>
<td>1986</td>
<td>7,523</td>
<td>2,187</td>
<td>1985</td>
<td>5,336</td>
</tr>
</tbody>
</table>

Average, 1983 to 1985: 6,23

CONCLUSION

Evidently, estimates of value forage differ significantly depending upon the methodology and assumptions used. However, this study indicates an estimate of value forage can be determined through market comparisons of the most likely substitute forage. Such an estimate is based on what producers are willing to pay, not what they hypothetically could or should pay.

This study suggests that a reasonable estimate of the market value of public range forage in the Oak Creek area falls within the $4.50 to $6.50 range. Economics analysis of range improvements should consider the sensitivity of the analysis results to changes in forage values.

The feasibility analysis of public range improvements will be most accurate if forage values derived from market transactions are used or they are most reflective of actual conditions. Rough estimates from other methods could be used for a quick estimate, and then a sensitivity analysis can be used to show how much effort is justified in getting a more precise estimate for both of the linear programming studies could be used as high and low estimates for first estimates of forage value.

In the context of a forage value, with the exception of hay as a substitute feed, economics analysis of range projects should be a quick estimate. The project costs per additional AUM of forage produced were quite high (see Pope and Waguast 1987).

REFERENCES

Eight methods for estimating the value of an animal unit month of public rangeland grazing generated estimates applicable to the Oak Creek area of central Utah. Of the eight estimates, six bracketed the range of acceptable estimates. The price paid for leasing similar rangeland was considered the most accurate estimate.

KEYWORDS: forage value, AUM value, public grazing value