President's Message: Advancing the TIDE of Technology Education

Ethan B. Lipton
California State University - Los Angeles

Follow this and additional works at: https://digitalcommons.usu.edu/ncete_publications

Part of the Engineering Education Commons

Recommended Citation
PRESIDENT’S MESSAGE:
ADVANCING THE TIDE OF TECHNOLOGY EDUCATION

Ethan B. Lipton, DTE

Technology, by its definition and nature, is dynamic: constantly changing, sometimes in a manner that is evolutionary, occasionally revolutionary. As the knowledge upon which technology is based transforms and the needs of society continue to change, technology advances to use the new knowledge to meet human and societal needs. This requires ongoing diligence by those responsible for managing and facilitating the study of technology in relation to the content, applications, and strategies for teaching and learning.

Vigorous change continues in the study of technology and the delivery of technology education because of the following factors: the integrating nature of technology, the need to prepare students for our developing technological world to meet changing human needs, input from our educational colleagues, industry, and the general public and, to some great degree, through the fervent efforts and dedication of outstanding teachers, supervisors, and teacher educators. No other field involving K-12 education has undergone such significant change in the last 25 years. No other group of educators has so assertively risen to the challenge.

Approaching a High-Water Mark

Significant strides have been made in the evolution of technology education of which we should all be very proud. In the last decade alone, the International Technology Education Association (ITEA) has provided the leadership for a wide range of initiatives designed to enhance technology education through technology, innovation, design, and engineering experiences at the K-12 school levels. ITEA’s Technology for Four simple words (Technology, Innovation, Design, and Engineering) form the acronym TIDE and modify the term “technology education” to provide a succinct idea of what we are about.

All Americans Project has been responsible for the development and dissemination of three very significant documents: Technology for All Americans: A Rationale and Structure for the Study of Technology (1996), Standards for Technological Literacy: Content for the Study of Technology (2000/2002), and Advancing Excellence in Technological Literacy: Student Assessment, Professional Development, and Program Standards (2003). They provide a philosophical foundation and structure for the study of technology. They also lay out the content and standards of technology education, identify criteria for student assessment and professional development, and describe programs that help students attain technological literacy.

All Americans Project has been responsible for the development and dissemination of three very significant documents: Technology for All Americans: A Rationale and Structure for the Study of Technology (1996), Standards for Technological Literacy: Content for the Study of Technology (2000/2002), and Advancing Excellence in Technological Literacy: Student Assessment, Professional Development, and Program Standards (2003). They provide a philosophical foundation and structure for the study of technology. They also lay out the content and standards of technology education, identify criteria for student assessment and professional development, and describe programs that help students attain technological literacy.

The report “Investigating the Influence of Standards” (National Research Council, 2002a) indicated that, like the content standards developed for math, science, and other academic areas, Standards for Technological Literacy (STL) may serve as the basis for educational reform by providing educators and policy makers clear learning outcomes upon which student success may be measured. STL presents standards that offer a vision of what literate citizens should know and be able to do within their respective subject area. It also provides descriptions of valuable teaching and assessment practices, paths to professional development, resources, and needed support. Like basic expectations of math and reading proficiency, the content for the study of technology is presented as a body of knowledge with which every person group should be knowledgeable: it is not just for a subgroup of society. With this in mind, STL emphasizes the importance of increased expectation, opportunities, and achievement of all students.

In addition to these standards and the documents previously mentioned, a myriad of other resources (print and electronic) continue to be developed to enhance the ability of teachers to realize excellence and promote student learning. These materials and other resources address issues related to curriculum and program planning and design, learning activities, and assessment.

Others are seeing the importance of the study of technology. A two-year study conducted under the auspices of the National Academy of Engineering and a component of the National Research Council by experts from many fields concluded, "that
March 2005 • THE TECHNOLOGY TEACHER

Caught in a Riptide

The study of technology has a significant identity problem. For each minute we spend extolling the importance of understanding and being able to use technology, we probably spend ten more explaining what technology is, what is included in the study of technology, and that it is not just about computers, "technology with a capital C." While the study of technology certainly includes knowing about and being able to use computers, it is not just about computers and their application.

Another is that we have not done well representing technology. While there are many outstanding technology programs at all levels throughout the world that are well understood and supported by the public, they vary greatly. The broad variety of courses and programs offered under the term technology include a range of content, a breadth of approaches, and are spread out across the range of the technology education evolutionary path. There are people teaching traditional industrial arts programs that they call technology along with all sorts of other programs also being taught under the "technology" umbrella. This adds to the confusion. Our colleagues and the general public have, or think they have, a general understanding of what is included in an Introductory Algebra course. This is clearly not the case when it comes to an Introduction to Technology course.

We are doing some excellent work, building on a strong foundation, and moving forward in the right direction. Unfortunately, we continue to be misunderstood, ignored, and/or unappreciated by most people. We must move beyond the narrow range of teachers, supervisors, and teacher educators who understand and support us. Our advocates are generally small in number and lack the broad influence needed to foster our mission.

What can we do to help people better understand what we are about and the value of what we do for all students? What can we do to gain support from fellow educators, the public, and critical public and private decision makers? Some secondary schools have developed technology courses that meet university admission requirements. In others, technology education classes are being used as second-class science alternatives for non-college-bound students because some universities refuse to recognize them as valid science classes when transcripts are submitted for admission. Considering that technology education can be considered an appropriate prerequisite to many fields of study, including engineering, this attitude needs to be addressed and technology classes validated.

We have worked very hard, individually and collectively, to inform and influence. We seem to continue to be constrained by the public's current definition of technology. Some have argued that we have lost the ability to promote technology as more than computers. Some say we should change the name of our field to include the term engineering along with technology or use either engineering or pre-engineering to replace the term technology. They believe it is more appealing to the industrial sector and more marketable to the general public. While most of the general public may not really know what engineering is, many think they do, and most probably view it in a positive light.

If the content of our field is the study of technology and our learning outcomes relate to technological literacy, why should we start calling ourselves something else? When our field changed its name from industrial arts to technology education, it was

'technological literacy'—an understanding of the nature and history of technology, a basic hands-on capability related to technology, and an ability to think critically about technological development—is essential for people living in a modern nation like the United States." (National Research Council, 2002b, p.11-12).

The general public has recently expressed significant support for technological literacy. Three major conclusions may be drawn from two ITEA-commissioned Gallup Polls with funding by NSF and NASA, the first in 2001; the follow-up in 2004:

- The American public is virtually unanimous in regarding the development of technological literacy as an important goal for people at all levels.
- Many Americans view technology narrowly as mostly being computers and the Internet.
- There is near total consensus among the public sampled that schools should include the study of technology in the curriculum.

The second finding is critical. If public support for technological literacy is based upon a narrow definition of technology as computers rather than the broader view held by experts in technology, engineering, and science, then what exactly does the public support: computer literacy or technology literacy defined as "anything people do to modify the natural world to meet human needs"? In an attempt to address this issue, the second Gallup poll posed questions designed to learn the public's perspective. "The findings are clear in that, regardless of the perspective from which technology is defined, the responses reflect the view that being able to understand, assess, and manage technology are highly valued attributes." (Rose, Gallup, Dugger & Starkweather, 2004, p.2).

From the previous paragraphs, it seems like technology education should be the hottest subject in all of our schools: great public support, outstanding rationale and structure, world class standards, quality resources, and some really outstanding teachers. But it's not.
done based on a change in content emphasis and philosophy, recognizing the societal evolution moving from industrial to the technological. In many areas we are making significant progress towards an appreciation for, and broader inclusion of, technology education (as we would define it) for all students.

Will changing our title have the significant impact we desire? We need to weigh the cost/benefit of abandoning the term technology and beginning to build a new foundation based on another label. This may undermine what has been accomplished and further confuse colleagues, students, supporters, and the general public. It may also be impacted by preexisting notions associated with the alternate terminology. What happens if the meaning and understanding of the new terms should change? Are we once again going to look to a name change to address the new political or marketing climate? We should look at this from a long-term perspective. We must place greater emphasis on what we are doing and how it is being done. We should focus on the nature of the study of technology, its objectives, and how it will be perceived in the coming decades, not just react to current, possibly transient circumstances.

We must continue to assess our mission, goals, and priorities. Our continuing commitment to advancing the technological capabilities for all people and to improving public understanding of technology, innovation, design, and engineering and their contributions, will help prepare our students for their adult lives and future educational and professional endeavors.

Harnessing the TIDE
Technology is human innovation in action. Technological studies involve:

- Designing, developing, and utilizing technological systems.
- Open-ended, problem-based design activities.
- Cognitive, manipulative, and affective learning strategies.
- Applying technological knowledge and processes to real-world experiences using up-to-date resources.
- Working individually as well as in a team to solve problems (www.iteawww.org/A1.html).

We are entering a period where some sectors of the general public are beginning to understand the importance of the study of technology in our schools. Growing numbers are recognizing the role of technology as it relates to science, math, and engineering. I am seeing that, when it comes to the content of technology in the STEM (Science, Technology, Engineering, Mathematics) world, many of those who are informed know that technology educators are the “go to” people. Some of our colleagues in other subject areas are realizing that technology education offers something new, exciting, and different.

What can we do to build on our successes? What can we do to help us explain the breadth of our field in a clear and concise manner so we can spend more time on what we do and less on justifying our existence and explaining that we’re not just about computers? While it certainly will not happen overnight, we need to start now. As the proverb goes, “The journey of a thousand miles begins with a single step.”

We’re taking that step now. Technology Education: Technology, Innovation, Design, Engineering. Four simple words (forming the acronym TIDE) modify the term “technology education” to provide a succinct idea of what we are about. Easy to understand and easy to remember, it provides a simple, brief phrase that can be used by all. It clearly alludes to the content, nature, breadth, and scope of technology education. It indicates that technology education is not just about computers. These concepts and principles, while not designed as preparation for any one specific career or area of future study, articulate the content and strategies included in the study of technology, which provides a base for the pursuit of a wide range of future endeavors that utilize the included knowledge, skills, and attitudes. It is also conceived to be inclusive, providing ample breadth and depth to encompass the range of appropriate course offerings.

A review of the definitions of these terms shows that TIDE accurately reflects the concepts (knowledge, skills, and attitudes) that make up the study of technology as well as the teaching and learning strategies used. Some of our colleagues and professionals from other related fields have felt that this new acronym represents a positive step in understanding what technology education is all about. The reader’s review of the definitions of these terms should validate why this particular acronym was developed. This phrase can help give a unified face on our field and may help us take a major step towards improving the public’s understanding and appreciation of our field.

Riding the Springtide: The Next Steps
Now is the time to take advantage of the rising TIDE (Technology Education: Technology, Innovation, Design, Engineering). There is increasing interest in the study of technology. Much has been accomplished; much more still needs to be done. While the possibilities are limitless, the work required is significant and ongoing. Those of us concerned about the need for technological literacy, the world’s future, and the teaching of technology have great opportunities at this rising tide to catch the wave and to continue to make a difference.

While progress requires the work of individuals, it can only be achieved through thoughtful planning; leadership and active participation in local, regional, and national associations and projects; participation in learning communities; curriculum and professional development; and the development of relationships among those involved in technology education and other constituencies. In the coming year ITEA will introduce some significant new technology education and association initiatives, while continuing to build on those
The 2003-2006 strategic plan aims to advance technological literacy, strengthen the preparation and professional development of K-12 technology education teachers, and serve as a catalyst for public awareness and advocacy for technology education.
This year we will create the ITEA Committee of 100. This new group is being created to maintain an ongoing source of input on important aspects and possible directions of the Association. Committee members will be contacted electronically no more than four times a year to provide input on such topics as member services, professional development, electronic and print communications, and conference programs. If you are interested in making a commitment to this group, please send me an e-mail.

With significant leadership by George R. Willcox, ITEA has been increasing its advocacy activities. Issues and Solutions for Technology Education in the United States, "is designed to make parents, business leaders, and policy makers who govern public education aware of the fundamental requirements needed to create technologically literate citizenry." It was initially disseminated as part of a major workshop at our annual conference. This year we are taking the next step. Through ITEA’s membership in the Triangle Coalition for Science and Technology Education, association leadership and members will participate in the March 2005 Conference, “Informing Policy in Support of Mathematics, Science, and Technology Education,” in Washington, DC. Discussion will center on current and upcoming legislative issues and will include presentations and panel discussions from leaders of Congress, Congressional Staff, U.S. Department of Education, NSF, and other governmental agencies. After some preparation, participants will have opportunities to meet with key staff members from their elected officials to discuss issues related to technology education. If we are interested in the recognition of technology education in No Child Left Behind and other legislation, this is a place for the technology profession to give input and be a part of the national scene.

The Triangle Coalition’s mission “is to bring together the voices of government, business, and education to improve the quality and outcome of mathematics, science, and technology education.” Their priorities include nurturing “the development of local, regional, and state coalitions focused on the improvement of mathematics, science, and technology education in their communities.” While Coalition initiatives and activities are present in 26 states, it does not appear that technology educators are participating in these state collaborations. I’m not sure that they are even aware of these opportunities.

It does not matter if it is with a state association, state department of education personnel, or any other group. Technology education does not seem to be at the table, nor do we see much activity by people in our field even trying to get to the table. We will not make strides in the STEM community if we are not part of the conversation with colleagues from science, engineering, and math. Find out if the Coalition is active in your state. ITEA members Brad Thode and Doug Walrath sought them out and were the catalysts for creating positive collaboration in Idaho.

Get involved now. We can each make a difference in shaping the future of technology education.

Learning Communities

Working together, we make a difference. While each of us is important, collaboration is essential for the type of progress we need. Maintaining regular and ongoing productive relationships among those with shared interests is among the most difficult challenges faced by many professions and groups whose colleagues are spread across a wide geographic area. It’s great to be able to meet at conferences and professional meetings to share, learn, grow, and work on issues of common interest, but how do we maintain a high level of productive group interaction the rest of the time? Current electronic technology (i.e., telephone, e-mail) can have some impact, but leave much to be desired. The equipment, knowledge, coordination, and associated costs make video conferencing difficult. A solution to this problem has been found in the concept of learning communities.

Higher education has developed and implemented a variety of strategies referred to as learning communities. According to the National Learning Communities Project, a variety of approaches are used “to build community among students, between students and their teachers, and among faculty members and disciplines.” Learning communities may also be a group of individuals who share a common interest or goal.

You may not realize that many of us are already involved in one or more virtual learning communities. ITEA’s very successful IdeaGarden is a free members’ resource that provides a teacher-to-teacher format for those wanting to know more and share ideas about teaching technology. Led by two outstanding veteran technology teachers, Gary Wynn, DTE and Ron Yuill, DTE to field questions, offer ideas and resources, and interact with community members, it provides a peer-to-peer and mentor-to-peer learning community. It has something for everyone interested in teaching technology. Join the group. You’ll find it well worth your effort.

The Government Relations Listserv, another evolving ITEA virtual learning community, is a component of the ITEA Government Relations Network. Led by George Willcox and Thomas Frawley, the listserv provides a forum for open communication and dialogue related to all aspects of state and federal initiatives that benefit technology education.

Our newest virtual learning community, Innovation Station, is designed for those interested in elementary technology education. Scheduled to premiere in early March, it is aimed at providing a community for educators interested in TIDE at the elementary level. Be one of the founding members of a virtual community that promises to be exciting, dynamic, and valuable to its members.

To meet the needs of ITEA members from 47 countries around the world, planning has begun for the creation of an international virtual learning
community. With the working title of Global TIDE, it is being developed for those members interested in international issues related to technology education. A recent survey shows significant enthusiasm among international members. We have not yet created a title or identified moderator(s). We certainly welcome your input and anticipate that it will be initiated within the near year.

Learning communities provide a new strategy for sharing, mentoring, and collaboration. If you have not yet participated, please stop by to meet some of your neighbors. Visit the ITEA Web site (www.iteawww.org) to participate or for additional information.

Curriculum and Professional Development

Excellence in teacher and student success requires the development and implementation of outstanding curriculum and dynamic learning activities supported by an organized professional development plan. ITEA will continue to deliver on its commitment to provide essential tools for those involved in the teaching of technology. Building on the content standards provided in Standards for Technological Literacy and the standards for student assessment, professional enhancement, and program enhancement provided in Advancing Excellence in Technological Literacy (AETL), ITEA is creating a range of high quality resources to support teaching and learning in technology.

With a goal of providing tools to make technology education programs standards-based, not just standards-related, the Association began the introduction of four addenda to STL and AETL. They present specific strategies for the planning and implementation required to help students to achieve technological literacy.

• Measuring Progress: A Guide to Assessing Students for Technological Literacy
• Realizing Excellence: Structuring Technology Programs
• Planning Learning: Developing Technology Curricula
• Developing Professionals: Preparing Technology Teachers

While each is designed to address specific issues, they are all designed to immediately assist the users (teachers, curriculum developers, supervisors) determine the current state of their programs, where they want them to be, and how to get them to that point. Measuring Progress is currently available, and the other titles are on a schedule to be released in the near future.

In addition to the addenda, ITEA provides a continually developing variety of specific resources to support the study of technology at all levels. The following are some examples that may be of interest. You should review the ITEA Web site and the publications catalog for a full listing.

ITEA's Engineering by Design: A Standards-Based Program Series is designed to provide a model that states and districts may use to develop standards-based K-12 technology education programs. This exclusive series features direct references to technological literacy standards and benchmarks, connections with other school subjects, suggested contemporary methods and student activities, and guidance for developing exemplary programs that develop technological literacy. Ranging from general to specific, current and upcoming titles include: Technology Starters, Models for Introducing Technology, Teaching Technology: Middle School, Exploring Technology, Invention and Innovation, Technology Systems, Teaching Technology: High School, Foundations of Technology, Technological Issues, Technology Impacts, and Engineering Design.

If you are looking for units and lessons that focus on improving students' in Grades 5 and 6 developing technological literacy, resources are available. Under the leadership of Daniel E. Engstrom, Principal Investigator, the Invention, Innovation, and Inquiry (PI) project has designed units for the teacher who does not have a strong background in the study of technology. Units being developed include: Invention, Innovation, Communication, Manufacturing, Transportation, Construction, Power and Energy, Inquiry, Technological Systems, and Design. These units are scheduled to be released in the near future.

Resources also include a variety of ready-to-use classroom activities. Resources in Technology Education (RITE) includes a series of standards-based activity guides designed to supplement STL. With 40 activities in each series, KITS (Kids Inventing Technology Series) are designed for use at the elementary level, and HITS (Humans Innovating Technology Series) are applicable to secondary students.

These activities are directly linked to recommended K-12 courses and present a variety of contemporary methods that infuse recent research concerning learning and teaching. Each provides detailed guidance for teacher preparation.

ICON, the National Digital Library for Technological Literacy Innovation Curriculum Online Network, was developed to provide a comprehensive, standards-based collection of Pre-K-12 digital resources to support technological literacy. Abstracted and cataloged using carefully developed selection and evaluation criteria, ICON provides immediate access from the Web, www.iconettechlit.org. While the project has ended for now, no additional material will be added unless a new funding source is secured, the existing content continues to be available.

AETL defines professional development as "a continuous process of lifelong learning and growth that begins early in life, continues through the undergraduate, pre-service experience, and extends through the in-service years." This includes a range of opportunities for educators to enhance their knowledge and skills related to content and effective teaching. Much of what ITEA does relates to the professional development of those involved in the teaching of technology at all levels. Opportunities are available through participation in conferences,
workshops, and learning communities and by accessing publications, the ITEA Web site, and other print and electronic resources.

There is probably no better opportunity for professional development for teachers of technology than the annual ITEA conference. Teachers, supervisors, teacher educators, and others involved in technology education from across the nation and around the world join together to hear from experts and peers through participation in sessions, workshops, tours, and informal interaction. Together we share the newest information related to the field and exciting ideas about teaching and learning. Over the next several years you should see some exciting changes to the conference that will further enhance your experience. Don’t miss these opportunities.

ITEA’s Center to Advance the Teaching of Technology & Science (CATTs) will continue to advance its mission to strengthen professional development and advance technological literacy through initiatives directed toward four goals: development of standards-based curricula, teacher enhancement, research concerning teaching and learning, and curriculum implementation and diffusion. To these ends, CATTs continues to develop “partnerships with agencies, organizations, and other associations to advance technological studies in order to achieve common goals for developing technological literacy and improving student achievement.” CATTs provides meaningful research on teaching and learning, instructional and resource materials, teacher enhancement programs (i.e., workshops, conferences) for teachers at all levels (K-university) to members of the Consortium and to the field through its designated professional development centers. These quality, standards-based teacher workshops are facilitated by highly knowledgeable and well-prepared national presenters who provide valuable training for up to 50 teachers at requested sites. CATTs is a cost-effective way to develop curricula, train a core group of teachers, and disseminate curricula documents for an entire state. With the anticipated unveiling of etide, ITEA will provide even more access for professional development online. Is your state or local educational agency currently a member of the CATTs Consortium? If so, you can take advantage of these resources and opportunities. If it is not yet participating, you may want to take the initiative and be a catalyst to foster membership. It can make a big difference to the technology educators in your state, district, and school.

As you can see, ITEA continues to assertively build on its unmatched history of leadership and support for our field through the development of standards-based curriculum and instructional materials to support teaching and learning. No matter where we are along our professional journey, each of us must take opportunities for professional development. They are here. Seek them out.

Strengthening Relationships

A major emphasis in the coming year will be on strengthening internal and external relationships. In addition to those previously discussed, there are several areas upon which we will focus our attention. These include membership, relationships with other organizations, international initiatives, and positioning technology education within the engineering and engineering education community.

The first of these relate to the relationships within the technology education community. ITEA will continue to reach out to new members among those involved in the teaching of technology. Our recent campaign has contributed to the addition of over 600 new professional members. Do your colleagues a favor and share the advantages, opportunities, resources, and benefits (including liability insurance) of ITEA membership with them. Once they see what ITEA has to offer, they will want to become part of our family.

Another group of initiatives focuses on strengthening the relationships with other associations that share common interests. Of significant importance is the relationship among technology education organizations. We are considering calling a summit of statewide association and ITEA leaders in conjunction with the 2006 conference in Baltimore to share ideas, concerns, and explore strategies to enhance our relationships with state associations and further our common goals.

ITEA, the Technology Student Association (TSA), and Technology Education Collegiate Association (TECA) promote technological literacy and serve populations along a technology education linear continuum. Plans are underway to strengthen the relationships among the three by instituting greater ongoing cooperation, collaboration, and presence and visibility. While the dialogue continues to explore possibilities, the following specific objectives have been identified: advocacy for technology education, promoting teacher recruitment, encouraging memberships in the sister organizations, and enhancing the involvement of the organizations at the others’ annual conferences. We will also continue to explore additional opportunities to enhance the relationship with Epsilon Pi Tau and other appropriate organizations. Help us explore the possibilities.

ITEA currently has members from more than 45 countries and 13 Global Centers. STL is being used in countries around the world and has been translated in four languages. We can learn from things happening in technology education around the world. We are actively involved internationally with the Pacific Rim Conference, which will be held in conjunction our 2007 Texas conference, and continue to host the PATT (Pupils Attitudes Towards Technology) International Conference on Design and Technology Educational Research every other year in the United States.

In addition to the planned creation of Global TIDE, the Association is planning other initiatives, including increasing international sharing through increased dissemination of ITEA materials around the world and featuring more work by international colleagues in our venues. The Board
recently passed a motion to have an international symposium at the 2007 ITEA Conference to advance the agenda for international members and societies. There appears to be interest in having an annual or biennial meeting that would travel to various countries around the globe aimed at advancing the agenda of our profession as well as sharing experiences, curriculum thrusts, and more. This is intended to build on our existing relationships with the Pacific Rim Conference and PAITT, not to replace them. After all, we are the International Technology Education Association.

ITEA leadership will continue to be proactively involved in exploring the emerging issues associated with the relationship between technology education and the engineering and technology education communities. Dialogue is taking place between ITEA and the most significant groups involved in this discussion. Some are happening quietly and behind the scenes; others are more public. People are listening; we are working to help them understand the content, nature, and learning strategies involved in technology education. Among our goals are advocating for technological literacy, positioning technology education as a partner, and advocating for the role of technology education in the delivery of this content. We are way ahead of most other groups in the ability to articulate, support, and assess appropriate content and learning activities. We need to enhance our opportunities to deliver.

Leaders from ITEA and the technology education profession were invited to participate, along with colleagues from other disciplines, in the SEEK-16 Summit in February at the National Academy of Engineering. "The mission of the Strategies for Engineering Education K-16 (SEEK-16) is to engage and empower key leaders from business, government, higher education, national associations, and K-12 classrooms—teachers, parent advocates, and students—to implement strategies that apply design, engineering, and technology concepts to improve the interdisciplinary understandings of K-16 science and mathematics (STEM) teaching and learning." While the real work is just beginning, we're at the table, contributing to the discussion.

We are helping to advance the activities of the National Center for Engineering and Technology Education recently funded by the National Science Foundation. This collaborative project matches engineering and technology faculty from four research universities and five technology teacher education universities around the country with fifteen K-12 school districts and three education-related societies with a goal of infusing engineering design, problem solving, and analytical skills into technology education and to increase the quality, quantity, and diversity of engineering and technology educators.

Developing new relationships and strengthening those that are ongoing will play important roles in the future of technology education. We must continue to make this a high priority.

Catch the TIDE

Our history is rich; our mission is critical; the time for action is now. For us to achieve our goals, each of us must catch the TIDE, serving as role models, leaders, and advocates for the study of technology and pursuing excellence in K-12 technology, innovation, design, and engineering. The Board of Directors and I look forward to continuing to work with each of you. Please contact us to share ideas and discuss how you can become further involved at the state or national level. Together we make a difference.

Stretch to embrace TIDE's possibilities. Ask yourself, "What would I do if I knew I could not fail?" Think about the issues and opportunities that are important to you. Consider the impact you can make towards achieving our shared goals. Each of us must then ask ourselves, what can I personally do to impact the future of technology education? How can I get involved? Then do it. We cannot fail if we follow our passion for excellence in advancing the TIDE of technology education.

References

Ethan B. Lipton, Ph.D., DTE is ITEA President for 2005-2006 and the Assistant Vice President for Academic Affairs – Planning and Resources / Dean of Educational Support Services at California State University, Los Angeles. He can be reached via e-mail at elipton@calstatela.edu.
Copyright of Technology Teacher is the property of International Technology Education Association and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.