4-13-2017

Dietary supplementation with tart cherries for prevention of inflammation-associated colorectal cancer in mice

Ashli Hunter
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/roch

Recommended Citation
https://digitalcommons.usu.edu/roch/54

This Article is brought to you for free and open access by the Browse Undergraduate Research Events at DigitalCommons@USU. It has been accepted for inclusion in Research on Capitol Hill by an authorized administrator of DigitalCommons@USU. For more information, please contact dylan.burns@usu.edu.
Dietary supplementation with tart cherries for prevention of inflammation-associated colorectal cancer in mice

Ashli Hunter
Utah State University
Abby Benninghoff, Ph.D.
Utah State University

Introduction
• Approx. 25% of deaths in Westernized countries are attributed to cancer.1
• The typical Western diet is associated with higher risks of colorectal cancer (CRC) compared to a balanced diet.
• Tart cherries are rich in anthocyanins (a group of antioxidants) and have many benefits including prevention of cancer and inflammatory diseases.

Methods
• Mice were fed a standard diet (AIN93G) or the total Western diet (TWD) with or without tart cherry supplementation (anthocyanin content at 188 ppm).
• Mice were injected with the carcinogen azoxymethane (AOM) and provided 1% dextran sodium sulfate (DSS) for 10 days.
• Mice from each dietary group were randomly selected to be necropsied at 1, 7, 9, and 15 weeks.
• Endpoints included food and water consumption, body weight and composition, feces, and tissues including the colon, liver, and cecum.

Results
• Consumption of TWD markedly enhanced colitis, inflammation, mucosal injury and tumor burden in comparison to AIN93G.
• Consumption of AIN93G with tart cherries reduced tumor incidence, but did not affect other parameters measured.
• Careful consideration must be given to the role of basal diet in dietary chemoprevention studies in rodents.

Figure 2 – Cancer outcome

Data shown are incidence (percentage of mice with colon tumors) and the mean ± SEM tumor burden (total volume of tumor tissue per mouse) (n = 21 to 24 mice per group). Bars with different letters are statistically different.

Study conducted with funding from Utah Agriculture Experiment Station (UTA-01178) and USDA NIFA Grant #2013-03494. Technical Assistance from Veronica Martel and Tess Armbrust.