3-2-2015

Model for Charge Injection with Electron Beams into Highly Disordered Insulating Materials

JR Dennison
Utah State University

Alec M. Sim
Utah State University

Gregory Wilson
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/mp_presentations

Part of the Condensed Matter Physics Commons

Recommended Citation

Model for Charge Injection with Electron Beams
into Highly Disordered Insulating Materials

J.R. Dennison,1 Gregory Wilson,1 Amberly Evans Jensen,1 and Ryan Hoffmann2

1 Physics Department, Utah State University
2 Physical Sciences Department, Irvine Valley University
2 Physics Department, Montana State University

Abstract

The Walden-Wintle model for charge injection and transport through highly disordered insulating materials has been extended to include charge injection with a charged particle beam. The original model is applicable to charge injection in a dielectric material from a pair of electrodes in a parallel-plate geometry. It provides a versatile approach to predict the time-dependent current at a rear grounded electrode and the incident surface voltage, as the injection current density evolves over time with the development of a space charge barrier near the injection electrode. The Walden-Wintle model has been applied to many standard cases including Fowler-Nordheim injection, Schottky injection, space charge limited injection, and various tunneling mechanisms. The present model modifies the approach to include electrode-less charge injection via a charged particle beam, along with concomitant effects for the injection current, surface voltage, and electron emission as a charge is built up in the insulator. The approach is equally valid for near-surface injection and for bulk injection of both non-penetrating and penetrating radiation. The results are based on our dynamic emission model for electron emission yields dependent on accumulating charge in both the positive and negative charging regimes.

*This work was supported by funds from NASA Goddard Space Flight Center and NRC Senior Research Fellowship at AFRL.