Above- and Belowground Response to Tree Thinning Depends on Treatment of Tree Debris

Suzanne Neal, Carolyn Sieg, Catherine Gehring, Matthew Bowker

In review: Ecological Applications
Study Site: San Juan National Forest Near Dolores, CO

Site History:
Livestock grazing (before 1985), Fire suppression & Drought
Reduce wildfire risk around homes and Archaeological sites

Increase native understory and decrease soil erosion
Two Thinning Methods:

1) Slash pile burning

2) Mechanical mastication

Thin ~ 40-60% of overstory
Questions:
Will thinning treatments affect:

1) Soil Properties: physical or chemical?

2) Arbuscular Mycorrhizal Fungi (AMF): propagule abundance, species richness or community?

3) Plant Composition: Native or Exotic richness?
Arbuscular Mycorrhizal Fungi (AMF)

Vesicles

Hyphae

Spores

Arbuscules – nutrient exchange

Over 90% of plants rely on AMF

Arbuscular Mycorrhizal Fungi (AMF)

Vesicles

Hyphae

Spores

Arbuscules – nutrient exchange

Over 90% of plants rely on AMF
AMF Promote Plant Growth and Increase Soil Stability

Soil hyphae and stability (Tisdall 1991)
<table>
<thead>
<tr>
<th>Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Mastication</td>
</tr>
<tr>
<td>25 Untreated</td>
</tr>
<tr>
<td>25 Pile Burns</td>
</tr>
</tbody>
</table>

Elevation: 7,136ft (2,175 m)
Soil: Alfisols
Texture: Sandy loam

6-months and 2.5-years post treatment
Hypotheses

Pile Burn

Mastication

[Available Nutrients]

pH

Soil temp

% Soil moisture

Soil stability

AMF & Plant abundance & richness

△ AMF & Plant community

% Soil moisture

Soil compaction

△ AMF & Plant community

Soil temp

Available N
Methods

• Soil (0-15 cm)
 – Soil moisture, Temperature, pH, Total N and C, NO₃⁻, NH₄⁺ (KCL extraction), PO₄³⁻, Bulk density, Soil stability (Slake test kit)

• AMF
 – Soil hyphae and spore abundance, richness

• Plants
 – Cover (Daubenmire), richness and native/exotic status
Results: PCA on Soil Properties

Axis 1: 41%
Driven by:
Temp. (.47)
NO₃⁻ (.37) and NH₄⁺ (.36)
Soil stability

Axis 2: 15%
Driven by:
Moisture (.35)
Temp. (.34)

Driven by:
- Mastication
- Pile burns
- Untreated

Soil stability
AMF Propagule Abundance and Richness Lower in Pile Burns

$F = 13.3, \ p<0.01$

$F = 15.3, \ p<0.01$

$F = 13.1, \ p<0.01$

![Graph showing AMF propagule abundance and richness](chart.png)

- **Soil Hyphae**: $F = 13.3, \ p<0.01$
- **Spore abundance**: $F = 13.1, \ p<0.01$
- **AMF richness**: $F = 15.3, \ p<0.01$
AMF Spore Community Different in Pile Burns

MRPP: $A=0.15$ $p<0.01$

- Mastication
- Pile Burn
- Untreated

G. constrictum
S. calospora
Plant Cover Lowest in Pile Burns

F=42.5, p<0.01

Mean Plant Cover (%)

Mastication Pile Burn Untreated

a

b
Plant Richness Lowest and % Exotics Highest in Pile Burns

F=45.6, p<0.01

Mean Plant Richness

Mastication | Pile burn | Untreated

21% Exotics

13% Exotics

80% Exotics

Exotic species

Native species

a

b
Trends 2.5-years post treatment

- **Pile Burns**: Same trends – except no difference in AMF spore abundance

- **Mastication**:
 - Plant cover
 - Exotic plants (cheatgrass) \([\text{NH}_4^+]\)
 - Temp
 - AMF Richness
How do Soil, AMF and Plants Interact?
SEM: Soil-Plant-AMF relationship

Mastication

-0.06

AMF hyphae

R² = 0.39

% Plant Cover

R² = 0.51

Pile Burn

-0.40

-0.23

-0.59

Soil Stability

R² = 0.51

-0.21

-0.16

χ²: 1.369
P = 0.242
GFI: 0.954
SEM Results: Plant, Soil and AMF Relationship

Treatments

R² = 51%

50%

R² = 39%

36%

R² = 51%

31%
Pile Burning Creates Long-Lasting Disturbance

• Soil Erosion
 – Exposed mineral soil and low soil stability

• Nutrient leaching
 – High [available nutrients] & low plant cover and moisture

• Loss of Native species (both plants and AMF)
Mechanical Mastication

• **Short term**: Only difference - \(\uparrow\) soil moisture and \(\downarrow\) soil temp.

• **2.5 years later**: Main concern is loss of AMF species and more cheatgrass over time
 (combination of disturbance, neighboring seed source and high soil moisture?)
Ecological & Management Implications

Mastication creates fewer disturbances (in the short term); Long-term?

Pile burns – may reduce functionality

Treat in only high-priority areas and continue monitoring for exotic species
Thank you!

NAU
Gehring & Johnson lab groups

Nancy Johnson, Andrew Owen, Steve Overby, Noah Barstasis, Rudy King, Todd Gardiner, Jim Fowler, Tina Ayers, Anita Antoninka, Patrick McCoy, Cara Gildar, Elaine Sherman, Bradford Blake, Dana Erickson, Lauren Hertz, Bala Chaudhary, Dan Guido, Todd Wojtowicz, John Hockersmith, Chris Olson, Nick Cortopassi, Mike Pass

Funding: USDA Forest Service RMRS