Mixed Weibull Distribution Model of DC Dielectric Breakdowns with Dual Defect Modes

Allen Andersen
Utah State University

JR Dennison
Utah State University
Pre-Breakdown Arcing as Proxy for DC Dielectric Breakdown Testing of Polymeric Insulators

JR Dennison and Allen Andersen, Utah State University

I. Introduction

DC voltage step-up to breakdown tests in several polymeric insulators have shown many transient non-shorting arcs—termed pre-arcs—prior to final dielectric breakdown. An average of 17 pre-arcs were observed per breakdown test. Pre-arc distributions as an efficient proxy for breakdown could lead to accelerated and more effective DC dielectric testing.

We compare the cumulative distributions of pre-arcs and breakdowns from parallel plate breakdown tests in low-density polyethylene (LDPE) to determine if the distribution of pre-breakdown arcing is correlated with the distribution of DC breakdown field strength. Fig. 1 shows ammeter data from 5 step up tests in LDPE. Measurements with fast oscilloscopes (inset Fig. 1) suggest higher-amplitude pre-arcs as seen in the ammeter are multiple low-amplitude fast pre-arcs integrated over the ammeter’s data response time.

Possible reasons why DC pre-arcing is not widely reported. Our tests included:

- Use of slower ramp rate (20 V/3.5 s)
- Different voltages (20 V–3.5 kV)
- A wide range of applied field strengths
- Polished electrode surfaces
- A highly sensitive ammeter
- A wide range of tested samples
- Large flat electrodes
- Beveled electrode edges

II. Quantile-Quantile Plots

The empirical cumulative distribution (ECD) of breakdowns is given by

\[F_E(x) = \frac{1}{n} \sum_{i=1}^{n} I(x_i \leq x) \]

where

\[I(x_i \leq x) = \begin{cases} 1 & \text{if } x_i \leq x \\ 0 & \text{otherwise} \end{cases} \]

Fig. 2 shows the ECD for LDPE of 88 breakdowns and 25,568 quantized pre-arcs. Although with 17x the signal to noise ratio the distributions look similar, the ECD plot does not directly address whether the two ECDs are related.

Quantile-Quantile (Q-Q) plots allow direct non-parametric comparison of cumulative distributions of data and/or functions. The (x, y) values of a Q-Q plot are the x values of two ECDs at specified quantiles, \(F_E(x) \). Interpolation may be needed to compensate for measurements at different quantiles. If Q-Q plots that lie on the line y=x indicate identical ECDs (Fig. 3). Other linear Q-Q plots indicate a scaled relationship between two ECDs (Fig. 4). Q-Q plots that deviate from a line indicate that the ECDs are not related.

- Q-Q plots that lie on the line y=x indicate identical ECDs.
- Other linear Q-Q plots indicate a scaled relationship between two ECDs.
- Q-Q plots that deviate from a line indicate that the ECDs are not related.

III. Comparison of Distributions

Fig. 3 shows the Q-Q plot for the ECDs of breakdowns and pre-arcing in LDPE. The quantiles of the much denser pre-arcing distribution were interpolated to match those of the 88 breakdowns. The linear fit of Q-Q plot show that the distributions are clearly related.

The inset of Fig. 2 and Fig. 3 show the result of plotting using the normalized electric field for each event type. In both plots we see that the similarity between the two ECDs increases. This shift in electric field is attributed to the difficulty in accurately counting frequent high field pre-arcing events as breakdown begins to occur.

By contrast, observe the Q-Q plot comparing test chamber pressure and measured sample thickness (Fig. 4) which confirms there is no relationship between these two independent variables.

IV. Conclusions

Q-Q analysis shows that the distribution of pre-arcing events as a function of applied field is strongly correlated with the distribution of breakdown events in LDPE. Pre-arcing as proxy for DC dielectric breakdown testing of could expedite the characterization and selection of insulating materials for HVDC, high voltage switching, spacecraft charging, electronics, and other applications.

To corroborate this correlation observed in LDPE, similar tests are in progress for polyimide, polypropylene and SiO2 (borosilicate glass).

Recoverable low-energy defects on the order of kT have been suggested as a plausible mechanism for the relationship between pre-arcing and breakdown. As an arc begins, thermal energy released to the surrounding medium may anneal the defects required for runaway breakdown.

References

Allen Andersen Utah State University Physics Department allen.Anderson@aggiemail.usu.edu

This work was supported by a NASA Space Technology Research Fellowship.

Figure 1 – Breakdown tests of LDPE

Figure 2 – Empirical cumulative distributions of LDPE

Figure 3 – Q-Q plot for breakdown and pre-arcing distributions of LDPE

Figure 4 – Q-Q plot of uncorrelated distributions

Figure 5 – Quantile-Quantile plots of ECDs

Figure 6 – Breakdown Arcing as Proxy for DC Dielectric Breakdown Testing of Polymeric Insulators

Figure 7 – Comparison of Distributions

Figure 8 – Conclusions