Proton-donor properties of water and ammonia in van der Waals complexes. Be–H₂O and Be–NH₃

G. Chatański
Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland.
Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, and Department of Chemistry, Oakland University, Rochester, Michigan 48309

M. M. Szczęśniak
Department of Chemistry, Oakland University, Rochester, Michigan 48309

S. Scheiner
Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901

(Received 16 September 1992; accepted 7 January 1993)

The potential energy surfaces (PES) of Be–H₂O and Be–NH₃ are studied with particular attention to characterization of proton-donor properties of water and ammonia. Calculations were performed by means of both supermolecular and intermolecular Møller Plesset perturbation theory. The Be–H₂O PES reveals two van der Waals minima: the C₂v minimum (Dₑ =176 cm⁻¹, Rₑ=6.5 bohr), and the H-bonded minimum (Dₑ=161 cm⁻¹, Rₑ=7.5 bohr), separated by a barrier of 43 cm⁻¹ at the T-shaped configuration. The Be–NH₃ PES reveals only one van der Waals minimum, at the C₃v configuration (Dₑ=260 cm⁻¹, Rₑ=6.5 bohr) and a saddle point at the H-bonded geometry. The locations of the minima as well as the anisotropy of the interaction are determined by the anisotropy of electric polarization contribution, embodied by the self-consistent-field (SCF)-deformation and perturbation induction energies.

I. INTRODUCTION

Common wisdom about the hydrogen bond suggests that water and ammonia should have basically similar hydrogen bonding capabilities. That is, they both should be able to act as a hydrogen-bond donor and as a hydrogen-bond acceptor. However, whereas this is true for the water molecule, except for the NH₃ dimer, there is so far no known example of the ammonia molecule acting as a proton donor in the gas phase.¹⁻³

Elucidation of these anomalous properties of ammonia is important from the broad perspective of the hydrogen bond concept. In this context, analysis of the potential energy surfaces (PES) in the regions where water’s and ammonia’s protons contact other atoms and molecules is of great interest. In particular, there is a strong incentive to find a strong proton acceptor to which NH₃ might form a donor hydrogen bond.²

Our previous studies of a number of complexes formed by Ar and various hydrides, such as Ar–NH₃,⁴ Ar–H₂O,⁵ Ar–CH₄,⁶ and Ar–HCl⁷ (see also Ref. 8), seem to indicate that the ability to form a H-bonded structure is related to electric polarization effects, encompassed by the self-consistent-field (SCF)-deformation and induction energies. (By a hydrogen bond we mean here a weakly bound geometrical arrangement with an H atom lying in between other atoms, very much in the spirit of the definition of Pimentel and McClellan.)³ The induction energy depends upon two factors: high polarizability of the rare gas atom and the strength of the electric field along the X–H bond in the hydride. The experimental evidence seems to be compatible with the above conclusions.

This paper is the second in a series of papers where we investigate van der Waals complexes between ammonia and other species, and compare them with similar complexes of water. In the previous paper we analyzed the Kr–H₂O and Kr–NH₃ systems.¹⁰ Since Kr has a relatively large polarizability (about 17 a.u.¹¹) there was some expectation that it might hydrogen bond to ammonia. However, similar to the Ar–NH₃ case,⁴ the H-bonded structure proved to be a saddle point, and the global minimum was related to the T-shaped configuration, with the Rg–N axis almost perpendicular to the C₃ axis. The crucial role of electric polarization represented by the SCF-deformation and perturbation induction effects in the formation of the H-bond was confirmed, and essentially weaker polarization properties of N–H bond in NH₃ than O–H bond in H₂O were noticed.

In this paper we present an ab initio study of the Be complexes, Be–H₂O and Be–NH₃. The Be atom is known to be unusually prone to electric polarization, its polarizability being about 38 a.u.,¹² i.e., more than twice as large as that of Kr. Therefore, the Be atom seems an excellent candidate to form a hydrogen bond and studying its complexes with water and ammonia may help to elucidate the differences in the hydrogen bonding capabilities between these two molecules. In addition, complexes of Be involving water and ammonia are of potential interest in understanding the reaction mechanisms involving molecules interacting with metal surfaces. Our ab initio study employed a combination of the perturbation theory of intermolecular forces¹³ with the supermolecular Møller–Plesset perturba-
tion theory (MPPT). This approach has recently been successfully applied to a number of complexes involving rare gases and other molecules.

To the best of our knowledge only the Be–H₂O complex was previously investigated and the studies were limited to the global minimum with the Be atom weakly bound to the oxygen atom. In 1985 Curtiss and Pople presented ab initio MPPT data of the Be–H₂O complex. The results of this study suggested that the Be–H₂O complex is nonplanar, with beryllium lying ca. 55° above the water plane, and with a short Be–O distance of 3.281 bohr and a dissociation energy of 1930 cm⁻¹. In addition, the authors reported also the existence of an outer van der Waals minimum for the coplanar C₂ᵥ configuration, Rₜ = 6.05 bohr, and a well depth of 240 cm⁻¹. Five years later Haase et al. cast doubt on the existence of the inner minimum. Haase et al. repeated some of the previous calculations but also corrected for basis set superposition error (BSSE). After correction, the inner minimum disappeared while the outer minimum persisted. The structure of Be–H₂O proved to be planar and of C₂ᵥ symmetry, with Rₜ and Dₜ estimated to be 6.65 bohr and 226±83 cm⁻¹, respectively. This seemed to be the first reliable characterization of the global van der Waals minimum in Be–H₂O. The authors pointed to the necessity of BSSE removal to obtain correct PES. The 6-311G** basis was also shown to be an inadequate basis set to describe this interaction. Recently, Curtiss and Pople reexamined the Be–H₂O complex using extended basis sets and MPPT through the fourth order. Once more both the inner and outer minima were found although the inner minimum turned out less deep than in their previous study. The authors estimated the inner minimum well depth as about 351 cm⁻¹ and Be–O distance as about 3.3 bohr. After correcting for BSSE, the well depth is further reduced to 175 cm⁻¹. The conditions under which it was obtained [the minimum appeared only after the geometry relaxation of the water moiety and only with the largest TZ+ + (3d2f,3pd) basis] suggest that usual intermolecular forces are not enough to explain its origin. As to the outer minimum, its parameters Dₜ and Rₜ were found to be 175 cm⁻¹ and 6.0 bohr, respectively. The outer minimum appears to be a typical van der Waals minimum. The present work focuses on more comprehensive characterization of the PES of Be–H₂O in the regions where it is governed by common van der Waals forces whereas the inner minimum is given only brief attention.

II. METHOD AND DEFINITIONS

The supermolecular Möller–Plesset perturbation theory (MPPT) interaction energy corrections are derived as a difference between the values for the total energy of the dimer and the sum of the subsystem energies, in every order of perturbation theory

\[\Delta E^{(n)} = E^{(n)}_{AB} - E^{(n)}_{A} - E^{(n)}_{B}, \quad n = SCF, 2, 3, 4, ... \] (1)

The sum of corrections through the nth order will be denoted \(\Delta E(n) \); thus, e.g., \(\Delta E(3) \) will symbolize the sum of \(\Delta E^{SCF}, \Delta E^{(2)}, \) and \(\Delta E^{(3)} \). Each individual \(\Delta E^{(n)} \) correction can be interpreted in terms of intermolecular Möller–Plesset perturbation theory (IMPPT) which encompasses all well-defined and meaningful contributions to the interaction energy such as electrostatic, induction, dispersion and exchange, and may be expressed in the form of a double perturbation expansion. The IMPPT interaction energy corrections are denoted \(\epsilon^{(ij)} \), where \(i \) and \(j \) refer to the order of the intermolecular interaction operator and the intramolecular correlation operator, respectively (see Ref. 13 for more details).

A. Partitioning of \(\Delta E^{SCF} \)

\(\Delta E^{SCF} \) can be dissected as follows (cf. Refs. 14 and 15 for more details)

\[\Delta E^{SCF} = \Delta E^{HL} + \Delta E^{SCF}_{\text{def}}, \] (2)

\[\Delta E^{HL} = \epsilon^{(10)}_{\text{exch}} + \epsilon^{(10)}_{\text{exch}} \] (3)

where \(\Delta E^{HL} \) and \(\Delta E^{SCF}_{\text{def}} \) are the Heitler–London and SCF-deformation contributions, respectively. \(\Delta E^{HL} \) is further divided into the electrostatic, \(\epsilon^{(10)}_{\text{exch}} \), and exchange, \(\epsilon^{(10)}_{\text{exch}} \), components. The SCF deformation originates from mutual electric polarization restrained by the Pauli (antisymmetry) principle. Its perturbation approximations, \(\epsilon^{(20)}_{\text{ind}} \) and \(\epsilon^{(20)}_{\text{disp}} \), are also considered.

B. Partitioning of \(\Delta E(2) \)

\[\Delta E^{(20)} = \epsilon^{(12)}_{\text{exch}} + \epsilon^{(20)}_{\text{disp}} + \Delta E^{(2)}_{\text{def}} + \Delta E^{(2)}_{\text{exch}} \] (4)

\(\epsilon^{(12)}_{\text{exch}} \) denotes the second-order electrostatic correlation energy with response effects, and \(\epsilon^{(20)}_{\text{disp}} \) the Hartree–Fock dispersion energy. \(\Delta E^{(2)}_{\text{def}} \) and \(\Delta E^{(2)}_{\text{exch}} \) stand for the second-order deformation correlation correction to the SCF deformation and the second-order exchange correlation, respectively. The latter encompasses the exchange-correlation effects related to electrostatic correlation and dispersion.

C. Calculations of interaction energies

Unless stated otherwise, calculations of all the supermolecular and perturbational interaction terms are performed using the basis set of the entire complex, i.e., dimer-centered basis sets (DCBS). This procedure amounts to applying the counterpoise (CP) method of Boys and Bernardi. (Despite long controversy over accuracy of this procedure, recent papers by Yang and Kestner, Tao and Pan, and Cybulski and Chalasinski confirm that the CP technique is very efficient.) To assure the consistency of evaluation of the MPPT and IMPPT interaction energy corrections all the intermolecular perturbation terms \(\epsilon^{(ij)} \) must be derived in DCBS as well.

D. Basis sets

Medium-size polarized basis sets of Sadlej were used for H₂O and NH₃.

H₂O: the \(S \) basis which is \{5s3p2d/3s2p\}, and the \(S(f,d) \) basis which is the \(S \) basis augmented with a single \(f \)-symmetry basis orbital at \(O \) (0.18) and a single \(d \)-symmetry orbital at \(H \) (0.18) (cf. Ref. 5).
NH$_3$: the S basis which is [5s3p2d/3s2p], and the $S(f,d)$ basis which is the S basis augmented with a single f-symmetry orbital at N (0.18) and a single d-symmetry orbital at H (0.14).

For Be several basis sets from the study by Diercksen et al.28 were used, and are named as in their paper: A1-[7s3p2d], D1-[7s3p2d1f], D2-[7s3p2d2f]. (Note that in contrast to Ref. 28, 5d and 7f Gaussian orbitals were used.)

All results were obtained using GAUSSIAN 9229 and GAUSSIAN 9230 programs, and an intermolecular perturbation theory package of Cybulski.31

III. RESULTS AND DISCUSSION

A. Characterization of Be–H$_2$O potential energy surface

The internal geometry of H$_2$O was assumed to be undistorted by the interaction: the experimental geometry with $r(\text{OH})=0.9572$ Å and $\Theta(\text{HOH})=104.524^\circ$ was the same as in Ref. 32. The scan of the PES was carried out for the coplanar ($\chi=0^\circ$) and perpendicular ($\chi=90^\circ$) motions of the Be atom, cf. Fig. 1(a). The intermolecular distances \(R\) ranged from 5.0 to 8.5 bohr, with an increment of 0.5 bohr. Θ varied from 0$^\circ$ to 180$^\circ$ in both the coplanar and perpendicular arrangements.

The scan of the PES revealed the existence of two minima: the global minimum at around $R=6.5$ bohr and $\Theta=0^\circ$, $\chi=0^\circ$, hereafter referred to as the C_2v minimum, and a local minimum at around 8.0 bohr and $\Theta=120^\circ$, $\chi=0^\circ$, hereafter referred to as the H-bonded minimum.

To visualize the anisotropy of the interaction, several slices of the PES, calculated at the MP2 level of theory with the A1/S basis set at several R, are shown in Fig. 2. The angle Θ varies from 0$^\circ$ to 180$^\circ$ (for both coplanar and perpendicular motions) and the values of R are from the range of 6.5 to 8.5 bohr. Within this range of R both the H-bond minimum and the C_{2v} global minimum regions are seen.

One can see that when Be is moving in the water plane from the C_{2v} minimum to the H-bond minimum, R must increase and a barrier around $\Theta=80^\circ$ (the T configuration) must be overcome. As to the perpendicular motion we should note the decrease of the interaction energy when Be moves toward hydrogens. From the monotonic behavior of the total interaction energy and its components we conclude that Be does not detect any concentration of electronic charge cloud which would correspond to sp^3 lone pairs on O.

The above results and conclusions were obtained with the relatively small basis A1/S for beryllium and at the lowest correlated level of theory, MP2. In order to confirm our findings as well as to obtain a better quantitative estimate of the minima and the barrier, we performed for selected geometries additional calculations with the most extended $D2/S(f,d)$ basis set through the fourth order of MPPT. At the C_{2v} minimum D_1 increased from 138.6 cm$^{-1}$ to 162.7 cm$^{-1}$ and 176.3 cm$^{-1}$, at the MP2 and MP4 levels of theory, respectively. R_e remained about the same, ca. 6.5 bohr. At the H-bond minimum D_1 increased from 115.5 cm$^{-1}$ to 127.5 cm$^{-1}$ and 161.8 cm$^{-1}$, at the MP2 and MP4 level of theory, respectively, and R_e shifted from 8.0 to 7.5 bohr. Finally, the barrier height changed from 41.2 cm$^{-1}$ to 53.2 cm$^{-1}$ and 43.3 cm$^{-1}$, at the MP2 and MP4 level of theory, respectively, and the related R_e shifted from 7.5 to 7.0 bohr. From these additional calculations one can conclude that the relative stabilization of the three configurations under consideration as well as the positions of the minima and the saddle point do not qualitatively depend upon the basis set at the MP2 level. They become deeper from about 10 cm$^{-1}$ (H-bond configuration and T configuration) to about 20 cm$^{-1}$ (the C_{2v} configuration), and the H bond and T configurations also shifted by about 0.5 bohr toward smaller R. Similarly, allowing for higher orders at the MP4 level further raises the magnitude of the
interaction energy by ca. 20 cm$^{-1}$ but does not change our conclusions either. The frozen core approximation only negligibly affected the interaction energies. Here, the MPPT series reveals a reasonable convergence (cf. Table I). The major repulsive and attractive contributions are located in ΔE^{SCF} and $\Delta E^{(3)}$, respectively. The third order is practically negligible. In the fourth order the singles, doubles, and quadruples (SDQ) terms provide some secondary repulsion but eventually the whole term is attractive due to the domination of triples. Such a convergence is quite similar to that observed in the Ar molecule case rather than in the Be$_2$ case where it is fairly slow. In addition, even in the Be$_2$ case, the MP2 and MP4 levels of theory proved to be very efficient, more efficient than, e.g., various truncated coupled cluster (CC) approximations. Yet, in complexes with Be, notorious for quasidegeneracy in its 2s–2p shell, one should always take extra care to verify performance and consistency of the results by other correlated methods. Therefore, we also carried out additional CCSD(T) (coupled cluster including single, double, and noniterative triple substitutions) and QCISD(T) (quadratic configuration interaction including single, double, and noniterative triple substitutions) calculations with the D_2/S basis at the global C_{2v} minimum. The results are given in Table I. One can see that CCSD(T) and QCISD(T) provide similar correlation contribution which is smaller by about 22 cm$^{-1}$ than that predicted by MP4. Note that the difference of 22 cm$^{-1}$ amounts to about 10% of the total correlation term, and 15% of the total interaction energy.

Our best estimates of R_s and D_s [MP4 with the $D_2/S(f,d)$ basis set] are for the C_{2v} minimum 176.3 cm$^{-1}$ at 6.5 bohr, respectively, and for the H-bond minimum 161.8 cm$^{-1}$ at 7.5 bohr, respectively. The best estimate of the saddle point in the barrier (T configuration, $\Theta = 80^\circ$ and $\chi = 0^\circ$) is 129.4 cm$^{-1}$ at 7.5 bohr. The height of the barrier with respect to the global minimum is thus 43.2 cm$^{-1}$.

1. Analysis of Be–H$_2$O interaction anisotropy

The anisotropies of different components of the interaction energy for the coplanar geometry are shown in Fig. 3 (SCF level), Fig. 4 (MP2 level), and in Table II. The anisotropies of the individual components of the SCF interaction energy: electrostatic, exchange, and induction, are similar as in the Ar–H$_2$O case. In fact, if one compares

![FIG. 3. θ dependence of the Be–H$_2$O interaction energy terms which belong to ΔE^{SCF} (for definitions see the text). R is kept at 7.5 bohr.](image-url)
First sight one finds no difference whatsoever. There is, however, one important quantitative difference: the electric polarization plays a substantially greater role in the case of Be-H$_2$O than in the Ar-H$_2$O case; ten times and four times as large at the C$_{2v}$ and H-bond configurations, respectively. This makes the total SCF interaction energy curve much flatter which enables formation of two minima at the correlated level.

The behaviors of the various post-SCF terms are illustrated in Fig. 4 (see also Table II). First, one can see that the anisotropy of the dispersion, the major contribution to $\Delta E^{(2)}$, is reciprocal to the exchange energy (cf. Fig. 4), which is characteristic of the Be-H$_2$O complex. Although surprising it is not unexpected. The Be atom has an unusually large polarizability and a diffuse electronic charge cloud. In the Be dimer there was also a large and crucial contribution from ΔE^{SCF}, which shifted the minimum to considerably shorter distances.37 One may say that the shape of Be-H$_2$O PES reflects and is governed by the induction anisotropy. With this peculiarity the outer minima in Be-H$_2$O seem to be a classical van der Waals type of minima.

2. Inner minimum problem

In this study we are interested primarily in the outer minimum since it appears to be a common type of van der Waals minimum. As to the inner minimum its origin and

<table>
<thead>
<tr>
<th>θ [deg]</th>
<th>$\epsilon_{\text{el}}^{(10)}$</th>
<th>$\Delta E_{\text{el}}^{\text{el}}$</th>
<th>$\Delta E_{\text{el}}^{\text{CF}}$</th>
<th>$\Delta E_{\text{disp}}^{(12)}$</th>
<th>$\Delta E^{(2)}$</th>
<th>$\Delta E_{\text{disp}}^{\text{CF}}$</th>
<th>$\Delta E_{\text{disp}}^{(20)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi=0^\circ$</td>
<td>0</td>
<td>-403.3</td>
<td>766.4</td>
<td>363.2</td>
<td>-32.5</td>
<td>32.1</td>
<td>715.3</td>
</tr>
<tr>
<td>20</td>
<td>-395.7</td>
<td>756.1</td>
<td>360.4</td>
<td>-8.4</td>
<td>31.4</td>
<td>717.9</td>
<td>-501.5</td>
</tr>
<tr>
<td>40</td>
<td>-377.1</td>
<td>746.8</td>
<td>371.5</td>
<td>65.8</td>
<td>30.1</td>
<td>731.7</td>
<td>-547.2</td>
</tr>
<tr>
<td>60</td>
<td>-358.6</td>
<td>812.7</td>
<td>454.1</td>
<td>192.8</td>
<td>27.6</td>
<td>777.2</td>
<td>-643.2</td>
</tr>
<tr>
<td>80</td>
<td>-342.8</td>
<td>1039.6</td>
<td>696.6</td>
<td>372.1</td>
<td>17.7</td>
<td>884.1</td>
<td>-816.1</td>
</tr>
<tr>
<td>100</td>
<td>-317.0</td>
<td>1443.7</td>
<td>1126.7</td>
<td>578.2</td>
<td>-9.6</td>
<td>1052.9</td>
<td>-1053.6</td>
</tr>
<tr>
<td>120</td>
<td>-305.5</td>
<td>1822.5</td>
<td>1517.0</td>
<td>734.7</td>
<td>-46.6</td>
<td>1202.2</td>
<td>-1239.8</td>
</tr>
<tr>
<td>140</td>
<td>-364.5</td>
<td>1854.1</td>
<td>1516.9</td>
<td>767.4</td>
<td>-59.1</td>
<td>1219.8</td>
<td>-1231.8</td>
</tr>
<tr>
<td>160</td>
<td>-450.3</td>
<td>1662.5</td>
<td>2212.2</td>
<td>708.8</td>
<td>-42.0</td>
<td>1130.1</td>
<td>-1806.0</td>
</tr>
<tr>
<td>180</td>
<td>-483.9</td>
<td>1524.4</td>
<td>1040.5</td>
<td>669.9</td>
<td>-30.3</td>
<td>1075.0</td>
<td>-1004.6</td>
</tr>
</tbody>
</table>

$\chi=90^\circ$	20	-411.9	782.4	370.4	-19.9	29.9	718.1	-491.5	-511.4	-390.4	-644.5
40	-434.6	825.3	390.7	19.1	23.6	728.0	-504.0	-484.9	-371.6	-640.4	
60	-463.0	884.8	421.9	88.0	13.8	747.6	-529.9	-441.9	-333.9	-633.3	
80	-487.2	954.6	467.4	188.3	1.8	779.6	-574.2	-385.9	-279.1	-633.3	
100	-501.3	1040.6	539.3	313.0	-10.2	826.5	-641.9	-328.9	-226.3	-666.7	
120	-504.6	1158.8	654.1	444.4	-19.6	891.5	-737.1	-292.6	-209.7	-767.3	
140	-499.3	1312.4	813.1	560.3	-25.7	971.9	-854.2	-294.0	-252.9	-940.8	
160	-489.3	1460.5	971.1	640.7	-29.2	1044.9	-960.6	-319.9	-330.4	-1125.3	
sects it. At this point, let us invoke the peculiar beryllium quadratic CI methods) may no longer be adequate to eval-

...avoided crossing between two hypothetical diabatic curves: one dissociating into the \(2s^2p\) atoms and the other into \(2s2p^2\) atoms. If similar problems occur here, however, then single reference MPPT (as well as coupled cluster or quadratic CI methods) may no longer be adequate to evaluate the interaction energy in this region. To summarize, the existence and characterization of the inner minimum requires further studies, beyond the MPPT approximation and consideration of excited states seems to be necessary. In this paper we are not in a position to solve this problem.

B. Characterization of Be–NH\(_3\) potential energy surface

The geometrical parameters of the Be–NH\(_3\) complex are shown in Fig. 1 (b). The internal geometry of NH\(_3\) was assumed to be undistorted by the interaction: the experimental geometry with \(r(\text{NH}) = 1.0124 \) Å and \(\Theta(\text{HNH}) = 106.67^\circ\) was the same as in Ref. 39. The values of \(R\) under consideration ranged from 5.5 to 9.0 bohr, with an increment of 0.5 bohr. \(\Theta\) varied from 0\(^\circ\) to 180\(^\circ\), and two values of \(\chi\) were considered, 0\(^\circ\) and 60\(^\circ\). \(\chi = 0^\circ\) corresponds to the motion of Be in the plane encompassing the \(C_3\) axis and the dissection of the HNH angle.

A scan of the PES revealed the existence of only one minimum. This minimum occurs for the Be atom lying at the \(C_3\) symmetry axis and facing the N atom. It is hereafter referred to as the \(C_{3v}\) minimum.

The total interaction energy curves \(\Delta E(2)\) calculated at 8.0, 8.5, and 9.0 bohr, are visualized in Fig. 6. One can see that for \(\chi = 0^\circ\) and larger \(R\), cf. 9.0 bohr, there are two valleys, separated by a barrier, which correspond to the \(C_{3v}\) configuration and H-bond configuration. With decreasing \(R\), cf. 8.5 bohr, the H-bond valley flattens and the barrier is reduced, to finally disappear, cf. 8.0 bohr, in the slope of the deeper \(C_{3v}\) valley. As to the \(T\) configuration (which is optimal for Ar–NH\(_3\) and Kr–NH\(_3\)) for \(R = 8.5\) bohr it is higher in energy than the \(C_{3v}\) configuration and also than the H-bond configuration with angles \(\Theta\) larger than 80\(^\circ\).

The anisotropies of the three individual SCF energy components: electrostatic, exchange, and induction, are illustrated in Table III and Fig. 7. They qualitatively very much resemble the anisotropy of the same terms in the Ar–NH\(_3\) case. The relative roles of terms are essentially different: the electric polarization terms \(\Delta E^{\text{SCF}}_{dd} \) and \(\varepsilon^{(20)}_{\text{ind},r}\) as well as the electrostatic term are...
TABLE III. \(\theta \) dependence of the interaction energy terms for Be\(\text{--NH}_3 \) at \(R=8.5 \) bohr, the \(A1/S \) basis set (for definitions, see the text). Energies in eV.

<table>
<thead>
<tr>
<th>(\chi)</th>
<th>(\theta=0^\circ)</th>
<th>(\theta=90^\circ)</th>
<th>(\Delta E_{\text{HF}})</th>
<th>(\Delta E_{\text{SCF}})</th>
<th>(\Delta E_{\text{disp}})</th>
<th>(\Delta E_{\text{el}})</th>
<th>(\Delta E_{\text{corr}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-176.7</td>
<td>349.6</td>
<td>172.9</td>
<td>-89.1</td>
<td>3.7</td>
<td>-493.7</td>
<td>-370.1</td>
</tr>
<tr>
<td>20</td>
<td>-170.4</td>
<td>341.5</td>
<td>171.1</td>
<td>-66.2</td>
<td>3.8</td>
<td>-494.1</td>
<td>-377.8</td>
</tr>
<tr>
<td>40</td>
<td>-156.0</td>
<td>334.2</td>
<td>178.2</td>
<td>-0.6</td>
<td>4.7</td>
<td>-501.7</td>
<td>-406.1</td>
</tr>
<tr>
<td>60</td>
<td>-143.6</td>
<td>366.7</td>
<td>223.7</td>
<td>95.4</td>
<td>6.3</td>
<td>-534.4</td>
<td>-469.5</td>
</tr>
<tr>
<td>80</td>
<td>-140.3</td>
<td>472.9</td>
<td>332.6</td>
<td>206.1</td>
<td>5.7</td>
<td>-607.9</td>
<td>-575.4</td>
</tr>
<tr>
<td>100</td>
<td>-149.8</td>
<td>616.9</td>
<td>467.1</td>
<td>301.7</td>
<td>-0.4</td>
<td>-696.3</td>
<td>-681.6</td>
</tr>
<tr>
<td>120</td>
<td>-174.6</td>
<td>681.3</td>
<td>506.7</td>
<td>337.1</td>
<td>-9.1</td>
<td>-733.6</td>
<td>-710.2</td>
</tr>
<tr>
<td>140</td>
<td>-196.6</td>
<td>623.0</td>
<td>462.4</td>
<td>314.2</td>
<td>-13.8</td>
<td>-701.0</td>
<td>-651.0</td>
</tr>
<tr>
<td>160</td>
<td>-201.8</td>
<td>537.7</td>
<td>335.9</td>
<td>276.8</td>
<td>-15.7</td>
<td>-652.4</td>
<td>-579.1</td>
</tr>
<tr>
<td>180</td>
<td>-201.8</td>
<td>507.9</td>
<td>306.1</td>
<td>262.7</td>
<td>-16.8</td>
<td>-634.9</td>
<td>-553.5</td>
</tr>
</tbody>
</table>

Concluding, there is only one minimum on the PES at the \(C_{3v} \) configuration, around \(R=6.5 \) bohr. The best estimate of \(D_e \) is 261.0 cm\(^{-1}\). It was obtained at the MP4 level with the \(D2/S(\gamma d) \) basis set, cf. Table IV.

The nature of the Be\(\text{--NH}_3 \) interaction at different configurations is compared in Table IV. We compare the interaction energies at the radial minima for three different structures: \(C_{3v} \), H bond and \(T \). One can see that the \(C_{3v} \) structure has very large attractive contributions of comparable size, from dispersion, electrostatic, and SCF-deformation effects. On the other hand, the H bond and \(T \) structures are predominantly bound by dispersion effects, the other two being small.

Whereas the anisotropies of the elementary components do not qualitatively change with \(R \), it should be

![FIG. 7. \(\theta \) dependence of the Be\(\text{--NH}_3 \) interaction energy terms which belong to \(\Delta E_{\text{SCF}} \) (for definitions see the text). \(R \) is kept at 8.5 bohr.](image)

![FIG. 8. \(\theta \) dependence of the Be\(\text{--NH}_3 \) interaction energy terms involving correlation (for definitions see the text). \(R \) is kept at 8.5 bohr.](image)
TABLE IV. Interaction energy components for three configurations for Be–NH₃. R corresponds to the minimum at a given configuration. (Basis set 11S/ all electron calculations, energies in mhartree.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔE(CF)</td>
<td>552.5</td>
<td>531.5</td>
<td>502.8</td>
<td>337.9</td>
</tr>
<tr>
<td>ΔE(2)</td>
<td>-1481.5</td>
<td>-1665.5</td>
<td>-996.1</td>
<td>-710.2</td>
</tr>
<tr>
<td>ΔE(3)</td>
<td>64.0</td>
<td>50.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔE(4)</td>
<td>213.4</td>
<td>236.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔE(5)</td>
<td>173.1</td>
<td>192.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔE(6)</td>
<td>-85.9</td>
<td>-106.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R=6.5 bohr, Θ=0°, χ=0°.
b R=7.5 bohr, Θ=80°, χ=60°.
c R=8.5 bohr, Θ=120°, χ=0°.

stressed that the anisotropy of the total PES is very much *R* dependent and our discussion is valid for the region of van der Waals minima. For smaller *R*, in the repulsive region the anisotropy of the exchange repulsion will be the major factor and PES will be shaped by e_{EH}^2; it will have a valley at the *T* configuration and barriers at the N end and H end of ammonia. On the other hand, for large *R* the PES will follow the long range terms, e_{ind} and e_{disp} with valleys at the H ends and the C₃ axis and a ridge in between. Additional calculations at R=11.0 bohr confirmed this picture and also proved that the H-bond valley is slightly deeper than the C₃ᵥ valley.

IV. SUMMARY AND CONCLUSIONS

The Be–H₂O ground state PES reveals two minima: the global, C₂ᵥ minimum, and the local H-bonded minimum. The C₂ᵥ minimum has a well depth of 176 cm⁻¹ and Rᵥ=6.5 bohr. The H-bond minimum has a well depth of 161 cm⁻¹, at R=7.5 bohr. They are separated by a ridge with a saddle point at R of about 7.5 bohr and Θ=80°. The height of the barrier from the bottom of the minimum to the saddle point is estimated as 43 cm⁻¹. It is difficult to assign error bars to those estimates as Be complexes may be different from well documented Ar-molecule complexes. However, the pattern of convergence through the fourth order is remarkably similar. Therefore, assuming similar convergence, the true values of Δₚ are expected to be larger because of basis set saturation of dispersion by 15%–25%. We also attempted to locate the so called “inner” minimum, predicted by Curtiss and Pople for the C₃ configuration with the Be atom situated above the H₂O plane. Although we did not find any minimum, we encountered some problems with characterization of the region of the hypothetical minimum by means of MP4 theory. This fact warrants future investigations which would ensure accurate treatment of electron correlation possibly in the vicinity of an excited state of Be–H₂O.

The anisotropies of individual components of the interaction energy: electrostatic, exchange, electric polarization, and dispersion, are qualitatively similar to those for the Rg–H₂O complexes. However, the anisotropy of the total PES qualitatively differs. Instead of a broad minimum for the *T* configuration, a barrier is found which separates two minima, at the C₂ᵥ and H-bonded configurations. These differences are due to a very large electric polarization component encompassed by the SCF-deformation and perturbation-induction terms. The electric polarization term stabilizes the H-bonded and C₂ᵥ configurations since the SCF-deformation and perturbation-induction terms exhibit distinct minima at these configurations.

The Be–NH₃ PES reveals only one minimum, at the C₃ᵥ configuration. It has a well depth of 260 cm⁻¹ and occurs at Rᵥ=6.5 bohr. The anisotropies of elementary interaction energy components very much resemble those for the Rg–NH₃ complexes. However, the anisotropy of the total PES is qualitatively different. The *T* configuration (which gives a global minimum for Rg–NH₃) is relatively high in energy. On the other hand, the C₃ᵥ configuration gives a global minimum (while it was a ridge in the Rg–NH₃ case). As in the complexes with water, the differences between Rg and Be complexes are due to large electric polarization of Be which stabilizes the C₃ᵥ configuration. The electric polarization also stabilizes the H-bond structure but to a lesser extent than in Be–H₂O and not sufficiently to create a local minimum. Be–NH₃ appears to be more stable than Be–H₂O by about 100 cm⁻¹. This reflects more “basic” character of the ammonia molecule.

ACKNOWLEDGMENTS

This work was supported by the National Institutes of Health (GM36912) and by the Polish Committee for Scientific Research KBN Grant No. 2 0556 91 01.

29 GAUSSIAN 90, M. J. Frisch, M. Head-Gordon, G. W. Trucks, J. B. Foresman, H. B. Schlegel, K. Raghavachari, M. A. Robb, J. S. Binkley, C. Gonzales, D. J. Defrees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker, R. L. Martin, L. R. Kahn, J. J. P. Stewart, S. Topiol, and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1990.