Using Hyper-Spectral SCIAMACHY Radiances to Uniformly Calibrate Contemporary Geostationary Visible Sensors

28 August 2012

Daniel Morstada, David Doellingb, Benjamin Scarinoa, Rajendra Bhatta, Arun Gopalana,
aSSAI, One Enterprise Pkwy Ste 200, Hampton, VA 23666 USA
bNASA Langley Research Center, 21 Langley Blvd MS 420, Hampton, VA 23681-2199 USA

2012 CALCON Technical Conference
27 - 30 August 2012
Logan, Utah, United States

Inter-calibration and Validation of Operational Sensors -- Oral Session
Outline

• Motivation/Objective
• Background
 – SCIAMACHY/MODIS/MET-9
 – Inter-calibration techniques
• Spectral Band Adjustment Factors (SBAF)
• Direct calibration transfer using SCIAMACHY
• Before/After SBAF results
• Conclusions
Motivation

- Geostationary satellites (GEOsat) sensors do not have on-board radiometric calibration sources for visible channels
- Need exists to develop absolute inter-calibration techniques capable of use with GEOsat sensors
- Cross-calibration is plagued by the differences in the sensor spectral response functions (SRFs)

Objective

- Develop inter-calibration-target-dependent Spectral Band Adjustment Factors (SBAFs) using SCIAMACHY hyperspectral visible radiances
- Validate for accuracy using SCIAMACHY and GEOsat direct comparisons
Background

• Global Space-Based Inter-Calibration System (GSICS)
 – Goal is to monitor/improve data quality from operational environmental satellites
 – Use IASI Hyper-spectral instruments to account for IR SRF differences
 – Aqua-MODIS is reference for GEO visible channels

• Key instruments used in this research
 – MODerate resolution Imaging Spectroradiometer (MODIS)
 • Collection 6, L1B, 1-km (subset to 2-km)
 – Meteosat-9 (Met-9)
 • 3-km
 – SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY or SCIA)
 • Level-1b, Version-7.03
Background- SCIAMACHY Specifications

- Onboard ESA Environmental Satellite (Envisat)
- Launched on 1 March 2002
- 10:00 AM LST sun-synchronous orbit
- 35-day repeat cycle
- Shared scan duty between nadir and limb measurements
- Four 30-km along-track by 240-km across-track nadir-like footprints
 - Two nadir-like footprints on either side of ground track within a 30° view angle
 - Total nadir scan width of 960 km
Background- InterCalibration Methods

• MODIS-with-Met-9 ray-matching
 – Transfer calibration using co-incident, co-angled, and co-located ocean regions

• Deep Convective Clouds (DCC)
 – Treated as invariant targets
 – DCC model referenced to Aqua-MODIS

• Libyan Desert
 – Invariant target
 – Employs a kernel-based bidirectional reflectance distribution function (BRDF) model referenced to Aqua-MODIS

• SBADF necessary to account for spectral differences in all three methods
Visible-channel spectral corrections are dependent on target and reference SRFs

- MODIS: 0.65-μm (CH1)
- Met-9: CH1 and High Resolution Visible (HRV)

Scene-specific corrections for independent inter-calibration techniques (i.e., separate correction for DCC, Desert, and Ray-matching)
Spectral Band Adjustment Factors

- Spectra from each SCIAMACHY scene-appropriate footprint are convolved with imager SRFs to compute imager equivalent radiances.

- Regression of the two convolved SCIAMACHY radiances constitutes a Spectral Band Adjustment Factor (SBAF).
 - Applied to the reference sensor (MODIS) radiance \(L_{ref} \) to arrive at the predicted target sensor (Met-9) radiance \(L_{tar} \).

\[
L_{ref} \times SBAF_{tar/ref} = L_{tar}
\]
Narrowband-to-Narrowband SBAFs

Regressions well-behaved for narrowband-to-narrowband case
Corrections are small but not insignificant
Narrowband-to-Broadband SBAFs

Specific scene selection critical for obtaining representative Spectral Band Adjustment Factors when calibrating narrowband to broadband.
Direct SCIAMACHY Calibration Transfer

• Inter-calibrate SCIAMACHY and Aqua-MODIS 0.65µm channel using Near-SNOs
 – Determine SCIAMACHY stability compared against Aqua-MODIS
 – Determine relative calibration difference
• Inter-calibrate GEO with SCIAMACHY using ray-matching
• Can be used to validate the SBAF corrections for the other inter-calibration methods

Aqua-MODIS 0.65 micron \(\rightarrow\) Near SNO \(\rightarrow\) SCIAMACHY \(\rightarrow\) Ray-Match \(\rightarrow\) MET-9 0.65 micron
SCIAMACHY Aqua-MODIS 0.65µm, Jul 2010

- coincident within 15 minutes
- ~1300 1-km sub-sampled MODIS pixels are averaged into a 30x240km SCIAMACHY footprint
- limited to <70° SZA
Nearly Simultaneous Nadir Overpass Comparisons with Aqua-MODIS

SCIAMACHY Radiance is stable to within -0.6% per decade compared to Aqua-MODIS.
SCIAMACHY-with-Met-9 Ray-Matching

- Average Met-9 10-bit count computed within SCIA footprint bounds
 - 4-km pixels
 - Count \propto radiance
 - Match within 15 min
- Three-monthly gains found by regressing SCIA convolved radiances with Met-9 average counts
 - Regression forced through the Met-9 space count
 - SCIA radiances scaled to Aqua-MODIS using NSNO comparisons
- Figure: Jan – Mar 2008 SCIA-with-Met-9 CH1 gain = 0.557
Standard error of 0.52% means absolute calibration coefficients are well-represented by the linear trend.
Before and After: Narrow-to-Narrow

• Before the SBAF is applied, the maximum mean difference in gain between the three methods for Met-9 CH1 **0.4%**

• After the SBAF is applied, the difference reduces to within **0.2%**

• The mean difference in CH1 gains from before to after application of the SBAF is **+2.0%**

• SCIAMACHY-to-Met-9 CH1 gain is within **1.3%** of other methods after SBAF is applied
Before and After: Narrow-to-Broad

- Before the SBAF is applied, the maximum mean difference in gain between the three methods for Met-9 HRV **8.3%**
- After the SBAF is applied, the difference reduces to within **1.0%**; reduced spread
- The mean difference in HRV gains from before to after application of the SBAF is **-11.3%**
- SCIAMACHY-to-Met-9 HRV gain is within **0.2%** of other methods after SBAF is applied
Conclusions

- SCIAMACHY convolved radiances can account for sensor SRF differences
- SCIAMACHY-with-Met-9 gain within 0.2% – 1.3% of other methods after the SBAF is applied
- A unique SBAF is required for each scene type
 - After SBAF application, three inter-calibration methods within 0.2%-1.0%
 - Better than 7% improvement in narrowband-to-broadband calibration agreement, suggests SBAF is important in deriving a gain
Nearly Simultaneous Nadir Overpass Comparisons with Aqua-MODIS

- Establish the stability of SCIAMACHY by radiometrically scaling to Aqua-MODIS
- Accomplished using nearly simultaneous nadir overpass (NSNO) comparisons near the north pole during Apr-Sep
- Aqua-MODIS is chosen following recommendations from GSICS
- About 14 NSNOs per day (dependent on scan duty cycle) at 11:45 am LST
 - Minimal view angle difference
 - Near-symmetric solar conditions (corrections for SZA differences applied)
Nearly Simultaneous Nadir Overpass Comparisons with Aqua-MODIS

- MODIS CH1 2-km pixel radiances averaged within bounds of SCIA footprint

- Regressed with SCIA radiances that were convolved with the MODIS CH1 SRF

![Graph showing a linear relationship between SCIAMACHY CH1 Radiance and Aqua-MODIS CH1 Radiance](image)

- SLOPE: 0.9848
- OFF: 0.03846
- R^2: 0.9977
- STDerr%: 3.1802
- NUM: 375
- BIAS (X-Y): 1.1259
- FOR [0.0]: 0.9853
Nearly Simultaneous Nadir Overpass Comparisons with Aqua-MODIS

- Stability of SCIAMACHY assessed with timeline of yearly regressions
- Mean correction value between SCIAMACHY and Aqua-MODIS of 0.9838
- Degradation of SCIAMACHY of 0.6% per decade
- Low degradation and 0.23% standard deviation suggests that SCIAMACHY is stable
SCIAMACHY-with-Met-9 Ray-Matching

- Match VZA for Met-9 and SCIA FOV
- One ray-matched location per FOV, four SCIA FOVs
- Four ray-matched locations per GEOsat sub-satellite domain
- Match occurs when:
 - SCIA FOV is within 160 km of corresponding ray-matched location
 - Scan difference < 15 min
- Threshold of 160 km provides sufficient sampling; does not significantly increase standard error relative to a tight threshold
Before and After: Summary

MODIS Characterization Support Team

- Met-9 CH1 / Aqua CH1 SC ratio = 1.013
- Met-9 HRV / Aqua CH1 SC ratio = 0.883

<table>
<thead>
<tr>
<th></th>
<th>Average Gain (CH1) Before SBAF</th>
<th>Average Gain x SC ratio (CH1)</th>
<th>Average Gain (CH1) After SBAF</th>
<th>Average Gain (HRV) Before SBAF</th>
<th>Average Gain x SC ratio (HRV)</th>
<th>Average Gain (HRV) After SBAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terra-MODIS</td>
<td>0.540</td>
<td>(+1.3%) 0.547</td>
<td>(+0.7%) 0.551</td>
<td>0.633</td>
<td>(-11.7%) 0.559</td>
<td>(+1.3%) 0.566</td>
</tr>
<tr>
<td>Aqua-MODIS</td>
<td>0.539</td>
<td>(+1.3%) 0.546</td>
<td>(+0.9%) 0.551</td>
<td>0.619</td>
<td>(-11.6%) 0.547</td>
<td>(+2.9%) 0.563</td>
</tr>
<tr>
<td>DCC</td>
<td>0.541</td>
<td>(+1.3%) 0.548</td>
<td>(+0.5%) 0.551</td>
<td>0.631</td>
<td>(-11.7%) 0.557</td>
<td>(+3.2%) 0.575</td>
</tr>
<tr>
<td>Libya</td>
<td>0.539</td>
<td>(+1.3%) 0.546</td>
<td>(+1.1%) 0.552</td>
<td>0.675</td>
<td>(-11.7%) 0.596</td>
<td>(-4.5%) 0.569</td>
</tr>
</tbody>
</table>

Combination of surface reflectance and atmospheric absorption differences means that a single SBAF cannot account for all calibration methods.

SBAFs are impactful and add value.