Open Stream Collection and Diversion: An Added Dimension in Providing Water for Grazing Animals

United States Bureau of Land Management
Open Stream Collection and Diversion: An Added Dimension In Providing Water For Grazing Animals

Technical Note 392

by

S. Douglas Wood, Chief of Support Services
Richfield District, Utah

U.S. Department of the Interior
Bureau of Land Management

BLM/SC/ST-95/001-9170
Open Stream Collection and Diversion

Perhaps one of the greatest challenges in managing lands that produce forage for grazing animals is to strike a desirable balance between forage and water. The optimum situation would be one in which available drinking water was within a reasonable distance of all the available forage that could be properly utilized. However, on native grazing lands, this is rarely the case because of terrain characteristics and uneven water distribution.

The abundance and frequency of water are important when considering the optimum carrying capacity and proper management of the range. According to Stoddart, Smith, and Box, "Since livestock are as dependent upon water as upon food, lack of water may prevent proper utilization of forage. Cattle, and especially sheep, occasionally travel long distances to water and go for long periods without, particularly when snow is present. However, poor water distribution is probably the chief cause of poor distribution of livestock on the range." 1

In regard to wildlife, "The amount, availability, quality, and presence throughout the year of water can be improved for purposes of increasing wildlife numbers or expanding the use of habitat." During the past several decades, significant efforts have been made by land managers to attain an increased water/forage balance for grazing animals. Natural springs have been developed, wells have been drilled and equipped with pumps, and, with the advent of plastic pipe, literally thousands of miles of pipeline have been installed to provide better water distribution for grazing allotments and habitat areas. Other means of providing water have included the construction of various types and sizes of earthen impoundments, i.e., reservoirs, and the installation of precipitation collectors, commonly referred to as "guzzlers" or water catchments, in recent years. In some areas, hauling water has proven effective where the hauling distance is practical and motor vehicle access routes are present.

All of these methods are commonly recognized by land managers across the country as being effective means of providing water sources for grazing animals. Other methods of an innovative nature may occasionally surface, and when they do, it is important to share the knowledge with others so as many as possible might benefit. One such method is referred to in this document as the "Open Stream Collection and Diversion System."

During the past 10 years, the Richfield District has developed an effective system for collecting water from open streams and conveying it several miles via pipeline systems to watering troughs at various locations. This has provided an additional means of making forage available that had been unusable because of a lack of water. This system thus provides yet another method to improve the distribution and expand the habitat of grazing animals.

The development of this system has evolved over the years from a simple system where the stream is generally clear and stable, with little or no threat of sedimentation, to a more sophisticated system where flooding occurs on a regular basis and sedimentation is severe. As expected, small, stable channels where the water is clear year-round require little maintenance; the primary problem here is the deposition or trapping of organic matter. Systems in larger, unstable channels, on the other hand, require more time and effort to maintain, depending on the frequency of storms that produce overland flow and increased sedimentation.

--- Design Concept ---

The design of the system is basically a two-phase filtering system. In phase one, the installation of a concrete or gabion structure across the stream channel reduces water velocity, allowing it to be collected from the stream into a small tank where it is filtered and diverted from the stream channel. Provision is made for excess water, sediments, and small debris to exit through an overflow/flush pipe. After the water is diverted from the stream channel, it enters phase two, which consists of a larger tank with a settling pool that allows any fine residual sediment to settle before the water is refiltered and conveyed into the main pipeline distribution system. This phase two tank also contains an overflow/flush provision. See the attached drawings for details.

This system is serviced as needed by flushing sediment from the two tanks and cleaning or changing the filter material. Experience has shown that when floodwaters laden with a heavy load of sediment hit the initial collection tank, the filter material will promptly seal off; any water that continues to enter the tank will exit via the overflow. Should any sediment escape into the inlet pipe, it will be trapped in the secondary tank, thereby protecting the distribution system.
Subsurface development (optional).

3" dia. threaded coupler.

3' wide wing wall gabions, elevation to be 3' above elevation of crest gabions. Must be capable of conveying 25 yr. to 50 yr. storm.

4" dia. perforated PVC laterals, full width.

Crest gabions

Support gabions

Overflow/flush 4" dia. PVC pipe.

Diversions pipe

Overflow/flush

PLAN VIEW

Phase I Tank

Phase II Tank

Distribution line

Crest gabions

Support gabions
Filter material, 140 N Mirafi or equal, open on bottom and tied at top.

12" dia. PVC with 7" wide openings at 9.4" on center around the circumference. Wrap w/filter material. Secure with stainless steel bands, 3 each.

30" dia. CMP with hinged lid, 1/4" steel plate.

Filter material, 140 N Mirafi or equal, open on bottom and tied at top.

12" dia. PVC with 7" wide openings at 9.4" on center around the circumference. Wrap w/filter material. Secure with stainless steel bands, 3 each.

3" dia. threaded coupler

4" dia. overflow flush

3" dia. threaded coupler

4" dia. overflow flush

3" dia. threaded coupler

4" dia. overflow flush

Filter material, 140 N Mirafi or equal.

4" dia. perf. PVC pipe

Outlet to Phase II tank

6 mil PE liner

Natural channel bottom

90° elbow, unglued on vertical leg

PHASE I TANK

Crest gabion wall 3' x 3' x 27'

Support gabions 1.5' x 3' x 6'

Ladder rungs, 24" wide at 16" o.c.

Inlet from Phase I tank, 4" dia. solid PVC.

Water distribution line

This end left open so water level can be readily observed

15" dia. PVC with 9 1/2" wide openings at 11 3/4" on center around the circumference. Wrap w/filter material. Secure with stainless steel bands, 3 each.

42" dia. x 8'-3" CMP with hinged lid 1/4" steel plate lid

6' diameter concrete base

90° elbow, unglued on vertical leg

4" dia. overflow/flush

PHASE II TANK

UNITED STATES DEPARTMENT OF THE INTERIOR
BUREAU OF LAND MANAGEMENT
RICHFIELD, UTAH
OPEN STREAM COLLECTION AND DIVERSION

DESIGNED
S.D. WOOD

REVIEWED

APPROVED

DRAWN

SCALE

NO SCALE

DATE: AUGUST 1984 SHEET 2 OF 2

DRAWING NO.
Following a flood, the system can easily be reactivated by simply removing the overflow insert pipe and flushing the sediment out, and then rinsing or changing the filter material. The same procedure may be necessary in the secondary tank to get rid of the finer silt that may have accumulated after escaping the initial filtering process.

As an extra precaution, it is wise to install flush drains along the distribution pipeline, in addition to the two-phase filtering process. This is especially important where the pipeline traverses swales and small valleys where the velocity of water flowing through the pipe is not adequate to provide a self-flushing effect. Even in the worst case, however, there will probably be only minor amounts of fine silt that accumulate in these areas.

In addition to the surface collection system described above, a subsurface system can also be installed to convey a smaller amount of water into the system simultaneously. Experience has shown that the amount collected by the subsurface system will usually not exceed 2 gallons per minute (gpm). However, it will provide stability to the system, especially if waters laden with silt tend to close down the Phase I filter. This is accomplished by connecting the subsurface system directly to the phase II tank.

Note that a development of this type is subject to various appropriate laws and regulations. First, it is subject to State laws governing water rights. Second, it must be consistent with all laws and policies that direct the management and protection of riparian/wetland areas.

The actual design of the gabion or concrete wall will vary according to the soil conditions, channel geometry, and hydraulic conditions and should be done by either a qualified engineer or a technician with in-depth experience. The efficiency of the filtering media will depend on sediment size and load and may improve with proper selection by the designer. However, if there is any question, designing for the finer sediments is recommended.

--- Cost of Development ---

Costs will vary with each individual situation, depending on site conditions, i.e., width of streambed, access problems, etc. For example, a wide streambed with a downstream gradient of 5 percent slope will require more time, effort, and materials than a narrow streambed with a gradient of only 1 or 2 percent.

If a gabion wall is used instead of concrete, the cost will depend on whether a supply of rip-rap material is available locally or whether it must be hauled in from an outside source. If concrete is used for the wall, it may be difficult to use "ready mix," given the fact that site access is usually partially restricted by terrain. In this case, the concrete components would have to be hauled to the site and a small portable mixer used to prepare the desired mix.

The following estimate is based on a stream channel that is 20 feet wide with a gradient of about 5 percent; the detention wall is constructed of gabions from a source of rip-rap that is available nearby. It is assumed that the work would be accomplished by a hired crew; if done by contract, it is assumed the total labor cost would be approximately the same. Normally, the cost of developing stream channels narrower than 20 feet wide would be reduced accordingly.

--- Materials ---

<table>
<thead>
<tr>
<th>Material</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gabion assortment</td>
<td>$500</td>
</tr>
<tr>
<td>Perforated PVC pipe, 4" dia. - 80 ft.</td>
<td>$60</td>
</tr>
<tr>
<td>Drain field rock - 25 cu. yds.</td>
<td>$300</td>
</tr>
<tr>
<td>Solid PVC pipe, 4" dia. - 50 ft.</td>
<td>$40</td>
</tr>
<tr>
<td>Pipe fittings, etc.</td>
<td>$100</td>
</tr>
<tr>
<td>CIP tanks:</td>
<td></td>
</tr>
<tr>
<td>30" dia. X 36" hinged lid, 2 or 3" coupling (inlet)</td>
<td>$100</td>
</tr>
<tr>
<td>42" dia. X 96", hinged lid & drain, 3" outlet</td>
<td>$300</td>
</tr>
<tr>
<td>Cement, sand and gravel</td>
<td>$50</td>
</tr>
<tr>
<td>Miscellaneous items</td>
<td>$75</td>
</tr>
<tr>
<td>Fill material - 70 sq. yds.</td>
<td>$75</td>
</tr>
</tbody>
</table>

--- Labor ---

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 work days</td>
<td>$1,500</td>
</tr>
</tbody>
</table>

--- Equipment ---

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backhoe - 20 hours</td>
<td>$300</td>
</tr>
</tbody>
</table>

--- Total ---

Total Cost: $3,400

This open stream collection system is located on the Colorado Plateau in northeastern Sevier County, Utah. Soils on the watershed are primarily derived from marine shales that produce very fine sediments. Operation provides drinking water for grazing animals during the winter months, hence the need for the solar reflector to help minimize ice buildup on the surface of the stream. The reflector is removed during the flood season.

The same system is piped approximately 6 miles and serves four troughs that provide water to livestock from December 1 to April 15. In addition, small herds of deer and elk take advantage of the water sources.
This system also provides water to a wetland area that evolved from an old reservoir constructed by the Civilian Conservation Corps in the 1930s. It is now permanently protected from livestock by the pole fence, which was constructed with volunteer labor.

Another collection system provides water to this 50,000-gallon collapsible tank, where it is conveyed by a booster pump to a permanent storage tank located 2 miles away and 600 feet higher in elevation. The water is then distributed by gravity flow through approximately 7 miles of pipeline to four sets of troughs.

Summary

Next in importance to an adequate supply of forage for grazing animals is the availability of drinking water. Frequently, on open range lands, problems with terrain and the lack of adequate water sources inhibit the optimal distribution of livestock to assure proper use of the range. Land managers have little control over terrain. However, since water is a fluid resource, it can be conveyed to various points within a grazing area so that proper utilization and management of forage can be realized.

The Open Stream Collection and Diversion System concept can provide an added dimension for distributing water to desired areas, if it is properly designed and constructed. The cost of such a project will vary according to individual site conditions. However, if a distribution system is feasible for providing water to multiple trough systems, it may be well worth the investment. Any developments must be subject to existing laws and regulations governing water rights and the management and protection of riparian/wetland areas.
References
