Competitive exclusion of cyanobacterial species in Great Salt Lake

Hillary C. Roney
Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT

Recommended Citation
Available at: https://digitalcommons.usu.edu/nrei/vol15/iss1/8

Follow this and additional works at: https://digitalcommons.usu.edu/nrei
Competitive Exclusion of Cyanobacterial Species in Great Salt Lake

Hillary C. Roney

1Department of Plant and Wildlife Sciences, Brigham Young University, Provo Utah 84602, USA; E-mail: hillaryroney@gmail.com

The division of the waters of Great Salt Lake by a rail and vehicular causeway into different regions of salinity and color variation represents a natural experiment that permits examination of competitive exclusion of cyanobacteria. Cyanobacterial distributions partially follow the salinity, with Aphanothece halophytica proliferating in the North Arm and Nodularia spumigena being prominent in the South Arm. I hypothesized that cyanobacterial species abundant north of the railway causeway are competitively excluded from the south by other species, and that cyanobacterial species that thrive and bloom south of the Antelope Island causeway cannot grow in the high salinity of the north. To test this hypothesis, 129 flasks of autoclaved water from the north and south sides of each causeway were inoculated with Great Salt Lake water samples from the north and south sides of the causeway.

Four genera of cyanobacteria, Aphanothece, Oscillatoria, Phormidium, and Nodularia were identified and counted from the culture flasks using comparative differential interference contrast, fluorescence, and scanning electron microscopy. The relative abundance of cyanobacterial species was determined and differences were tested for statistical significance. Aphanothece halophytica was found in all inocula, but its growth was suppressed in the presence of Nodularia spumigena, while N. spumigena was found only in inocula from the less saline waters in the south, and apparently cannot survive in the extremely saline waters of the north.

These analyses suggest that both abiotic and biotic factors influence the distribution of cyanobacteria in Great Salt Lake. Nodularia is excluded from the north by high salinity, but Aphanothece is outcompeted in the south by Nodularia.