Changes in a tropical forest support metabolic zero-sum dynamics

S.K. Morgan Ernest1*, Ethan P. White1,2, and James H. Brown3,4

1 Department of Biology and the Ecology Center, Utah State University, Logan UT, USA 84322
2 Department of Ecology and Evolutionary Biology, University of Arizona, Tucson AZ, USA 85721
3 National Center for Ecological Analysis and Synthesis, 735 State Street, Suite 300, Santa Barbara CA, USA 93101
4 Department of Biology, University of New Mexico, Albuquerque, NM, USA 87131

* To whom correspondence should be addressed - email: morgan@biology.usu.edu

Abstract:

Major shifts in many ecosystem-level properties of tropical forests have been observed, but the processes driving these changes are poorly understood. Over the past two decades, the forest on Barro Colorado Island, Panama (BCI) exhibited a 20% decrease in the number of trees and a 10% increase in average tree diameter. Here we show that these changes are consistent with a zero-sum constraint operating in this forest. Zero-sum constraints result when the total resource use of an ecosystem is limited by available resources. This causes increases in resource use by some groups of organisms to be compensated for by decreases in other groups. Using a metabolism-based zero-sum
framework, we show that increases in per capita resource use at BCI, caused by increased tree size and increased temperature, compensated for the observed declines in abundance. This trade-off between abundance and average resource use by an individual resulted in no net change in the rate resources are fluxed by the forest. The observed changes in the forest are not consistent with other hypotheses, such as changes in overall resource availability or existing self-thinning models. The framework successfully predicts interrelated changes in size, abundance, and temperature, indicating the utility of metabolic zero-sum dynamics for understanding changes in the structure and dynamics of ecosystems.

Introduction

The assumption that the abundance, distribution, and diversity of species are due primarily to resource limitation is a cornerstone of ecological and evolutionary theory (Van Valen 1973; Hubbell 2001; Brown *et al.* 2004). Fundamental to this assumption is the idea that the rate of supply of usable energy or material to an ecosystem limits the carrying capacity, which can be defined as the total resource use or metabolism of the biota. At steady state, when the total rate of resource use by organisms equals the rate of limiting resource supply, an ecosystem is subject to a zero-sum metabolic constraint; any increase in resource use by some organisms must be balanced by decreases in resource use by other organisms (Van Valen 1973; Charnov 1993; Ernest & Brown 2001; Hubbell 2001). Such zero-sum dynamics impose simple rules on ecosystem-level properties (Enquist *et al.* 1998; Ernest & Brown 2001; Hubbell 2001; Enquist *et al.* 2003; White *et al.* 2004). For example, changes in the overall rate of resource supply \(R \) will be
reflected in changes in the overall rate of resource use \(U_{\text{tot}} \) by the community of organisms that share requirements for the same limiting resource (i.e., energy and/or materials).

The rate of energy and material use by an individual organism is related to its whole-organism metabolic rate \(B_i \) and the total rate of resource use of an ecological guild, community, or ecosystem will be related to the sum of the resource use of the component individuals, so,

\[
R \propto U_{\text{tot}} = \sum_{i}^{N} U_i \approx \sum_{i}^{N} B_i = NB
\]

(1)

where \(i \) indexes the individuals constrained by a common resource and the proportionality indicates that the group in question does not have to use all of the available resource, just a constant proportion. In Eqn 1, we have made \(\sum_{i}^{N} U_i \approx \sum_{i}^{N} B_i \) to denote the approximate relationship between metabolic rate and actual organism resource use. Because the metabolic rate of an individual is related to its size (Brown et al. 2004), a given rate of resource supply can support many small individuals or fewer larger individuals. Specifically, under zero-sum dynamics (i.e., if \(R \) equals a constant) Eq. 1 implies a tradeoff between the number of organisms and their average individual metabolic rate (Enquist et al. 1998; White et al. 2004)

\[
R \propto NB
\]

\[
\Rightarrow N \propto B^{-1}
\]

(2)

and changes in the size distribution of individuals (White et al. 2007) should result in specific, quantifiable, changes in abundance.

Studies of tropical forests have documented a variety of dynamic changes, including shifts in biomass (Phillips et al. 1998; Chave et al. 2008), individual growth
rates (Clark et al. 2003; Laurance et al. 2004; Feeley et al. 2007b), abundance (Losos & Leigh 2004; Pitman 2005), size structure (Condit et al. 1996), and species composition (Condit 1998a; Laurance et al. 2004). These shifts could have multiple causes, including climate change (e.g., long-term shifts in temperature, light availability), increased CO$_2$, or other abiotic or biotic effects on population dynamics (Condit et al. 1996; Graham et al. 2003; Laurance et al. 2004; Pitman 2005; Feeley et al. 2007a). Changes in the ecosystem-level properties of tropical forests have been interpreted as implying that climate change has altered overall rates of primary production through changes in light availability and/or CO$_2$ enrichment (Clark et al. 2003; Graham et al. 2003; Laurance et al. 2004; Feeley et al. 2007b). A long-term study of trees on Barro Colorado Island (BCI), Panama (Condit 1998b; Hubbell et al. 1999; Condit et al. 2005) provides an excellent case study for evaluating alternative hypotheses for changes documented in this tropical forest. The BCI 50-ha plot has been repeatedly and intensively censused since 1981. Documented changes include: altered species composition (Condit et al. 1996; Condit 1998a), large decreases in the numbers of small trees (Condit et al. 1996), smaller increases in the numbers of large trees (Condit et al. 1999), and, consequently, an overall decrease in the abundance of trees (Condit et al. 1999; Losos & Leigh 2004). Many of these changes are similar to changes documented in other tropical forests (Clark et al. 2003; Losos & Leigh 2004; Feeley et al. 2007b).

Here we use a metabolic zero-sum framework to evaluate whether changes observed at BCI reflect 1) the reallocation of resources due to the tradeoff between individual resource use and abundance, 2) self-thinning processes caused by geometric packing constraints as trees grow larger, or 3) whether they result from a reduced
carrying capacity due to decreased resource supply. These alternative hypotheses make clear predictions: 1) Zero-sum dynamics – If overall resource supply rate has remained effectively constant (see Supplementary Results), and the changes in forest structure reflect a metabolic tradeoff between the number of individuals and the metabolic rates of those individuals, we should observe no directional change in total forest-level energy flux, and N and B should be inversely related, so $N \propto B^{-1}$. 2) Self-thinning – as a forest recovers from disturbance, large numbers of young, small trees grow larger creating packing constraints, which lead to increased mortality and decreases in tree abundance.

Different models for self-thinning suggest a variety of relationships between N and diameter (D), with the extremes represented by the $3/2$ and the $4/3$ thinning models (Pretzsch 2006) which, properly accounting for Jensen’s inequality, result in the predictions: $N \propto D^{-3/2}$ or $N \propto D^{-4/3}$, respectively. 3) Reduced carrying capacity – If the decrease in the total number of trees reflects a decrease in the overall carrying capacity of the environment for trees, then the estimated rate of energy flux should have decreased over the 20-year period and the slope of the relationship between abundance and average metabolic rate should differ from -1. Furthermore, a potentially limiting resource would need to exhibit a significant decline over the period of the study.

Methods

Research Site – Data for this study come exclusively from the Smithsonian Tropical Research Institute’s research station at Barro Colorado Island. Barro Colorado Island is an artificial island formed when the Panama Canal was flooded and has been part of a protected biodiversity reserve since 1923. The 1500 ha island contains a moist lowland
tropical forest community. This forest was disturbed by human activities – by both pre-
and post-Columbian societies - through forestry and clearing for agricultural land until
1923 (Leigh *et al.* 1996).

Forest Data – All data on trees were obtained from the online database for the 50 ha
Forest Dynamic Plot on Barro Colorado Island. This forest plot has been completely
censed approximately every 5 years since 1980. Detailed methods for the census are
available at http://ctfs.si.edu/datasets/bci/. Here we only discuss census methodology
relevant for this study.

For each forest census, all stems greater than or equal to 10 mm were identified
and diameter at breast height (DBH) was measured. Because there is no data for
individuals < 10 mm, our forest-level estimates and subsequent analyses are only valid
for that component of the forest ≥ 10 mm DBH. DBH is defined as diameter at 1.3 meters
unless the tree contained buttresses or stilts in which case DBH is taken immediately
above these structural components. Each individual in the census is given a unique tag
number. If an individual has multiple stems, a DBH is taken for all stems ≥ 10 mm.
Methodology is consistent across censuses except that in the 1980 and 1985 census the
DBH for all trees less than 50 mm was rounded down to the lowest 5 mm increment.

Because of the importance for this study of having comparable size estimates across all
censuses, we follow (Muller-Landau *et al.* 2006) and do not use the data from the first
two censuses.

Because theoretical models linking the diameter of a tree with its metabolic rate
are based on the diameter of the basal stem (West *et al.* 1999), basal stem diameter had to
be estimated for individuals with multiple stems at breast height. We used the pipe
model, an area preserving model used since Leonardo da Vinci, to back calculate the basal diameter from the number of stems at breast height \(n\) and the diameter each of those stems \(D\).

\[
D_{basal} = \sqrt{\sum_{i} n_i D_i^2}
\]

Temperature data – Long-term climate data has been collected at Barro Colorado Island on an hourly basis since 1983 at the field station (clearing weather station) and since 1984 at the Lutz canopy tower. Temperature data (and all other abiotic datasets for BCI described in this paper) are available at:

http://striweb.si.edu/esp/meta_data/index_metadata_terr.htm. Temperature data for this study was obtained from the clearing weather station due to large gaps in data collection at the Lutz tower. Recent activities around the clearing weather station may have influenced recent temperature readings (http://striweb.si.edu/esp/physical_monitoring/descrip_bci.htm). However, comparisons of the daily average temperature readings for both stations reveals that these data are well correlated with each other \(r = 0.7942\) and this correlation has not decayed since 1999 \(r = 0.8416\).

We calculated an average temperature for each census period by using 5-year blocks of temperature data consisting of the 4 years prior to each census and the year in which the census initiated. Data were averaged by calculating monthly averages of hourly temperatures (day and night) and then averaging the monthly averages within each time period. This reduces the impact of the timing of missing data on the averages. Regression results for the temperature trend itself are based on the same averaging scheme, but
utilize annual data instead of data averaged into five-year periods (Supplemental Figure 1).

To test these predictions we used the 1990-2005 censuses conducted at BCI. For each census, there is accurate information on both the total number of individuals and the diameter at breast height for each individual. Earlier censuses were excluded from this analysis because of systematic differences in how tree size was measured (Condit et al. 2005; Muller-Landau et al. 2006).

Estimating Metabolic Rates - To estimate metabolic rate for each tree, we used a previously published relationship (West et al. 1999; Gillooly et al. 2002; Allen et al. 2005) that incorporates both the size of the individual and the temperature:

\[B \propto D^\lambda e^{-E/kT} \] \hspace{1cm} (3),

where \(\lambda \) is a constant (\(\approx 2 \)) relating basal stem diameter (\(D \)) to metabolic rate (West et al. 1999), \(E \) is the average activation energy of \(C_3 \) photosynthesis (\(\approx 0.32 \text{ eV} \); Allen et al. 2005), \(k \) is Boltzmann’s constant (\(8.6 \times 10^{-5} \text{ eVK} \)), and \(T \) is air temperature in degrees Kelvin (K). Our results are not sensitive to a reasonable range of variation in values of either \(E \) or \(\lambda \) (see Diameter exponent and activation energy, below). This equation assumes that all species can be characterized by this same relationship. Eqn 3 was used to estimate the metabolic rate for an individual tree, which was then used to calculate both estimated mean individual metabolic rate (i.e., averaged across individuals) and estimated total stand metabolic flux (i.e., summed over all individuals). Note that we have no measure of the scaling constant required to calibrate the metabolic rate for these trees. While the constant would allow us to comment on absolute metabolic flux of the forest, the proportional values are sufficient to evaluate the above hypotheses. Finally, we
quantified the compensatory dynamics among size classes by calculating total metabolic flux for eight equal-width logarithmic bins to assess whether decreases in flux for small size classes due to decreasing numbers of small trees were matched by increases in flux for large size classes due to increasing numbers of large trees.

Diameter exponent and activation energy - The resource use exponent ($\lambda = 2$) and activation energy (0.32 eV) we used have been suggested as the theoretical expectations for these values (West et al. 1999; Allen et al. 2005), and have some empirical support (Enquist et al. 1998; Allen et al. 2005; Meinzer et al. 2005). However, the specific values for both of these exponents are controversial (Muller-Landau et al. 2006; Enquist et al. 2007). However, the general functional form of this relationship is, at least, a reasonable statistical description of the relationships between diameter, temperature, and resource use or related responses (Clarke & Fraser 2004; Muller-Landau et al. 2006). Therefore, in order to test the sensitivity of our analysis to our specific choice of exponent and activation energy we varied these exponents and refit the exponent of equation 2 to determine if this caused it to deviated from the predicted value of -1.

Long-term dynamics of potential limiting resources - Recent studies have suggested that changes in light availability (Graham et al. 2003), nitrogen availability (Magnani et al. 2007), or CO$_2$ (Phillips et al. 1998) might be driving changes in tropical forests. Each of these possibilities was explored using either local data collected at BCI or the results of recent regional scale analyses.

Light availability: Photosynthetically available radiation (PAR) has been measured at BCI since 1990 at the Lutz tower using a LI-COR 190SB (for more details
see: http://striweb.si.edu/esp/meta_data/details_bci_sun.htm). Daily Total PAR values (measured in Einsteins/m²) were summed for each year to obtain yearly total PAR.

Nitrogen Availability: Recent papers have suggested that increased nitrogen deposition could increase nitrogen availability in forests (Magnani *et al.* 2007). However, a recent study suggests that nitrogen deposition rates in Central America have not changed substantially since the late 1800s (Galloway *et al.* 2004). To the best of our knowledge, there is no long-term monitoring of nitrogen availability in soils on the 50-ha plot. Nitrogen availability could either be increasing or non-changing at BCI. There is no reason to suspect that nitrogen levels have declined.

CO₂: Global CO₂ levels have increased over the past few decades (Forster *et al.* 2007), which would imply that CO₂ available to trees should also have increased.

Water availability: Annual precipitation for BCI was taken from the data collected at the Clearing near the field station from 1990-2005 (for more details see: http://striweb.si.edu/esp/meta_data/details_bci_rain.htm). We used the daily data file and summed these values for each year to determine annual precipitation (measured in mm). Potential evapotranspiration at BCI was also measured at the field station clearing (for more details see: http://striweb.si.edu/esp/meta_data/details_bci_evap.htm). Daily values of PET (measured in mm) were summed for each year to determined annual PET.

Results and Discussion

The dynamics of the forest on BCI clearly support hypothesis (1), and are consistent with a metabolic zero-sum dynamic without directional changes in resource availability (Figs 1 & 2). The total metabolic flux of all trees exhibited no directional trend over time, while other forest-level properties (i.e., abundance, biomass, total basal
area) changed directionally (see Supplementary Results). Total stand metabolic flux did not change directionally due to the tradeoff between increased average metabolic rates of individual trees (resulting from increased average diameter and increased temperature) and decreased average abundance (Fig 2). While the data support an inverse relationship between N and \overline{B}, the data do not support either of the self-thinning models (Table 1). Furthermore, all biological measures of the forest either do not change directionally or decrease through time, while potential limiting resources appear to either increase or remain stable (Fig 3). As such, the weight of evidence is consistent with a metabolic zero-sum dynamic and rejects both packing constraints and shifts in resource availability as drivers of the observed declines in abundance at BCI.

The sensitivity analyses indicate that our results are robust to reasonable variation in the form of the temperature and body size dependence of metabolic rate (Fig 4A). The range of reasonable activation energy values includes those estimated in recent work purporting that the activation energy will be shallower than expected due to acclimation (Enquist et al. 2007). The range of diameter exponents includes those equivalent to the growth rate allometries recently estimated for BCI (Muller-Landau et al. 2006) and therefore our results are robust to potential differences in scaling exponents due to size-biased light competition. We also examined whether our results were sensitive to the spatial scale of our analysis. By dividing the 50 ha plot into smaller and smaller subplots (see Supplemental Methods), we determined whether the observed relationship between abundance and average individual metabolic rate changed as the spatial scale of analysis decreased. We found that behavior predicted by a metabolic zero-sum dynamics was observed until the size of a subplot equaled approximately 6 ha (Fig 4B). Below this size,
slopes were significantly shallower than expected. This same type of pattern has been observed in estimates of biomass (Keller et al. 2001; Chave et al. 2003) and biomass accumulation (Feeley et al. 2007) and was interpreted in those studies as indicating that below 6 ha the idiosyncrasies of gap-phase dynamics dominate and the signal of forest-level dynamics are weaker.

Our results are also consistent with previous studies documenting that the numbers of trees with small diameters decreased dramatically, while the numbers of large trees increased only modestly (Condit et al. 1996; Condit et al. 1999). Because size-related differences in metabolic rate means not all trees will contribute equally to resource use, small changes in the abundance of larger size classes have a much greater influence on total metabolic flux than much larger changes in abundance in smaller size classes (Fig 5). Our results also indicate that increases in per capita metabolic rate due to temperature played an important role in maintaining the metabolic zero-sum dynamic. Without this temperature effect, the small increase in the number of larger trees was not sufficient to balance the losses in the small size classes (Fig 5).

Because we only have four data points suitable for our analyses, some caution should be used in interpreting our results. Obviously, further tests of a metabolic zero-sum dynamic involving longer-time series and/or experimental tests are needed. However, because we are still able to clearly distinguish among models we feel that our conclusions are reasonably robust and warrant further investigation of this concept in forests. Furthermore, the importance of tropical forests to conservation and global carbon budgets makes it necessary to make use of existing, though sometimes limited, time-series (Condit et al. 1996; Condit 1998a; Laurance et al. 2004; Losos & Leigh 2004;
Feeley et al. 2007b; Chave et al. 2008). Despite the short nature of the time-series our framework successfully describes the observed behavior of the system in response to changes in average tree size. The processes driving this shift in size-structure are not yet well understood. Some studies have implicated climate change as the driver of declines in small trees (Condit et al. 1996), while others have suggested that succession, in response to the anthropogenic activities, may be occurring in this forest (Sheil & Burslem 2003). While self-thinning based successional mechanisms are insufficient for describing the overall dynamics of the forest (Table 1), succession may still be responsible for the increase in average individual size. The success of the metabolic zero-sum framework suggests that in order to predict future dynamics of abundance (and biomass; see Supplementary Information) of tropical trees it will be necessary to understand the processes that affect the individual size distribution. Finally, our results highlight the importance of incorporating the effects of temperature on the rates of biological processes (Enquist et al. 2003; Allen et al. 2005), because both size and temperature played important roles in the dynamics of this forest.

Further testing will be necessary to assess the general utility of a zero-sum approach for understanding the long-term dynamics of ecosystems. Previous work has shown that the long-term dynamics of a desert rodent community also exhibit metabolic zero-sum dynamics, with maintenance of relatively constant rates of resource use due to a similar tradeoff between metabolic rate and abundance of small and large individuals (White et al. 2004). That the long-term dynamics of tropical forests and desert rodents can be explained using this relatively simple framework suggests that it may apply more generally across habitat types and taxonomic groups. The extent of generality likely
depends on how often the two key assumptions – that overall resource supply does not change directionally over time and that organisms tend to use a constant fraction of available resources – are met in different ecosystems. Obviously, the zero-sum does not apply when resources are not limiting, such as immediately following major disturbance events. The fact that it appears to apply to both tropical trees and desert rodents suggests that the long-term rates of limiting resource supply that impose the zero sum may be more constant than the environmental variables that cause temporal variation in body size and species composition.

The utility of the zero-sum framework arises in large part from the fact that it synthesizes important components from two influential and general theories in ecology: the unified neutral theory of biodiversity (Hubbell 2001) and the metabolic theory of ecology (Brown et al. 2004). By combining the size- and temperature-dependent equations for metabolism with the zero-sum assumption of the neutral theory, we obtain a simple mathematical framework that is easily applied to both plants and animals and is equally relevant to tropical and desert systems.

Acknowledgments. We especially thank R. Condit for considerable discussion, which substantially improved this project. We also thank N. Swenson and J. Stegen for helpful comments, and J. Chave for providing biomass data and for comments on the manuscript. The Forest Dynamics Plot of Barro Colorado Island is made possible through the support of the U.S. National Science Foundation, the John D. and Catherine T. MacArthur Foundation, the Smithsonian Tropical Research Institute and through the hard work of over 100 people from 10 countries over the past two decades. The BCI Forest Dynamics
Plot is part of the Center for Tropical Forest Science, a global network of large-scale demographic tree plots. Environmental data sets were provided by the Terrestrial-Environmental Sciences Program of the Smithsonian Tropical Research Institute. Our thanks to Steve Patton for making these data publically available and for helpful conversations regarding their use. EPW was supported by an NSF Postdoctoral Fellowship in Bioinformatics (DBI-0532847) and JHB by a sabbatical fellowship from the National Center for Ecological Analysis and Synthesis.

Literature Cited

Phillips O.L., Malhi Y., Higuchi N., Laurance W.F., Nunez P.V., Vasquez R.M.,
282, 439-442.

from long-term plots in forest stands. *Oecologia*, 146, 572-583.

Evol*, 18, 18-26.

Supplemental Information file includes: Supplementary Methods, Results, Analyses,
Figures, and Discussion
Table 1. Tests of predictions of metabolic zero-sum and self-thinning models against observed trends at Barro Colorado Island. All three models predict a -1 slope for the relationship between abundance \(N \) and either \(D^2 \times e^{-E/kT} \), \(D^2 \), or \(D^{16/9} \). All fits were performed using reduced major axis regression [31] on log-transformed data. Only the metabolic zero-sum framework is consistent with the observed data.

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Model Tested</th>
<th>Observed Slope</th>
<th>Lower 95% Confidence Interval</th>
<th>Upper 95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolic Zero-sum</td>
<td>(N \propto \frac{1}{D^2 \times e^{-E/kT}})</td>
<td>-0.93</td>
<td>-1.14</td>
<td>-0.72</td>
</tr>
<tr>
<td>4/3 Self-thinning</td>
<td>(N \propto \frac{1}{D^4})</td>
<td>-1.22</td>
<td>-1.36</td>
<td>-1.08</td>
</tr>
<tr>
<td>3/2 Self-thinning</td>
<td>(N \propto \frac{1}{D^{16/9}})</td>
<td>-1.25</td>
<td>-1.36</td>
<td>-1.13</td>
</tr>
</tbody>
</table>
Figure Legends

Figure 1. Long-term trends on the 50-ha forest dynamics plot at BCI, Panama. A) total abundance of trees (individuals/50 ha) decreases through time ($r^2 = 0.96; p = 0.018$), B) total stand metabolic flux (proportional to the true total stand metabolic flux) does not change directionally ($r^2 = 0.06; p = 0.94$), C) average diameter of a tree (mm) increases ($r^2 = 0.94; p = 0.031$), and D) average temperature (Celsius) increases ($r^2=0.18; p=0.042$); regression calculated on yearly temperature averages (see Supplementary Information) but displayed here as 5-year averages. Y-axis extents of 20% of the mean value were used to facilitate proper visual comparison of relative variability across variables.

Figure 2. Relationship between average estimated resource use of an individual

\[\left(\frac{1}{N} \sum_{i=1}^{N} D^2 e^{-E_i / kT} \right) \] and the total number of individuals (N) occurring on the BCI 50 ha plot. The exponent, fitted using reduced major axis regression on log-transformed data, is -0.93 (se: 0.10), which is not significantly different from the predicted value of -1 (similar results are obtained using both ordinary and non-linear least squares). Points are labeled with the year of the census.

Figure 3. Time-series of PAR (a), precipitation (b), and PET (c), at BCI from 1990 to 2005. PAR did not change directionally from 1990-2005 ($r^2=0.0062; p=0.77$). Precipitation did not exhibit any directional changes ($r^2 = 0.0006; p = 0.93$). PET data was only available starting in 1994 making it difficult to determine the trend over the period of the study, but it appears that during the second half of the study PET was increasing, resulting in an overall increase from 1994-2005 ($r^2 = 0.44; p = 0.018$). The
combined precipitation and PET results suggest that water use by plants either remained constant or may have increased during the study period. All potential resources for which we have a time series appear to have either remained stable or increased slightly, at least since 1990. These data are consistent with the long-term stability of total metabolic flux, suggesting that rates of resource supply to this forest have remained stable.

Figure 4. Parameter and spatial scale sensitivity analyses. (A) Results from the sensitivity analysis examining effects of varying the values of the diameter exponent (λ) and activation energy (E_a). The shaded area indicates combinations of λ and E_a where the 95% confidence interval of the RMA regression between abundance and average metabolic rate still contains -1, the value predicted by a metabolic zero-sum dynamic. The solid lines indicate $\lambda =2$ and $E_a =0.32$, the values used in the analyses presented in this paper. The black circle shows the location of the combination of λ and E_a used in this study, relative to the shaded area. The dashed line represents the value of λ that results from converting a diameter growth allometry based on size-dependent light competition (Muller-Landau *et al* 2006) into a metabolic rate. The large area of parameter space over which our results are maintained indicates that they are robust to the details of the metabolic rate equations. (B) Effects of spatial scale on observed tradeoff between abundance and individual metabolic rate. Plot of the mean estimated exponent and 95% confidence intervals for Eqn 2 across subplots plotted against the spatial scale of the subplots. The estimated exponent for the entire plot and its 95% confidence interval based on RMA regression is included to illustrate that the exponent is approximately scale invariant at scales of 6 ha and above.
Figure 5. Changes within size classes of metabolic flux (A) and abundance (B) between 1990 and 2005. X-axis: center of the size class in logarithmic space. Y-axis: Size classes with increased abundance or metabolic flux since 1990 are positive, decreases are negative. A) Difference in resource use (U_i) between 2005 and 1990 across size classes (i) expressed as the proportion of the total resource use in a given year:

$$\frac{\sum_i U_{i,2005} - \sum_i U_{i,1990}}{\sum_i U_{i,2005}}.$$ Squares: metabolic flux if temperature is assumed constant across years; circles: metabolic flux with observed temperature changes. Increases in metabolic flux by medium trees provide partial compensation for decreases in smaller and larger trees. With observed temperature changes included, medium trees compensate for decreases in other size classes. B) Difference in abundance between 2005 and 1990 normalized as for metabolic flux. Inset: close-up of four largest size classes, showing small increase in medium-sized trees.
Figure 1.
Figure 2
Figure 3
Figure 4

A: Activation Energy vs. Diameter Exponent

B: Exponent vs. Spatial Scale (ha)
Fig 5