Molecular Dynamics Thermal Conductivity Computation of a Quantum Cascade Laser Diode Super-Lattice

Kyle Horne,1,2 Thomas Antoni,2,3 Sebastian Volz,2 Mathieu Carras,4 and Virginie Trinité4

1Mechanical and Aerospace Engineering, Utah State University, Logan, UT 84322, USA
3École Centrale Paris, Laboratoire de Photonique Quantique et Moléculaire, CNRS (UMR 8537), Ecole Normale Supérieure de Cachan, Grande Voie des Vignes, F-92295 Châtenay-Malabry cedex, France.
4THALES Research & Technology, Campus Polytechnique 1, avenue Augustin Fresnel 91767 Palaiseau cedex, France.

Abstract
This paper reports work in which molecular dynamics are used to simulate a single cascade of a quantum cascade laser diode with the intent of computing the effective thermal conductivity in the cross-plane direction. The Tersoff potential is used with coefficients found from the literature for inter-atomic forces, and the Green-Kubo relation is used to compute the conductivity from the integral of the system heat flux autocorrelation. The computed conductivity lies in the same range as measurements found in the literature.

Introduction
Quantum cascade lasers (QCLs) represent a significant development in the area of band gap engineering[1], and although great advances have been achieved in terms of electronic transport and optical coupling, they still suffer from unoptimized thermal designs despite efforts to measure and optimize their thermal properties. Due to their high resistivity, quantum well structures are subject to an intense heating when high electrical powers are applied, as in the case of laser diodes, and their limited volume prevents an efficient heat evacuation. For this reason, thermal management of QCLs is a critical issue, and if it is usual to stabilize those lasers with a Peltier module, new technological designs are often proposed to drain the heat out of the structure; such attempts are buried structures[2, 3], or micro-stripe fabrication[4]. Heat has a dramatic impact on QCLs operation, not only because it can damage the diode, but also because it changes the effective optical index of the materials, which can result in a detuning of the optical mode with the electronic gain. An improved understanding of QCL phononics can lead to more optimized designs which can remove waste heat more effectively and more accurately couple electron and phonon modes. But also, a fine control of the diode’s temperature is necessary to develop tunable structures.

Molecular dynamics simulations can provide detailed information about phonon activity and propagation, including thermal conductivity values and dispersion relations; the only limitations are the existence of an inter-atomic potential that adequately models atomic interactions and the normal limitations of classical physics when applied to atomic systems.

While several functional forms could be used for the interatomic potential, most previous work has used the Tersoff[5, 6, 7, 8] functional for this purpose. The potential is defined as the difference of repulsive (f_R) and attractive (f_A) potentials (equations 1,3-4), where A and B are energies of attraction and repulsion, while r_{ij} is the distance between the interaction atoms; the characteristic lengths of attraction and repulsion are λ_2 and λ_1 respectively. The attractive potential is multiplied by b_{ij}, which is a function of the bonding environment (equation 5), resulting in a three-body potential that can include angular effects such as those in III-IV semiconductor materials. The entire potential is controlled through a cutoff function $f_C(r)$ (equation 2) which allows for more efficient computation through the exclusion of negligible forces from distant atoms; the cutoff function smoothly transitions from one to zero using a sine function, with a mean effective range of R smoothed out over a distance D surrounding the cutoff. The bonding environment is modeled using the ζ_{ij} term (equation 6), which includes the distance between the bonding atoms and the third body (r_{jk}), as well as the angle formed by the three atoms (θ_{ijk}). This angle is the input to the function $g(\theta)$ (equation 7) which includes the empirically-fit parameters c, d, and $\cos \theta_0$. It should be noted that although $\cos (\theta_0)$ would be considered as the cosine of a constant angle, it is often found in coefficients as the parameter h and has a value
outside the range $[-1,1]$ that would be expected[9] for a parameter expressed as the cosine of an angle.

$$E = \frac{1}{2} \sum_{i \neq j} \left[f_c(r_{ij}) (f_k(r_{ij}) - b_{ij} f_A(r_{ij})) \right]$$

(1)

$$f_c(r) = \begin{cases}
1 & r < R - D \\
1 - \frac{1}{2} \sin \left(\frac{r - R}{\frac{R - D}{2}} \right) & R - D < r < R + D \\
0 & r > R + D
\end{cases}$$

(2)

$$f_k(r) = A \exp(-\lambda_1 r)$$

(3)

$$f_A(r) = B \exp(-\lambda_2 r)$$

(4)

$$b_{ij} = \left(1 + \frac{\beta}{1+\alpha} \right)^{-\frac{1}{\alpha}}$$

(5)

$$\zeta_{ij} = \sum_{k \neq i,j} \left[f_c(r_{kj}) \sum_{\alpha} \exp \left(\lambda_{ij}^\alpha (r_{ij} - r_{ik})^\alpha \right) \right]$$

(6)

$$g(\theta) = 1 + \frac{c^2}{d^2} - \frac{c^2}{d^2 + (\cos \theta - \cos \theta_0)^2}$$

(7)

Due to the previous success seen from its use, the Tersoff functional was used to compute inter-atomic potentials with coefficients for all interactions besides those involving aluminum taken from the work of Nordlund[10]; the coefficients involving aluminum were constructed from the work of Sayed[11] and extended to all the required combinations using the mixing model proposed by Tersoff. Examination of the III-III coefficients from Nordlund suggest that same mixing model was used as a starting point for those coefficients before minor modification as well.

The molecular dynamics simulations were run using the Lammps\(^1\) software developed primarily at Sandia National Laboratories[12]. Since the Tersoff potential is already included in Lammps, no changes to the code were necessary for the present work; the code was compiled and run on USU’s Division of Research Computing clusters with little difficulty. Due to the need for many simulation trajectories, the simulation setup process was automated in the form of several Python scripts.

The active region of QCLs is typically composed of a repetition (about 50 times) of a seminal period, the cascade, where GaInAs (well), AlInAs (barrier) layers are alternated with a varying thickness on the order of few mono-atomic layers as presented in table (1). We expect their thermal conductivity along the growth axis to be different from the bulk InAs one for at least two reasons. First, the layers are made of allows associating InAs with an atoms of very different weights (Ga or Al). Then the nanolayering will have an influence on the phonon propagation. Since the cascade is few hundred nanometers in height, that is very large compared to the phonons mean free path, it is reasonable to focus on only one period.

Methods

First, a script constructs the QCL structure by looping through all sites in the lattice and placing an atom appropriate for the

\(^1\)http://lammps.sandia.gov

Tab. 1: Typical QCL structure

<table>
<thead>
<tr>
<th>#</th>
<th>III-IV</th>
<th>l [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GaInAs</td>
<td>35.8</td>
</tr>
<tr>
<td>2</td>
<td>AlInAs</td>
<td>14.1</td>
</tr>
<tr>
<td>3</td>
<td>GaInAs</td>
<td>34.4</td>
</tr>
<tr>
<td>4</td>
<td>AlInAs</td>
<td>18.5</td>
</tr>
<tr>
<td>5</td>
<td>GaInAs</td>
<td>32.6</td>
</tr>
<tr>
<td>6</td>
<td>AlInAs</td>
<td>25.7</td>
</tr>
<tr>
<td>7</td>
<td>GaInAs</td>
<td>30.8</td>
</tr>
<tr>
<td>8</td>
<td>AlInAs</td>
<td>37.6</td>
</tr>
</tbody>
</table>

Fig. 1: A slice of the computational domain showing the layered structure of a single QCL period.
which the system heat flux is computed and recorded to a file after Lammmps corrects it to remove the effects of bulk motion.

The integrated autocorrelation of the system heat flux can be used to compute the thermal conductivity in a particular direction \(i \) as given in equation (8), where \(V \) is the system volume, \(T \) is the system temperature, \(\langle J_i(0) J_i(t) \rangle \) is the ensemble heat flux autocorrelation, and \(k_B \) is the Boltzmann constant.[13, 14, 15, 16, 17].

\[
k_i = \frac{V}{k_B T^2} \int_0^\infty \langle J_i(0) J_i(t) \rangle \, dt \tag{8}
\]

Because of the random nature of the simulations, the ensemble average of the autocorrelation is what must be integrated, and to this end nearly one hundred simulations were run with different initial velocities to provide independent trajectories. Each simulation’s heat flux was autocorrelated independently, and then the average of all the autocorrelations was computed. This average autocorrelation was then numerically integrated, and equation (9) was fit against the result.

\[
l = A \left[1 - e^{-(t/\tau)^p} \right] \tag{9}
\]

This expression was selected since its functional form closely matches the results of the simulations. The fit parameter \(A \) is the asymptotic plateau value of the expression, while \(\tau \) is the characteristic time to approach that value and \(p \) is the exponential order of that approach. The units on \(A \) are in energy flux squared (SI equivalent: \([\text{W/m}^2]^{-2}\)), while the units of \(\tau \) are time and the parameter \(p \) is without units. Table 2 summarizes the fit parameters for the materials considered in this work.

Before considering the results for the QCL, we checked that our simulations give correct estimates of the thermal conductivity of standard III-V compounds that enter QCLs growth such as InAs and GaAs, and also compute the thermal conductivity of the two alloys GaInAs and AlInAs. The results are presented in Table 3, computed from the parameters from Table 2. These simulations follow the same general procedure as that presented for the QCL, but with smaller systems and for shorter times; the longer times and larger system are required for the QCL due to its complexity.

As can be seen from the table, none of the MD predictions deviate from experimental values by more than 60%, which is quite remarkable when the nature of MD simulation is considered. The results for InAs are considerably more accurate than would be expected, while the AlAs and GaAs are more like conventional MD results. Unsurprisingly, the alloys AlInAs and GaInAs show the worst agreement with experimental values, but they also involve the most empirically-determined coefficients for the inter-atomic potentials; it is believed that most uncertainty in the simulation results are a direct consequence of the very small structures that should explain the very small structures that should avoid faster oscillations, leaving only the long-time oscillations to carry energy. It is also interesting that the simulation predicts a thermal conductivity larger than those of the constituent materials.

The effective bulk thermal conductivities of QCL structures similar to the one simulated in this work have been previously measured by other using a combination of temperature measurements and finite element analysis; these results can be found in the works of Scamarcio[22], Vitiello[23, 24] and Evans[25], and report values in the range \(k = [2,8] \text{ W/m} \cdot \text{K} \). Considering that the coefficients used for our simulations were developed primarily from mechanical properties, this agreement.

Results

Figure 2 shows the flux autocorrelation integral for the QCL system described previously, as well as the curve resulting from fitting equation 9 to the simulation data. The parameters from the curve fit can be found in Table 4, where the value of \(p \) is unsurprisingly found to be closer to the values for alloys than pure materials. The longer characteristic time can be explained by considering the very small structures that should damp out faster oscillations, leaving only the long-time oscillations to carry energy. It is also interesting that the simulation predicts a thermal conductivity larger than those of the constituent materials.

The effective bulk thermal conductivities of QCL structures similar to the one simulated in this work have been previously measured by other using a combination of temperature measurements and finite element analysis; these results can be found in the works of Scamarcio[22], Vitiello[23, 24] and Evans[25], and report values in the range \(k = [2,8] \text{ W/m} \cdot \text{K} \). Considering that the coefficients used for our simulations were developed primarily from mechanical properties, this agreement.

Table 2: Fit parameters

<table>
<thead>
<tr>
<th>Material</th>
<th>(A) [eV²·ps⁻²·Å⁻⁴]</th>
<th>(\tau) [ps]</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlAs</td>
<td>1.29×10⁻⁵</td>
<td>77.4</td>
<td>0.86</td>
</tr>
<tr>
<td>GaAs</td>
<td>4.43×10⁻⁶</td>
<td>18.0</td>
<td>0.98</td>
</tr>
<tr>
<td>InAs</td>
<td>2.66×10⁻⁶</td>
<td>38.1</td>
<td>0.95</td>
</tr>
<tr>
<td>InGaAs</td>
<td>2.46×10⁻⁷</td>
<td>2.64</td>
<td>0.65</td>
</tr>
<tr>
<td>InAlAs</td>
<td>1.73×10⁻⁷</td>
<td>2.03</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Table 3: Predicted and measured thermal conductivities

<table>
<thead>
<tr>
<th>III-IV</th>
<th>Experimental</th>
<th>Computed</th>
<th>Difference [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlAs</td>
<td>80 [18]</td>
<td>106</td>
<td>+32</td>
</tr>
<tr>
<td>GaAs</td>
<td>55 [19]</td>
<td>35.8</td>
<td>-35</td>
</tr>
<tr>
<td>InAs</td>
<td>27 [19]</td>
<td>26.4</td>
<td>-2</td>
</tr>
<tr>
<td>GaInAs</td>
<td>5 [20]</td>
<td>2.2</td>
<td>-56</td>
</tr>
<tr>
<td>AlInAs</td>
<td>3.5 [21]</td>
<td>1.6</td>
<td>-54</td>
</tr>
</tbody>
</table>

Table 4: QCL results

<table>
<thead>
<tr>
<th>(A) [eV²·ps⁻²·Å⁻⁴]</th>
<th>(\tau) [ps]</th>
<th>(k) [W·m⁻¹·K⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.13×10⁻⁷</td>
<td>61.7</td>
<td>0.49</td>
</tr>
</tbody>
</table>
ment between simulation and experiment is remarkable.

Conclusions

While the present work suggests that molecular dynamics results can agree quite well with experimental values, the real advantage of the present work is all the additional information available from a simulation. Since the thermal conductivities agree so well with experiment, the phonon properties can be trusted enough to drive new QCL designs that take better advantage of the phonon band structures and how they compare with those of the electrons. More work is to be done computing the in-plane conductivity as well as examining the phonon dispersion relationships.

References

