Formation and Growth of Gold and Gallium Nanoparticles on Silicon (100)

Garett Milton, Advisor: Dr. Samuel Tobler

Sample Prep
- Silicon (100)
- 5 mm x 10 mm
- Molybdenum Holding Clips
- Electrical Contact
- Vacuum Chamber
- Diffusion Pump (messy oil)
- Degas sample at 500°C
- Dose metal
 - Au
 - Ga

Mounting Samples
- Au
- Wrapped Around Tungsten
- Ga
- Heating

Motivation
- 1-D objects
- Manipulation of materials
- Bottom-Up Idea
- Multiple Materials
 - Gold
 - Gallium
 - Silver

Experiment

Procedures
- Cut and mount silicon
- Place in chamber and establish vacuum
- Degas silicon
- Determine temperatures
- Dose silicon with metal
- Scan with SEM/AFM

Temperatures
- Resistivity heating
- Optical pyrometer
- Degas at 500°C
- Dose at 800-900°C

Dosing
- Gold for between 30-60 sec
- Gallium for 60 sec
- Metals sublime onto the silicon surface

Black Body
- Glowing samples
- Peak intensity depends on temperature
- Intensity of red wavelength
- Disappearing Filament Optical Pyrometer
 - \(T > 780°C \)
 - 500°C barely visible in dark room
 - Accurate to less than 10 degrees

Disappearing Filament Pyrometer
- For an ideal black body emission equals absorption
- Very specific wavelength will be different at certain temperatures
- Therefore two bodies with same intensity and same wavelength must be the same temperature

Body Dot Size vs Temperature
- Gold dots increase with temperature
- Gallium dots do not appear to change size with temperature
- Not uniform coverage
- Repeatable

Si Nanowires

Formation and Growth of Gold and Gallium Nanoparticles on Silicon (100)

A temperature gradient was occurring because we were not getting uniform heating from the bigger clips. See Gold at 800°C

Gallium at 800°C

Gold at 800°C

Gallium at 850°C

Gold at 900°C

Gallium at 900°C

2 μm

Average Size: 129.9 nm

2 μm

Average Size: 129 nm

2 μm

Average Size: 129.9 nm