Role of parasites in the successful invasion of Mediterranean salterns by the exotic invasive Artemia franciscana

Stella Redon
Instituto de Acuicultura de Torre de la Sal (CSIC), Castellon, Spain

Marta Maccari
Instituto de Acuicultura de Torre de la Sal (CSIC), Castellon, Spain

German Medina
Instituto de Acuicultura de Torre de la Sal (CSIC), Castellon, Spain

Francisco Hontoria
Instituto de Acuicultura de Torre de la Sal (CSIC), Castellon, Spain

Juan Carlos Navarro
Instituto de Acuicultura de Torre de la Sal (CSIC), Castellon, Spain

Follow this and additional works at: http://digitalcommons.usu.edu/nrei

Recommended Citation
Redon, Stella; Maccari, Marta; Medina, German; Hontoria, Francisco; Navarro, Juan Carlos; Georgiev, Boyko; Vasileva, Gergana; Nikolov, Pavel; and Amat, Francisco (2009) "Role of parasites in the successful invasion of Mediterranean salterns by the exotic invasive Artemia franciscana," Natural Resources and Environmental Issues: Vol. 15, Article 33.
Available at: http://digitalcommons.usu.edu/nrei/vol15/iss1/33

This Article is brought to you for free and open access by the Quinney Natural Resources Research Library, S.J. and Jessie E. at DigitalCommons@USU. It has been accepted for inclusion in Natural Resources and Environmental Issues by an authorized administrator of DigitalCommons@USU. For more information, please contact beckythorns@usu.edu.
The Role of Parasites in the Successful Invasion of Mediterranean Salterns by the Exotic Invasive *Artemia franciscana*

Stella Redón1, Marta Maccari1, Germán Medina1, Francisco Hontoria1, Juan Carlos Navarro1, Boyko Georgiev2, Gergana Vasileva2, Pavel Nikolov2 & Francisco Amat1

1Instituto de Acuicultura de Torre de la Sal (CSIC), 12595 Ribera de Cabanes (Castellón), Spain; 2Central Laboratory of General Ecology. Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria

Corresponding author:
Stella Redón
Instituto de Acuicultura de Torre de la Sal (CSIC), 12595 Ribera de Cabanes (Castellón), Spain
E-mail: estela@iats.csic.es

*Artemia* species (Branchiopoda, Anostraca) play an important role as intermediate hosts of parasite cestodes (Cyclophyllidea), facilitating transmission of the parasite to the avian hosts by predation. When exotic invasive species escape from their coevolved parasites and encounter new parasites in the invaded environment, they can experience a demographic release (enemy release hypothesis), becoming highly competitive and an important threat to biodiversity. Here we report the presence of American *A. franciscana* in a Mediterranean saltern where this exotic species eliminated autochthonous *Artemia* species. To assess whether invasive *A. franciscana* is parasitized by cestodes to the same extent as native *Artemia* species, we studied the natural infection of *A. salina* and *A. parthenogenetica* from non-invaded Mediterranean salterns: San Pedro del Pinatar (Murcia Province), Bras del Port and La Mata lagoon (Alicante Province) and parasitized *A. franciscana* in the invaded saltern La Trinitat (Tarragona Province). To compare the infection levels, we used the prevalence (number of infected hosts divided by the total number of hosts examined), mean intensity (total number of parasites found in a sample divided by the number of hosts infected) and mean abundance (total number of parasites found in a sample divided by the total number of hosts examined). The present study included three samples of the two bisexual species of *Artemia* and five samples of *A. parthenogenetica*. We collected them during 2007 and 2008 and between 150 and 600 individual *Artemia* were examined from each sample in search of parasites. The mean prevalence was only 25% in the *A. franciscana* species compared to 35% in *A. salina* and 52% in *A. parthenogenetica*. The mean abundance of the cestode infection was 0.38/individual in the *A. franciscana* species compared to 0.47 in *A. salina* and to 1.30 in *A. parthenogenetica*. The highest mean intensity of cestode infection was found in *A. parthenogenetica* (2.20/*Artemia*). Bisexual species, *A. franciscana* and *A. salina*, showed similar mean intensities: 1.25 and 1.20, respectively. Ten cestode species, most hymenolepidid cestodes (*Flamingolepis liguloides* and *Confluaria podicipina*) were found in the autochthonous brine shrimp species (Figure 1). In the *A. franciscana* population we found only eight parasite species, mainly dilepidids (*Eurycestus avoceti*). *Confluaria podicipina* and *Wardium gvozdevi* never appeared in the invasive species. In conclusion, cestode parasites may play a role in the competitive interaction between native and invasive brine shrimps. Before we can conclude if these reduced levels of infection in *A. franciscana* are consistent with the enemy release hypothesis further work will be required.

**Figure 1**—Cestode species recorded in brine shrimp populations in the Mediterranean salterns studied: La Trinitat, invaded with *A. franciscana*, and San Pedro del Pinatar, La Mata and Bras del Port as non-invaded salterns.

Published by DigitalCommons@USU, 2009

174