1989

Spotted Locoweed on the Henry Mountains

Verl L. Bagley
Utah State University Extension

Michael H. Ralphs
Utah State University Extension

Lynn A. James
Utah State University Extension

Follow this and additional works at: https://digitalcommons.usu.edu/extension_histall

Part of the Agriculture Commons, and the Plant Sciences Commons

Warning: The information in this series may be obsolete. It is presented here for historical purposes only. For the most up to date information please visit The Utah State University Cooperative Extension Office

Recommended Citation
https://digitalcommons.usu.edu/extension_histall/421

This Factsheet is brought to you for free and open access by the Archived USU Extension Publications at DigitalCommons@USU. It has been accepted for inclusion in All Archived Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact dylan.burns@usu.edu.
INTRODUCTION

Spotted locoweed (Astragalus lentiginosus, var. wahweapensi) also known as freckled or Wahweap Milkvetch is characterized by blue leguminous flowers, purple speckled seed pods, and leaves resembling those of garden pea. The plant is poisonous to cattle, sheep and horses. It grows on gravelly clay loam semidesert benches and swales supporting desert shrubs and sparse stands of juniper.

CYCLIC NATURE OF SPOTTED LOCOWEED

Spotted locoweed is classified a perennial by plant taxonomists, but the plant seldom survives beyond the second or third growing season. Plants often persist as winter biennials, in that they germinate following late summer or autumn rains; go dormant during the winter, resume growth in early spring, then flower and set seed. Without abundant spring and summer precipitation, these plants fail to survive another year (Welsh 1988).

In a study of the population cycles of spotted locoweed on the Henry Mountains in southeastern Utah (Ralphs & Bagley, 1988), population outbreaks were documented to occur every 6 to 8 years (Figure 1). Correlation of outbreaks of spotted locoweed with weather records suggests that abundant spring precipitation must follow a wet fall to produce a spotted locoweed population outbreak.

![Henry MT: Seasonal Precipitation](image)

**Figure 1**
Seasonal precipitation (expressed on a water year basis) and the years that Spotted Locoweed outbreaks occurred (*).
Spring precipitation was above average every year spotted locoweed outbreaks were documented.

**LIVESTOCK GRAZING**

Ranchers and researchers have observed that livestock avoid grazing green succulent spotted locoweed in the spring and summer, and readily graze the dead or senescent stems during subsequent winters.

A winter grazing study on the foothills of the Henry Mountains (Ralphs et al. 1988) documented that cattle will graze the dead senescent stalks of spotted locoweed whenever it is available. It comprised 24% of cattle diets when cattle grazed gravelly benches where locoweed was abundant (Table 1).

Cattle preferred to graze cool-season grasses (Indian Ricegrass and Squirreltail), but as the supply of these grasses diminished, cattle increased consumption of spotted locoweed, grazed grass and shadscale. Consumption of spotted locoweed also increased during periods when snow covered the low growing grasses (Figure 2).

Inexperienced cows (not exposed to spotted locoweed previously) consumed slightly more spotted locoweed than did cows that had previously grazed locoweed-infested rangeland. Only the inexperienced cows exhibited clinical symptoms of locoweed poisoning: depression, solitary grazing habit, excitability when stressed, and water-belly. One of the experienced cows aborted.

**NUTRITIONAL ANALYSIS**

The old dry stalks of spotted locoweed were nutritionally superior to other associated forage plants (Table 2). Crude protein (CP) levels of 1- and 2-year old senescent locoweed plants were higher for other forages from the same site. Digestible organic matter (IVOMD) or energy from spotted locoweed was similar to dry grasses. Though spotted locoweed provided more energy and protein than dry grasses, we observed no difference in preference between locoweed and galleta grass.

Swainsonine, the toxic alkaloid in true locoweeds. Swainsonine appears to remain stable in dry and senescent spotted loco stems (Table 2). Swainsonine was only slightly lower in old black locoweeds than in new green vegetative growth collected in the spring of 1987. Researchers suggest that as organic matter decomposes in the senescent stems, swainsonine may become more concentrated in the residual plant material. In theory, the older stems would then become more toxic as decomposition progresses. The concentration of swainsonine in green succulent plants may also vary from one year to another.

**RECOMMENDATIONS**

Because the early stages of locoism are difficult to identify, ranchers should frequently ride among the grazing animals and look for signs of poisoning. The herding and stressing of intoxicated animals will often cause the symptoms to be more pronounced and discernible. Cattle should be taken from the range when the first signs of locoism or behavior change are noticed.

Spotted locoweed is most abundant on the gravelly benches surrounding the Henry Mountains. It is less frequent on sandy sites and does not grow on clay sites. Thus, it may be feasible to keep cattle off areas where spotted locoweed is abundant until after green forage is available in the spring. It may be necessary to alter the sequence in which pastures are grazed, or herd cattle into other areas of the allotment until spring greenup.

Another alternative may be to concentrate a large number of livestock on dense stands of locoweed at the beginning of the grazing period, to rapidly remove the loco crop before any one animal consumes enough to become intoxicated.

New or inexperienced cattle should not graze infested ranges during seasons when the loco plants are abundant and easily grazed.

**NUTRITIONAL ANALYSIS**

The old dry stalks of spotted locoweed were nutritionally superior to other associated forage plants (Table 2). Crude protein (CP) levels of 1- and 2-year old senescent locoweed plants were higher for other forages from the same site. Digestible organic matter (IVOMD) or energy from spotted locoweed was similar to dry grasses. Though spotted locoweed provided more energy and protein than dry grasses, we observed no difference in preference between locoweed and galleta grass.

Swainsonine, the toxic alkaloid in true locoweeds. Swainsonine appears to remain stable in dry and senescent spotted loco stems (Table 2). Swainsonine was only slightly lower in old black locoweeds than in new green vegetative growth collected in the spring of 1987. Researchers suggest that as organic matter decomposes in the senescent stems, swainsonine may become more concentrated in the residual plant material. In theory, the older stems would then become more toxic as decomposition progresses. The concentration of swainsonine in green succulent plants may also vary from one year to another.

**RECOMMENDATIONS**

Because the early stages of locoism are difficult to identify, ranchers should frequently ride among the grazing animals and look for signs of poisoning. The herding and stressing of intoxicated animals will often cause the symptoms to be more pronounced and discernible. Cattle should be taken from the range when the first signs of locoism or behavior change are noticed.

Spotted locoweed is most abundant on the gravelly benches surrounding the Henry Mountains. It is less frequent on sandy sites and does not grow on clay sites. Thus, it may be feasible to keep cattle off areas where spotted locoweed is abundant until after green forage is available in the spring. It may be necessary to alter the sequence in which pastures are grazed, or herd cattle into other areas of the allotment until spring greenup.

Another alternative may be to concentrate a large number of livestock on dense stands of locoweed at the beginning of the grazing period, to rapidly remove the loco crop before any one animal consumes enough to become intoxicated.

New or inexperienced cattle should not graze infested ranges during seasons when the loco plants are abundant and easily grazed.

**LIVESTOCK GRAZING**

Ranchers and researchers have observed that livestock avoid grazing green succulent spotted locoweed in the spring and summer, and readily graze the dead or senescent stems during subsequent winters.

A winter grazing study on the foothills of the Henry Mountains (Ralphs et al. 1988) documented that cattle will graze the dead senescent stalks of spotted locoweed whenever it is available. It comprised 24% of cattle diets when cattle grazed gravelly benches where locoweed was abundant (Table 1).

Cattle preferred to graze cool-season grasses (Indian Ricegrass and Squirreltail), but as the supply of these grasses diminished, cattle increased consumption of spotted locoweed, grazed grass and shadscale. Consumption of spotted locoweed also increased during periods when snow covered the low growing grasses (Figure 2).

Inexperienced cows (not exposed to spotted locoweed previously) consumed slightly more spotted locoweed than did cows that had previously grazed locoweed-infested rangeland. Only the inexperienced cows exhibited clinical symptoms of locoweed poisoning: depression, solitary grazing habit, excitability when stressed, and water-belly. One of the experienced cows aborted.

**NUTRITIONAL ANALYSIS**

The old dry stalks of spotted locoweed were nutritionally superior to other associated forage plants (Table 2). Crude protein (CP) levels of 1- and 2-year old senescent locoweed plants were higher for other forages from the same site. Digestible organic matter (IVOMD) or energy from spotted locoweed was similar to dry grasses. Though spotted locoweed provided more energy and protein than dry grasses, we observed no difference in preference between locoweed and galleta grass.

Swainsonine, the toxic alkaloid in true locoweeds. Swainsonine appears to remain stable in dry and senescent spotted loco stems (Table 2). Swainsonine was only slightly lower in old black locoweeds than in new green vegetative growth collected in the spring of 1987. Researchers suggest that as organic matter decomposes in the senescent stems, swainsonine may become more concentrated in the residual plant material. In theory, the older stems would then become more toxic as decomposition progresses. The concentration of swainsonine in green succulent plants may also vary from one year to another.

**RECOMMENDATIONS**

Because the early stages of locoism are difficult to identify, ranchers should frequently ride among the grazing animals and look for signs of poisoning. The herding and stressing of intoxicated animals will often cause the symptoms to be more pronounced and discernible. Cattle should be taken from the range when the first signs of locoism or behavior change are noticed.

Spotted locoweed is most abundant on the gravelly benches surrounding the Henry Mountains. It is less frequent on sandy sites and does not grow on clay sites. Thus, it may be feasible to keep cattle off areas where spotted locoweed is abundant until after green forage is available in the spring. It may be necessary to alter the sequence in which pastures are grazed, or herd cattle into other areas of the allotment until spring greenup.

Another alternative may be to concentrate a large number of livestock on dense stands of locoweed at the beginning of the grazing period, to rapidly remove the loco crop before any one animal consumes enough to become intoxicated.

New or inexperienced cattle should not graze infested ranges during seasons when the loco plants are abundant and easily grazed.

**Literature Cited**


**Table 1.**

<table>
<thead>
<tr>
<th>Forage Class</th>
<th>Bench 1</th>
<th>Standing Crop % of Diet</th>
<th>Steeple 2</th>
<th>Standing Crop % of Diet</th>
<th>Clay 3</th>
<th>Standing Crop % of Diet</th>
<th>Creek Bottom Standing Crop % of Diet</th>
<th>Average % of Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grass</td>
<td>112</td>
<td>65</td>
<td>131</td>
<td>55</td>
<td>15</td>
<td>15</td>
<td>48</td>
<td>381</td>
</tr>
<tr>
<td>Fork</td>
<td>12</td>
<td>2</td>
<td>71</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td>Shrub</td>
<td>126</td>
<td>9</td>
<td>90</td>
<td>20</td>
<td>418</td>
<td>83</td>
<td>40</td>
<td>219</td>
</tr>
<tr>
<td>Spotted</td>
<td>111</td>
<td>24</td>
<td>49</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>48</td>
<td>15</td>
</tr>
</tbody>
</table>

1) Semi-desert stony clay loam ecological site with gravel and cobble outcropping.
2) Semi-desert sandy loam ecological site with sparse juniper overstory.
3) Desert clay ecological site dominated by Gardner and mat saltbrush.

**Table 1.**

<table>
<thead>
<tr>
<th>Forage Class</th>
<th>Bench 1</th>
<th>Standing Crop % of Diet</th>
<th>Steeple 2</th>
<th>Standing Crop % of Diet</th>
<th>Clay 3</th>
<th>Standing Crop % of Diet</th>
<th>Creek Bottom Standing Crop % of Diet</th>
<th>Average % of Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grass</td>
<td>112</td>
<td>65</td>
<td>131</td>
<td>55</td>
<td>15</td>
<td>15</td>
<td>48</td>
<td>381</td>
</tr>
<tr>
<td>Fork</td>
<td>12</td>
<td>2</td>
<td>71</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td>Shrub</td>
<td>126</td>
<td>9</td>
<td>90</td>
<td>20</td>
<td>418</td>
<td>83</td>
<td>40</td>
<td>219</td>
</tr>
<tr>
<td>Spotted</td>
<td>111</td>
<td>24</td>
<td>49</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>48</td>
<td>15</td>
</tr>
</tbody>
</table>

1) Semi-desert stony clay loam ecological site with gravel and cobble outcropping.
2) Semi-desert sandy loam ecological site with sparse juniper overstory.
3) Desert clay ecological site dominated by Gardner and mat saltbrush.
Figure 2
Daily amount of locoweed in cattle diets (% of recorded bites) throughout the 5 month study on desert winter range on the Henry Mountain.

Table 2
Chemical Composition of Locoweed and Other Forage on Henry Mountain Winter Range (Percentage of Organic Matter)

<table>
<thead>
<tr>
<th>Species</th>
<th>Stage of Growth</th>
<th>Swainsonine</th>
<th>CP</th>
<th>IVOMD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spotted Locoweed</td>
<td>Black 1985</td>
<td>.023</td>
<td>10.9</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Dry 1986</td>
<td>.005</td>
<td>6.8</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Green 1987</td>
<td>.037</td>
<td>11.7</td>
<td>63</td>
</tr>
<tr>
<td>Stinking Milkvetch</td>
<td>Green 1986</td>
<td>.019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galleta</td>
<td>Senescent</td>
<td>1.8</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Indian ricegrass</td>
<td>Senescent</td>
<td>3.1</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Squirreltail</td>
<td>Green regrowth</td>
<td>5.3</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Shrubs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shadscale</td>
<td>Evergreen</td>
<td>3.8</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Gardner saltbrush</td>
<td>Evergreen</td>
<td>4.9</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Mat saltbrush</td>
<td>Evergreen</td>
<td>5.3</td>
<td>61</td>
<td></td>
</tr>
</tbody>
</table>

*CP = crude protein, IVOMD = in vitro organic matter digestibility.