The EO-1 Autonomous Sciencecraft

Rob Sherwood, Steve Chien, Daniel Tran, Benjamin Cichy, Rebecca Castano, Ashley Davies, Gregg Rabideau
Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Dr., Pasadena, CA 91109; 818-393-5378
Rob.Sherwood@jpl.nasa.gov

ABSTRACT
An Autonomous Science Agent, part of the New Millennium Space Technology 6 Project is currently flying onboard the Earth Observing One (EO-1) Spacecraft. This software enables the spacecraft to autonomously detect and respond to science events occurring on the Earth. The package includes software systems that perform science data analysis, deliberative planning, and run-time robust execution. This software has demonstrated the potential for space missions to use onboard decision-making to detect, analyze, and respond to science events, and to downlink only the highest value science data. As a result, ground-based mission planning and analysis functions have been greatly simplified, thus reducing operations cost. We will describe several technology infusions applications being developed. We will also describe how the software has been used in conjunction with other satellites and ground sensors to form an autonomous sensor-web.

INTRODUCTION
Since January 2004, the Autonomous Sciencecraft Experiment (ASE) running on the EO-1 spacecraft has demonstrated several integrated autonomy technologies to enable autonomous science. Several science algorithms including: onboard event detection, feature detection, change detection, and unusualness detection are being used to analyze science data. These algorithms are used to downlink science data only on change, and detect features of scientific interest such as volcanic eruptions, growth and retreat of ice caps, cloud detection, and crust deformation. These onboard science algorithms are inputs to onboard decision-making algorithms that modify the spacecraft observation plan to capture high value science events. This new observation plan is then executed by a robust goal and task oriented execution system, able to adjust the plan to succeed despite run-time anomalies and uncertainties. Together these technologies enable autonomous goal-directed exploration and data acquisition to maximize science return. This paper describes the specifics of the ASE and relates it to past and future flights to validate and mature this technology.

The ASE onboard flight software includes several autonomy software components:

• Robust execution management software using the Spacecraft Command Language (SCL) package to enable event-driven processing and low-level autonomy
• The Continuous Activity Scheduling Planning Execution and Replanning (CASPER) software that replans activities, including downlink, based on science observations in the previous orbit cycles

The onboard science algorithms analyze the images to extract static features and detect changes relative to previous observations. This software has already been demonstrated on EO-1 Hyperion data to automatically identify regions of interest including land, ice, snow, water, and thermally hot areas. Repeat imagery using these algorithms can detect regions of change (such as flooding, ice melt, and lava flows). Using these algorithms onboard enables retargeting and search, e.g., retargeting the instrument on a subsequent orbit cycle to identify and capture the full extent of a flood.

Although the ASE software is running on the Earth observing spacecraft EO-1, the long-term goal is to use this software on future interplanetary space missions. On these missions, onboard science analysis will enable capture of short-lived science phenomena. In addition, onboard science analysis will enable data be captured at the finest time-scales without overwhelming onboard memory or downlink capacities by varying the data collection rate on the fly. Examples include: eruption of volcanoes on Io, formation of jets on comets, and phase transitions in ring systems. Generation of derived
science products (e.g., boundary descriptions, catalogs) and change-based triggering will also reduce data volumes to a manageable level for extended duration missions that study long-term phenomena such as atmospheric changes at Jupiter and flexing and cracking of the ice crust on Europa.

The onboard planner (CASPER) generates mission operations plans from goals provided by the onboard science analysis module. The model-based planning algorithms enable rapid response to a wide range of operations scenarios based on a deep model of spacecraft constraints, including faster recovery from spacecraft anomalies. The onboard planner accepts as inputs the science and engineering goals and ensures high-level goal-oriented behavior.

The robust execution system (SCL) accepts the CASPER-derived plan as an input and expands the plan into low-level commands. SCL monitors the execution of the plan and has the flexibility and knowledge to perform event driven commanding to enable local improvements in execution as well as local responses to anomalies.

THE EO-1 MISSION

Earth Observing-1 (EO-1) is the first satellite in NASA's New Millennium Program Earth Observing series3. The primary focus of EO-1 is to develop and test a set of advanced technology land imaging instruments. EO-1 was launched on a Delta 7320 from Vandenberg Air Force Base on November 21, 2000. It was inserted into a 705 km circular, sun-synchronous orbit at a 98.7 degrees inclination. This orbit allows for 16-day repeat tracks, with 3 over flights per 16-day cycle with a less than 10-degree change in viewing angle. For each scene, between 13 to as much as 48 Gbits of data from the Advanced Land Imager (ALI), Hyperion, and Atmospheric Corrector (AC) are collected and stored on the onboard solid-state data recorder.

EO-1 is currently in extended mission, having more than achieved its original technology validation goals. As an example, over 24,000 data collection events have been successfully completed, against original success criteria of 1,000 data collection events. The ASE described in this paper uses the Hyperion hyper-spectral instrument. The Hyperion is a high-resolution imager capable of resolving 220 spectral bands (from 0.4 to 2.5 µm) with a 30-meter spatial resolution. The instrument images a 7.7 km by 42 km land area per image and provides detailed spectral mapping across all 220 channels with high radiometric accuracy.

The EO-1 spacecraft has two Mongoose M5 processors. The first M5 is used for the EO-1 command and data handling functions. The other M5 is part of the WARP (Wideband Advanced Recorder Processor), a large mass storage device. Each M5 runs at 12 MHz (for ~8 MIPS) and has 256 MB RAM. Both M5’s run the VxWorks operating system. The ASE software operates on the WARP M5. This provides an added level of safety for the spacecraft since the ASE software does not run on the main spacecraft processor.

ONBOARD SCIENCE ANALYSIS

The first step in the autonomous science decision cycle is detection of interesting science events. In the complete experiment, a number of science analysis technologies have been flown including:

- Thermal anomaly detection – uses infrared spectra peaks to detect lava flows and other volcanic activity. (See Figure 1.)
- Cloud detection4 – uses intensities at six different spectra and thresholds to identify likely clouds in scenes. (See Figure 2.)
- Flood scene classification – uses ratios at several spectra to identify signatures of water inundation as well as vegetation changes caused by flooding. (See Figure 3.)
- Change detection – uses multiple spectra to identify regions changed from one image to another. This technique is applicable to many science phenomena including lava flows, flooding, freezing and thawing and is used in conjunction with cloud detection. (See Figure 3.)

Figure 1 shows both the visible and the infrared bands of the same image of the Mt. Etna volcano in Italy. The infrared bands are used to detect hot areas that might represent fresh lava flows within the image. In this picture, these hot spots are circled with red dotted lines. The area of hot pixels can be compared with the count of hot pixels from a previous image of the same area to determine if change has occurred. If there has been change, a new image might be triggered to get a more detailed look at the eruption.

Figure 2 shows a Hyperion scene and the results of the cloud detection algorithm5. This MIT Lincoln Lab developed algorithm is able to discriminate between cloud pixels and land pixels within an image. Specifically, the grey area in the detection results is clouds while the blue area is land. The results of this algorithm can be used to discard images that are too cloudy.
algorithm is used. The images used by the algorithm are “Level 0.5,” an intermediate processing level between the raw Level 0, and the fully ground processed Level 1. Each of the science algorithms except the generalized feature detection use simple threshold checks on the spectral bands to classify the pixels.

Initial experiments used the cloud detection triggers. The MIT Lincoln Lab developed cloud detection algorithm uses a combination of spectral bands to discriminate between clouds and surface features. The Hyperion Cloud Cover (HCC) algorithm was run on all images acquired during ASE experiments. In the event of high cloud cover, the image could be discarded and a new goal could be sent to CASPER to reimage the area or image another high priority area. Images with low cloud cover can either be downlinked or analyzed further by other ASE science algorithms.

The JPL developed thermal anomaly algorithms uses the infrared spectral bands to detect sites of active volcanism. There are two different algorithms, one for daytime images and one for nighttime images. The algorithms compare the number of thermally active pixels within the image with the count from a previous image to determine if new volcanism is present. If no new volcanism is present, the image can be discarded onboard. Otherwise, the entire image or the interesting section of the image can be downlinked.

Figure 1 contains 4 EO-1 Hyperion images of the Diamantina River in Australia, along with their corresponding classification images to the right of each image. The first image is a baseline image of the river in a dry state. The black area of the corresponding represents all land pixels with no water. The second image two weeks later shows a large flood area with blue representing water pixels. The final two images show the flood receding over time.

The onboard science algorithms are limited to using 12 bands of the hyperion instrument. Of these 12 bands, 6 are dedicated to the cloud detection algorithm. The other six are varied depending on which science
when ground testing this algorithm with existing Hyperion data. The presence of clouds or heavy smoke within an image can cause the algorithm to fail.

The Arizona State University developed Snow-Water-Ice-Land (SWIL) algorithm is used to detect lake freeze/thaw cycles and seasonal sea ice. The SWIL algorithm uses six spectral bands for analysis.

ONBOARD MISSION PLANNING

In order for the spacecraft to respond autonomously to the science event, it must be able to independently perform the mission planning function. This requires software that can model all spacecraft and mission constraints. The Continuous Activity Scheduling Planning Execution and Replanning (CASPER) software performs this function for ASE. CASPER represents the operations constraints in a general modeling language and reasons about these constraints to generate new operations plans that respect spacecraft and mission constraints and resources. CASPER uses a local search approach to develop operations plans.

Because onboard computing resources are scarce, CASPER must be very efficient in generating plans. While a typical desktop or laptop PC may have 2000-3000 MIPS performance, 5-20 MIPS is more typical onboard a spacecraft. In the case of EO-1, the Mongoose V CPU has approximately 8 MIPS. Of the 3 software packages, CASPER is by far the most computationally intensive. For that reason, our optimization efforts were focused on CASPER. Since the software was already written and we didn’t have funding to make major changes in the software, we had to focus on developing an EO-1 CASPER model that didn’t require a lot of planning iterations. For that reason, the model has only a handful of resources to reason about. This ensures that CASPER is able to build a plan in tens of minutes on the relatively slow CPU.

CASPER is responsible for mission planning in response to both science goals derived onboard as well as anomalies. In this role, CASPER must plan and schedule activities to achieve science and engineering goals while respecting resource and other spacecraft operations constraints. For example, when acquiring an initial image, a volcanic event is detected. This event may warrant a high priority request for a subsequent image of the target to study the evolving phenomena. In this case, CASPER modifies the operations plan to include the necessary activities to re-image. This may include determining the next over flight opportunity, ensuring that the spacecraft is pointed appropriately, that sufficient power, and data storage are available, that appropriate calibration images are acquired, and that the instrument is properly prepared for the data acquisition.

ONBOARD ROBUST EXECUTION

ASE uses the Spacecraft Command Language (SCL) to provide robust execution. SCL is a software package that integrates procedural programming with a real-time, forward-chaining, rule-based system. A publish/subscribe software bus, which is part of SCL, allows the distribution of notification and request messages to integrate SCL with other onboard software. This design enables both loose or tight coupling between SCL and other flight software as appropriate.

The SCL “smart” executive supports the command and control function. Users can define scripts in an English-like manner. Compiled on the ground, those scripts can be dynamically loaded onboard and executed at an absolute or relative time. Ground-based absolute time script scheduling is equivalent to the traditional procedural approach to spacecraft operations based on time. In the EO-1 experiment, SCL scripts are planned and scheduled by the CASPER onboard planner. The science analysis algorithms and SCL work in a cooperative manner to generate new goals for CASPER. These goals are sent as messages on the software bus.

Many aspects of autonomy are implemented in SCL. For example, SCL implements many constraint checks that are redundant with those in the EO-1 fault protection software. Before SCL sends each command to the EO-1 command processor, it undergoes a series of constraint checks to ensure that it is a valid command. Any pre-requisite states required by the command are checked (such as the communications system being in the correct mode to accept a command). SCL also verifies that there is sufficient power so that the command does not trigger a low bus voltage condition and that there is sufficient energy in the battery. Using SCL to check these constraints and including them in the CASPER model provides an additional level of safety to the autonomy flight software.

TECHNOLOGY VALIDATION & FLIGHT STATUS

ASE started as a technology experiment. The technology was declared fully validated in May 2004 after all 20 onboard autonomy experiments were fully tested. The overall system performed as expected and was considered a success. The validation consisted of the following onboard autonomy experiments run 5 times each:

- Image planning and acquisition
- Downlink
• Data editing
• Image acquisition followed by image retargeting

Since the completion of the technology validation, over 11000 more autonomous data acquisitions have been completed. In addition, we have run over 1500 closed-loop executions where ASE autonomously analyzes science data onboard and triggers subsequent observations. The software has been running full-time onboard the EO-1 satellite for over 2 years. ASE is the primary mission planning and control system.

There were 2 important risks to our technology validation approach – one technical and one political. The technical risk was related to spacecraft safety. If the EO-1 satellite was lost due to the ASE software, that would have been a huge setback for onboard spacecraft autonomy. This risk was mitigated using 3 different methods. First, we had an extensive testing program to ensure that the software would operate as expected. Second, we had triple redundancy built into the 3-layered architecture of this autonomy software. Lastly, we ran the software on the solid-state recorder CPU (WARP) rather than the main spacecraft CPU.

The second risk was political. We needed to ensure that the technology validation of our software was convincing enough that scientists would use it on future missions. We had a multi-faceted approach to achieve this goal. First and foremost, we involved (and funded) several scientists in the development of the experiment, software, and operations of the ASE software. The idea is that if the scientists are involved from the start, they will help us develop a useful system and they will promote it to their peers. Another method we employed to ensure future use was to go way beyond the minimal set of validation experiments to show that this software is durable, maintainable, and can achieve increased science. We also started technology infusion early. This effort has so far paid off with infusion underway into the Mars Odyssey and Mars Exploration Rover missions.

EO-1 SENSORWEB

The use of automated planning onboard EO-1 has enabled a new system-of-systems capability. We have networked the EO-1 satellite with other satellites and ground sensors. (See Figure 4.) This network is linked by software and the internet to an autonomous satellite observation response capability. This system is designed with a flexible, modular, architecture to facilitate expansion in sensors, customization of trigger conditions, and customization of responses.

![Figure 4: Sensorweb Detection and Response Architecture](image)

The EO-1 sensorweb has been used to implement a global surveillance program of science phenomena including: volcanoes, flooding, cryosphere events, and atmospheric phenomena. Using this architecture, we have performed over 500 sensorweb initiated satellite observations using EO-1. The sensorweb architecture consists of a number of components which operate in the following sequence of steps.

1. Asset1 acquires data (usually global coverage at low resolution)
2. Data from Asset1 is downlinked
3. This data is automatically processed to detect science events
4. Science event detections are forwarded to a re-tasking system. This system generates an observation request which is forwarded to an automated planning system.
5. This automated planning system then generates a command sequence to acquire the new observation.
6. This new command sequence is uplinked to Asset2 which then acquires the high resolution data.
7. This data is then downlinked, processed, and forwarded to the interested science team.

In our operational system thus far Asset2 has been the Earth Observing One spacecraft (EO-1). The EO-1 orbit allows for 16-day repeat tracks, with 3 over flights per 16-day cycle at a less than 10-degree change in viewing angle. Because EO-1 is in a near polar orbit, polar targets can be viewed more frequently.

The automated retasking element of the sensorweb consists of several components working together as follows.

1. Science tracking systems for each of the science disciplines automatically acquire and process satellite and ground network data to track science phenomena of interest. These science tracking...
systems publish their data automatically to the internet each in their own format. In some cases this is via the http or ftp protocol, in some cases via email subscription and alert protocols.

2. Science agents either poll these sites (http or ftp) to pull science data or simply receive emails to receive notifications of ongoing science events. These science agents then produce «science event notifications» in a standard XML format which are then logged into a «science event» database.

3. The science event manager processes these science event notifications and matches them up with «science campaigns». When a match occurs, an observation request is generated.

4. These observation requests are processed by the ASPEN automated mission planning system. ASPEN integrates these requests and schedules observations according to priorities and mission constraints.

5. For observations that are feasible, an observation request is uplinked to the spacecraft.

6. Onboard EO-1 the ASE software will accommodate the observation request if feasible. In some cases onboard software may have additional knowledge of spacecraft resources or may have triggered additional observations so some uplinked requests may not be feasible.

7. Later, the science data is downlinked, processed, and delivered to the requesting scientist.

Table 1: Science Alert Systems

<table>
<thead>
<tr>
<th>Science Alert Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disciplines</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Volcanoes</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>Floods</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>Forests</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>Dust</td>
</tr>
</tbody>
</table>

7.1 Science Agents

The science agents encapsulate sensor and science tracking specific information by producing a generic XML alert for each “science event” tracked. The flexibility enables by these modules has allowed use to easily integrate with a large number of science tracking systems despite the fact that each science tracking system has its own unique data and reporting format. These formats have ranged from near raw instrument data, to alerts in text format, to periodic updates to a wide range of text formats. The posting methods have included http, ftp, and email. Table 1 contains a list the science tracking systems integrated into our system.

7.2 Science Event Manager and Science Campaigns

The Science Event Manager enables scientists to specify mappings from science events to observation requests. It enables them to track recency and count of events and do logical processing. It also enables them to track based on target names or locations, and other event specific parameters (for example, some tracking systems produce a confidence measure). As an example, a volcanologist might specify for the Kilauea site that several tracking systems would need to report activity with high confidence before an observation is requested. This is because Kilauea is quite often active. On the other hand, even a single low confidence activity notification might trigger observation of Piton de la Fournaise or other less active sites.

7.3 Automated Observation Planning

To automate mission planning we use the ASPEN/CASPER planning & scheduling system. ASPEN is a ground-based batch planner. CASPER is the embedded flight planner. Both share the same core planning engine. ASPEN represents mission constraints in a declarative format and searches possible mission plans for a plan that satisfies many observation requests (respecting priorities) and also obeys mission operations constraints. ASPEN has been used in a wide range of space mission applications including spacecraft operations scheduling, rover planning, and ground communications station automation.

7.4 The Wildfire Sensorweb

We have demonstrated the sensorweb concept using the MODIS active fire mapping system. Both the Terra and Aqua spacecraft carry the MODIS instrument, providing morning, afternoon, and two night overflights of each location on the globe per day (cover near the poles is even more frequent). The active fire mapping system uses data from the GSFC Distributed Active Archive Center (DAAC), specifically the data with the predicted orbital ephemeris which is approximately 3-6 hours from acquisition.

Figure 5 shows the active fire map from October 2003 fires in Southern California. Figure 6 shows the context active fire map and a sensorweb trigger observation taken during this demonstration.
Figure 5: Active fire alerts for the recent October 2003 Southern California Fires. Red indicates active fires. The light blue box illustrates the background region used in the relative threshold detection.

Figure 6: Sensorweb trigger images for October 2003 Southern California Fires. Above is the MODIS Active Fire Map display. Below is the EO-1 Hyperion image acquired via sensorweb trigger of the Simi/Val Verde fire area used in Burned Area Emergency Reclamation.

7.5 The Flood Sensorweb

The flood sensorweb uses the Dartmouth Flood Observatory Global Active Flood Archive to identify floods in remote locations automatically based on satellite data. The DFO flood archive generates flood alerts based on both MODIS and QuikSCAT9 satellite data. The flood sensorweb utilizes the DFO QuikSCAT atlas because it is not affected by cloud cover over flooded areas.

The DFO archive is produced by the DFO in collaboration with JPL. In this process the QuikSCAT Scatterometer data is used to assess surface water conditions1,8. Specifically the VV/HH ratio is used to assess surface water properties of the areas in 0.25 lat/lon degree bins. The 7 day running mean is used to dampen effects of short-duration rainfall over urban areas. These data are then compared to the seasonal (90 day) average of the previous year season to screen out seasonal wetlands. The screened alerts are then published to a DFO website. (See Figure 7.) More recently MODIS and AMSR-E data has been incorporated into the triggering product.

Figure 7: Dartmouth Flood Observatory Global Flood Alerts for June 2007.

In the flood sensorweb, active flooding alerts prime locations of known scientific interest trigger EO-1 observations at gauging reaches. Gauging reaches are river locations whose topography is well understood. Flood discharge measurements at gauging reaches can be used to measure the amount of water passing through a flooded region and can be compared with remotely sensed data. The end effect of the flood sensorweb is to increase the amount of high resolution remote sensing data available on flooding events in prime locations of interest (e.g., gauging reaches) and times of interest (e.g., when active flooding occurs). Imagery from an August 2003 flood sensorweb demonstration capturing flooding in the Brahmaputra River, India, is shown in Figure 8.

7.6 The Volcano Sensorweb

In the volcano sensorweb, MODIS, GOES, and AVHRR sensor platforms are utilized to detect volcanic activity. These alerts are then used to trigger EO-1 observations. The EO-1 Hyperion instrument is ideal for study of volcanic processes because of its great sensitivity range in the infra-red spectrum.

The GOES3 and AVHRR alert systems provide excellent temporal resolution and rapid triggering based
Hawaii has also deployed infra-red cameras to high-resolution, EO-1 imagery. The University of near-term eruption thereby triggering a request for indications that collectively point to a high-probability, seismic instrumentation. These sensors can provide these instruments include tiltmeters, gas sensors, and seismic instrumentation. These sensors can provide indications that collectively point to a high-probability, near-term eruption thereby triggering a request for high-resolution, EO-1 imagery. The University of Hawaii has also deployed infra-red cameras to a number of volcanic sites worldwide (e.g., Kilauea, Hawaii; Erte Ale, Ethiopia; Soufriere Hills, Montserrat; Colima and Popocatepetl, Mexico). These infra-red cameras can provide a ground-based detection of lava flows based on thermal signatures, thereby alerting the sensorweb.

Figure 8: Examples of low-resolution MODIS imagery (left) and EO-1 imagery (right) from the Flood Sensorweb capturing Brahmaputra River flooding in India, August 2003.

7.7 Cryosphere Sensorweb

Many freeze/thaw applications are also of interest. This includes the phenomena of glacial ice breakup, sea ice breakup, melting, and freezing, lake ice freezing and thawing, and snowfall and snowmelt. Using QuikSCAT data we are tracking snow and ice formation and melting and automatically triggering higher resolution imaging such as with EO-1.

In collaboration with the Center for Limnology of the University of Wisconsin at Madison, we have linked into data streams from the Trout Lake station to use temperature data to trigger imaging of the sites to capture transient freezing and thawing processes.

TECHNOLOGY INFUSION

The ASE software is currently being used on the Mars Exploration Rovers Mission to enable onboard detection and summarization of atmospheric events (dust devils and clouds). The ASE software is also under development for the Mars Odyssey Mission to enhance science return from the THEMIS instrument. In this application, the ASE software will:

- Track the seasonal variation in the CO2 ice caps
- Detect thermal anomalies
- Track dust storms
- Track Martian clouds

In addition, we are researching applications for magnetosphere events for space weather, change detection on Io and Europa, and storm tracking on Jupiter.

SUMMARY

ASE on EO-1 demonstrates an integrated autonomous mission using onboard science analysis, replanning, and robust execution. The ASE performs intelligent science data selection that leads to a reduction in data downlink. In addition, the ASE increases science return through autonomous retargeting. Demonstration of these capabilities onboard EO-1 will enable radically different missions with significant onboard decision-making leading to novel science opportunities. The paradigm shift toward highly autonomous spacecraft will enable future NASA missions to achieve significantly greater science returns with reduced risk and reduced operations cost. We have also described ongoing work to link together automated science event tracking system with an autonomous response capability based on automated planning technology. Demonstration of these sensorweb capabilities will enable fast responding science campaigns and increase the science return of spaceborne assets.

ACKNOWLEDGEMENT

Portions of this work were performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We would like to acknowledge the important contributions of Nghia Tang and Michael Burl of JPL, Dan Mandl, Stuart Frye,
Seth Shulman, and Stephen Ungar of GSFC, Jerry Hengemihle and Bruce Trout of Microtel LLC, Jeff D’Agostino of the Hammers Corp., Robert Bote of Honeywell Corp., Jim Van Gaasbeck and Darrell Boyer of ICS, Michael Griffin and Hsiao-hua Burke of MIT Lincoln Labs, Ronald Greeley and Thomas Doggett of Arizona State University, and Victor Baker and James Dohm of the University of Arizona.

References

2. S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau, "Using Iterative Repair to Improve Responsiveness of Planning and Scheduling," Proceedings of the Fifth International Conference on Artificial Intelligence Planning and Scheduling, Breckenridge, CO, April 2000. (also casper.jpl.nasa.gov)

