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Methodological tools

Ethan P. White, Xiao Xiao, Nick J. B. Isaac and Richard M. Sibly

SUMMARY

1. In this chapter we discuss the best methodological tools for visually and 
statistically comparing predictions of the metabolic theory of ecology to data.

2. Visualizing empirical data to determine if it is of roughly the correct general 
form is accomplished by log-transforming both axes for size-related patterns, 
and log-transforming the y-axis and plotting it against the inverse of 
temperature for temperature based patterns. Visualizing these relationships 
while controlling for the influence of other variables can be accomplished by 
plotting the partial residuals of multiple regressions.

3. Fitting relationships of the same general form as the theory is generally best 
accomplished using ordinary least squares based regression on 
log-transformed data while accounting for phylogenetic non-independence of 
species using Phylogenetic General Linear Models. When multiple factors are 
included this should be done using multiple regression, not by fitting 
relationships to residuals. Maximum likelihood methods should be used for 
fitting frequency distributions.

4. Fitted parameters can be compared to theoretical predictions using 
confidence intervals or likelihood based comparisons.

5. Whether or not empirical data are consistent with the general functional form 
of the model can be assessed using goodness of fit tests and comparisons to 
the fit of alternative models with different functional forms.

6. Care should be taken when interpreting statistical analyses of general 
theories to remember that the goal of science is to develop models of reality 
that can both capture the general underlying patterns/processes and also 
incorporate the important biological details. Excessive emphasis on rejecting 
existing models without providing alternatives is of limited use.
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INTRODUCTION

Two major functional relationships characterize the current form of the Metabolic 

Theory of Ecology (MTE). Power-law relationships, of the form y=cM α  (Figure 
1a-b), describe the relationship between body size and morphological, physiological 
and ecological traits of individuals and species (West et al. 1997, Brown et al. 2004). 

The Arrhenius equation, of the general form, y=ce−E / kT  (Figure 1c-d) 
characterizes the relationships between temperature and physiological and 
ecological rates (Gillooly et al. 2001, Brown et al. 2004). In addition to being central 
to metabolic theory, these empirical relationships are utilized broadly to 
characterize patterns and understand processes in areas of study as diverse as 
animal movement (Viswanathan et al. 1996), plant function (Wright et al. 2004), 
and biogeography (Arrhenius 1920; Martin & Goldenfeld 2006).

Methodological approaches for comparing metabolic theory predictions to empirical 
data fall into two general categories: 1) determining if the general functional form of 
a relationship predicted by the theory is valid; and 2) determining whether the 
observed values of the parameters match the specific quantitative predictions made 
by the theory. Both of these categories of analysis rely on being able to accurately 
determine the best fitting form of a model with the same general functional form as 
that of MTE, so we will begin by discussing how this has typically been done using 
OLS regression on appropriately transformed data. Potential improvements to these 
approaches that account for statistical complexities of the data will then be 
considered. We will discuss methods for comparing the fitted parameters to 
theoretical values and how to determine if the general functional form predicted by 
the theory is supported by data. This will require some discussion of the philosophy 
of how to test theoretical models. So we will end with a general discussion of the 
technical and philosophical challenges of testing and developing general ecological 
theories.

VISUALIZING MTE RELATIONSHIPS

Before conducting any formal statistical analysis it is always best to visualize the 
data to determine if the model is reasonable for the data and to identify any 
potential problems in or complexities with the data.

Visualizing functional relationships

The primary model of metabolic theory describes the relationship between size, 
temperature and metabolic rate; combining a power function scaling of mass and 
metabolic rate with the Arrhenius relationship describing the exponential influence 
of temperature on biochemical kinetics.

I=i0M
α e−E /kT



See Brown (this volume) or Brown et al. (2004) for details.

Most analyses of this central equation focus on either size or temperature in 
isolation, or attempt to remove the influence of the other variable before 
proceeding. As such the most common analyses focus on either power-law 

relationships, y=cM b , or exponential relationships, y=ce−E / kT , both of which 
can be log-transformed to yield linear relationships (Figure 1).

y=cM α
❑
⇒

log ( y )=log (c )+α log ( M )

y=ce−E / kT
❑
⇒

log ( y )=log ( c )−(E /kT )

The linear forms of these relationships form the basis for the most common 
approaches to plotting these data and graphically assessing the validity of the 
general form of the equations. Plots of these linearized forms are obtained either by 
log-transforming the appropriate variables or by logarithmically scaling the axes so 
that the linear values remain on the axes, but the distance between values is 
adjusted to be equivalent to log-transformed data. In this book all linearized plots 
will used log-scaled, rather than log-transformed, axes. Relationships between size 
and morphological, physiological, and ecological factors are typically plotted on 
log-log axes and relationships between temperature and these factors are displayed 
using Arrhenius plots with the log–scaled y variable plotted against the inverse of 
temperature (Figure 2a-b). If the relationships displayed on plots of these forms are 
approximately linear then they are at least roughly consistent with the general form 
predicted by metabolic theory.

When information on both size and temperature are included in an analysis to 
understand their combined impacts on a biological factor, this has been displayed 
graphically by removing the effect of one factor and then plotting the relationship 
for the other factor (Figure 2c-d). The basic idea is to rewrite the combined 
size-temperature equation so that only one of the two variables of interest appears 
on the right hand side

y

ce
−E
kT

=M α
❑
⇒

log ( y )+
E
kT

−log ⁡(c)=α log ⁡(M )

y

cM α
=e−E /kT

❑
⇒

log ( y )−α log ( M )−log ⁡(c)=−E
kT

The value for the dependent variable (i.e., the value plotted for each point on the 
vertical axis) is then determined by dividing the observed value of y by the 
appropriate transformation of temperature or mass for the observation and log 
transforming the resulting value. This is equivalent to the standard approach of 
plotting the partial residuals to visualize the relationship with a single predictor 



variable in multiple regression. Often in the MTE literature the theoretical forms of 
the relationships (α = 0.75, E = -0.65) have been used rather than the fitted forms 
based on multiple regression. For reasons discussed below we recommend using the 
fitted values of the parameters, or simply using the partial residuals functions in 
most statistical packages, to provide the best visualization of the relationship with 
the variable of interest.

Frequency distributions

In addition to making predictions for the relationships between pairs of variables - 
e.g., size, temperature, and metabolic rate - metabolic ecology models have been 
used to make predictions for the form of frequency distributions (i.e., histograms) of 
biological properties such as the number of trees of different sizes in a stand (Figure 
3; West et al. 2009). The predicted forms of these distributions are typically 
power-laws and have often been plotted by making histograms of the variable of 
interest, log-transforming both the counts and the bin centers and then plotting the 
counts on the y-axis and the bin centers on the x-axis (Figure 3a; e.g., Enquist and 
Niklas 2001, Enquist et al. 2009). This is a reasonable way to visualize these data, 
but it suffers from the fact that bins with zero individuals must be excluded from the 
analysis due to the log-transformation. These bins will occur commonly in low 
probability regions of the distribution (e.g., at large diameters) thus impacting the 
visual perception of the form of the distribution. To address this problem we 
recommend using normalized logarithmic binning (sensu White et al. 2008), the 
method typically used for visualizing this type of distribution in the aquatic 
literature (e.g., Kerr and Dickie 2001). This approach involves binning the data into 
equal logarithmic width bins (either by log-transforming the data prior to 
constructing the histogram or by choosing the bin edges to be equal logarithmic 
distances apart) and then dividing the counts in each bin by the linear width of the 
bin prior to graphing (Figure 3b). The logarithmic scaling of the bin sizes decreases 
the number of bins with zero counts (often to zero) and the division by the linear 
width of the bin preserves the underlying shape of the relationship. Another, equally 
valid approach is to visualize the relationship using appropriate transformations of 
the cumulative distribution function (Figure 3c; see White et al. 2008 for details), 
but we have found that it is often more difficult to intuit the underlying form of the 
distribution from this type of visualization and therefore recommend normalized 
logarithmic binning in most cases.

FITTING MTE MODELS TO DATA

Basic fitting

Since the two basic functional relationships of metabolic theory can be readily 
written as linear relationships by log-transforming one or both axes, most analyses 
use linear regression of these transformed variables to estimate exponents, 
compare the fitted values to those predicted by the theory, and characterize the 



overall quality of fit of the metabolic models to the data. Given the most basic set of 
statistical assumptions this is the correct approach.

Specifically, if the data points are independent, the error about the relationship is 
normally distributed when the relationship is properly transformed (i.e., it is 
multiplicative log-normal error on the untransformed data

log ( y )=log ( c )+b log (M )+ε , ε N (0,σ 2)

y=cM b eε , ε N (0,σ2
)

(equation 1) and there is error (i.e., stochasticity) only in the y-variable, then the 
correct approach to analyzing the component relationships is ordinary least-squares 
regression.

Given the same basic statistical assumptions, analyzing the full relationship 
including both size and temperature should be conducted using multiple regression 
with the logarithm of mass and the inverse of temperature as the predictor 
variables. This approach is superior to the common practice of using simple 
regression after correcting for the influence of the other variable (see e.g., Gillooly 
et al. 2001, Brown et al. 2004) because it appropriately allows for correlation 
between the predictor variables, thus yielding the best simultaneous estimates of 
the parameters for each variable and the appropriate estimates of the confidence 
intervals for those parameters (Freckleton 2002).

In many cases the assumptions underlying these basic statistical analyses may be 
reasonable, and these methods are often robust to some violations of the 
assumptions. However there are also a number of instances in common MTE 
analyses where substantial violations of assumptions related to the independence of 
data points, and even the basic form of the error about the relationship, may 
necessitate the use of more complex methods to obtain the most rigorous results.

Log-transformation vs. non-linear regression

While most analyses utilize the fact that log-transforming one or both sides of the 
equation yields a linear relationship, allowing appropriately transformed data to be 
modeled using linear regression (log-linear regression), it has recently been 
suggested that analysis on logarithmic scales is flawed and that instead, analysis 
should be carried out on the original scale of measurement using nonlinear 
regression (e.g., Packard and Birchard 2008, Packard and Boardman 2008, 2009a, 
2009b, Packard 2009, Packard et al. 2009, 2010).

One fundamental difference between log-linear regression and nonlinear regression 
on untransformed data lies in the assumptions that the two approaches make about 
the nature of unexplained variation. In nonlinear regression the error term (i.e. 
residuals) is assumed to be normally distributed and additive, 



y=axb
+ε , ε N (0,σ2 ) , while log-linear regression assumes the error term is 

log-normally distributed and multiplicative (Eq 1). The form of the error distribution 
in the empirical data determines which method performs better, with the method 
that assumes the appropriate error form (i.e. nonlinear regression with additive 
error, and log-linear regression with multiplicative error) yielding the best results 
(Xiao et al. in press). 

Throughout this chapter we recommend that the form of the error distribution be 
explicitly considered when possible in deciding which methods to use (Cawley & 
Janacek 2010, Xiao et al. 2011). However, log-normal error is substantially more 
common than normal error in physiological and morphological data (Figure 4; Xiao 
et al. in press; see also Gingerich 2000, Kerkhoff & Enquist 2009, Cawley & Janacek 
2010), which implies that for most metabolic theory analyses log-linear regression is 
appropriate. This is good news because log-linearity allows the implementation of 
some approaches discussed below which cannot readily be implemented in a 
nonlinear context.

Alternatives to ordinary least squares regression

The ordinary least-squares (OLS) approach is just one of several available choices 
for fitting a linear relationship between X and Y variables, with each method making 
different assumptions about the variation around the regression line. Understanding 
which of these methods to use can seem complicated because these choices 
depend on information about the sources and magnitude of variability around the 
regression line, the nature of the relationship between X and Y, and the goal of the 
analysis. In addition, there is conflicting advice in the literature regarding when to 
use which method, and uncertainty about best practice has lead to many studies 
reporting regression slopes determined using more than one approach (e.g., 
Coomes et al. 2011).

The main alternative to ordinary least squares (OLS) regression is commonly known 
as Reduced Major Axis (RMA) regression. Whereas OLS assumes that residual 
variation occurs only in the vertical direction, RMA allows for variation also in the 
horizontal direction by minimizing the sum of the products of deviations in the 
vertical and horizontal directions. For most datasets, slopes estimated by RMA are 
steeper than those estimated by regression (Smith 2009). Other alternatives include 
Major Axis (MA), which generates estimates of the slope that are intermediate 
between RMA and OLS regression, and the OLS Bisector, which determines the 
average of the slope of X on Y and the slope of Y on X (Isobe et al. 1990). OLS, RMA 
and MA are all special cases of a general model in which the ratio of the error 
variances in X and Y can take on any values (Harvey and Pagel 1991, O’Connor et 
al. 2007).

A common argument for the use of alternatives to OLS in allometric studies is that it 
is inappropriate to assume that X is measured without error as implied in OLS 



regression (e.g., Legendre and Legendre 1998). However, this argument relies on 
the assumption that all of the variation about the regression line is due to 
measurement error, which is unlikely to be the case in biological systems (e.g., 
Sokal and Rohlf 1995, Smith 2009) and even then this argument is not valid in most 
situations (Warton  et al. 2006, Smith 2009). Recent advice regarding when it is 
appropriate to use RMA (or a related alternative) vs. OLS is based on a combination 
of the goal of the analysis and the causal relationship between the variables 
(Warton  et al. 2006, O’Connor et al. 2007, Smith 2009). For an excellent treatment 
of the logic behind RMA vs. OLS see Smith (2009). All line-fitting techniques 
discussed can be implemented using the SMATR package in R 
(http://www.bio.mq.edu.au/ecology/SMATR/).

Which method(s) should I use?

Our interpretation of the recent discussion on which method to use is that for the 
majority of cases in metabolic theory OLS regression on log-transformed data is the 
correct approach. Most analyses in metabolic theory are causal in nature – the 
hypothesis is that the size and temperature of an organism determine a broad suite 
of dependent variables. In the case of hypothesized causal relationships we are 
logically assigning all equation error (i.e. variability about the line not explained by 
measurement error; Fuller 1987, McArdle 2003) to the Y variable and therefore 
should be estimating the form of the relationship using OLS (Warton et al. 2006, 
Smith 2009). In addition to causal relationships OLS regression is also most 
appropriate in cases where one wants to predict unknown values of Y based on X 
(Sokal and Rohlf 1995, Warton et al. 2006, Smith 2009). Metabolic theory is often 
used in this context to estimate the metabolic rate of individuals based on body size 
(e.g., Ernest and Brown 2001, White et al. 2004, Ernest et al. 2009). The fact that 
OLS is appropriate for many metabolic theory predictions is convenient because 
variants on simple bivariate relationships (e.g. phylogenetic correction, mixed 
effects models) are typically based on OLS.

There are some cases where directional causality between the two variables being 
analyzed is not implied by metabolic models. For example, predictions for the 
relationships between different measures of size (e.g., height and basal stem 
diameter in trees) do not imply a direct causal relationship between the variables 
but an ‘emergent’ outcome of a process affected by two interdependent variables. 
In this case, the choice of which variable to place on the X axis is arbitrary. In this 
case (and in many similar cases in other areas of allometry; e.g., the leaf economics 
spectrum) RMA or a related approach is more appropriate for analysis because we 
want to partition equation error between X and Y, rather than assigning it all to Y.

Phylogenetic methods

A common goal of analysis in metabolic ecology is to understand the relationship 
between two morphological, physiological, or ecological properties, across species. 



The data points in these analyses are typically average values of the two properties 
for each species, which leads to a potential complication. Because there are limits 
to how quickly traits can evolve, closely related species may not be statistically 
independent due to their shared evolutionary history. This lack of independence 
among data points violates a key assumption of ordinary least squares regression 
(and general linear models more broadly).

The problem of phylogenetic non-independence is well known in evolutionary 
biology, and a method known as independent contrasts (Felsenstein 1985) remains 
popular for correcting for the phylogenetic signal in comparative data. Independent 
contrasts have been recently superseded by Phylogenetic General Linear Models 
(PGLMs), which allow a wide range of evolutionary scenarios to be modeled 
(Garland and Ives 2000).

The current implementation of PGLMs was devised by Mark Pagel (Pagel 1997, 
1999). There are three parameters: λ, κ and δ, each of which can be specified a 
priori or estimated from the data. The most important of these is λ, which is a 
measure of the strength of the phylogenetic signal in the data. Suppose some 
trait(s) have been measured in five species for which an evolutionary tree, i.e., 
phylogeny, is available, as shown in Figure 5A. If the pattern of trait variation among 
these species is consistent with random evolutionary change along the branches of 
the phylogeny, then λ is said to be 1. At the other extreme it is possible that close 
relatives are no more similar to each other than distantly-related species. It is then 
as if all species were completely independent, equally distant phylogenetically from 
their common ancestor, as shown in Figure 5B. In this case λ is said to be 0. Most 
analyzed cases fall in between these two extremes and find that some proportion λ 
of the variation is accounted for by the phylogeny, the rest being attributable to 
recent independent evolution, as in Figure 5C. Parameters κ and δ provide a way of 
scaling the rates of evolutionary change along the branches of the phylogeny. For 
example, κ=1 corresponds to gradual evolution, and κ=0 is a model in which 
evolution is concentrated at speciation events. Parameter δ, which is rarely used, 
measures whether the rates of evolution have increased, decreased or stayed 
constant over time. The best mathematical account of the method is provided by 
Garland and Ives (2000) where it is referred to as the Generalized Least Squares 
Approach and described on p. 349. A recent guide to the use and misuse of PGLMs 
is given in Freckleton (2009). 

The traits of interest in metabolic scaling analyses tend to show strong phylogenetic 
signals. For example, in mammals, λ = 0.984, 1.0 and 0.84 for basal metabolic rate, 
mass and body temperature respectively (Clarke et al 2010). However, estimates of 
scaling parameters from PGLMs and conventional GLMs tend to be similar, 
converging on the same answer when the explanatory power (R2) approaches 1.

Despite their promise, PGLMs are currently difficult to use. They require that a 
phylogeny, ideally with branch lengths, be available or assembled for the species of 



interest. They also assume that the form of the phylogeny and the assumed models 
of evolution are accurate. However, little analysis has been done to determine the 
impacts of error in either of these inputs on the outcome of the analysis. In addition, 
while software is available for conducting PGLM analyses, including BayesTraits 
(http  ://  www  .  evolution  .  rdg  .  ac  .  uk  /  BayesTraits  .  html  ) and several packages in R 
including ape (http  ://  cran  .  r  -  project  .  org  /  web  /  packages  /  ape  /  ) and caper 
(http  ://  r  -  forge  .  r  -  project  .  org  /  projects  /  caper  /  ; Orme et al. 2011), the documentation is 
fragmentary and utilizing these packages can be difficult for new users.

In general we recommend that PGLMs be used when quality phylogenies are 
available. However, in cases where the relationship between two variables is strong 
this is unlikely to have a demonstrable influence on the results. If no phylogeny is 
available, an alternative is to use taxonomy as a proxy for phylogeny in a 
hierarchical (mixed effects) model (e.g., McGill 2008, Isaac and Carbone 2010). We 
also caution that factors other than phylogenetic relationship, such as similar body 
size or environment, can potentially be additional causes of non-independence of 
data in species-level analyses.

Methods for fitting frequency distributions

The predicted form of MTE frequency distributions is typically power-law, 

f ( x )=c xθ  (also known as the Pareto distribution in the probability and statistics 

literature), and the fit of these predictions to empirical data has typically been 
evaluated by fitting a regression through the data generated using histograms for 
visualization (i.e., binning the values of the variable of interest, counting how many 
values occur in each bin, log-transforming the counts and the position of the bin, 
and then fitting a relationship to those data points using linear regression). An 
example of this would be fitting a regression through the points in Figure 3a or 3b. 
While this seems like reasonable approach to this problem, it fails to properly 
account for the structure of the data, which can result in inaccurate parameter 
estimates (Clark et al. 1999, Edwards 2008, White et al. 2008) and incorrect 
estimates of the quality of fit of the model to the data (Newman 2005, Edwards et 
al. 2007, Clauset et al. 2009).

The correct approach for fitting frequency distributions in metabolic theory to data 
is based on likelihood (Edwards et al. 2007, White et al. 2008). Maximum likelihood 
estimation determines the values of the parameters that maximize the likelihood of 
the model given the data. In the case of the metabolic theory this is typically finding 
the best fitting exponent of a power-law frequency distribution. Determining the 
best parameters using maximum likelihood estimation for power-laws is 
straightforward in most cases, requiring only a simple calculation. In the most 
common case where there is a meaningful lower bound (e.g., trees < 1 cm are not 
measured) and the upper bound is assumed to be infinite, the exponent is 
determined simply by

http://www.google.com/url?q=http%3A%2F%2Fr-forge.r-project.org%2Fprojects%2Fcaic%2F&sa=D&sntz=1&usg=AFQjCNF2fBSPM5wcqAD7udYNK2QTNiyZlw
http://www.google.com/url?q=http%3A%2F%2Fr-forge.r-project.org%2Fprojects%2Fcaic%2F&sa=D&sntz=1&usg=AFQjCNF2fBSPM5wcqAD7udYNK2QTNiyZlw
http://www.google.com/url?q=http%3A%2F%2Fr-forge.r-project.org%2Fprojects%2Fcaic%2F&sa=D&sntz=1&usg=AFQjCNF2fBSPM5wcqAD7udYNK2QTNiyZlw
http://www.google.com/url?q=http%3A%2F%2Fr-forge.r-project.org%2Fprojects%2Fcaic%2F&sa=D&sntz=1&usg=AFQjCNF2fBSPM5wcqAD7udYNK2QTNiyZlw
http://www.google.com/url?q=http%3A%2F%2Fr-forge.r-project.org%2Fprojects%2Fcaic%2F&sa=D&sntz=1&usg=AFQjCNF2fBSPM5wcqAD7udYNK2QTNiyZlw
http://www.google.com/url?q=http%3A%2F%2Fr-forge.r-project.org%2Fprojects%2Fcaic%2F&sa=D&sntz=1&usg=AFQjCNF2fBSPM5wcqAD7udYNK2QTNiyZlw
http://www.google.com/url?q=http%3A%2F%2Fr-forge.r-project.org%2Fprojects%2Fcaic%2F&sa=D&sntz=1&usg=AFQjCNF2fBSPM5wcqAD7udYNK2QTNiyZlw
http://www.google.com/url?q=http%3A%2F%2Fr-forge.r-project.org%2Fprojects%2Fcaic%2F&sa=D&sntz=1&usg=AFQjCNF2fBSPM5wcqAD7udYNK2QTNiyZlw
http://www.google.com/url?q=http%3A%2F%2Fr-forge.r-project.org%2Fprojects%2Fcaic%2F&sa=D&sntz=1&usg=AFQjCNF2fBSPM5wcqAD7udYNK2QTNiyZlw
http://www.google.com/url?q=http%3A%2F%2Fr-forge.r-project.org%2Fprojects%2Fcaic%2F&sa=D&sntz=1&usg=AFQjCNF2fBSPM5wcqAD7udYNK2QTNiyZlw
http://www.google.com/url?q=http%3A%2F%2Fr-forge.r-project.org%2Fprojects%2Fcaic%2F&sa=D&sntz=1&usg=AFQjCNF2fBSPM5wcqAD7udYNK2QTNiyZlw
http://www.google.com/url?q=http%3A%2F%2Fr-forge.r-project.org%2Fprojects%2Fcaic%2F&sa=D&sntz=1&usg=AFQjCNF2fBSPM5wcqAD7udYNK2QTNiyZlw
http://www.google.com/url?q=http%3A%2F%2Fr-forge.r-project.org%2Fprojects%2Fcaic%2F&sa=D&sntz=1&usg=AFQjCNF2fBSPM5wcqAD7udYNK2QTNiyZlw
http://www.google.com/url?q=http%3A%2F%2Fr-forge.r-project.org%2Fprojects%2Fcaic%2F&sa=D&sntz=1&usg=AFQjCNF2fBSPM5wcqAD7udYNK2QTNiyZlw
http://www.google.com/url?q=http%3A%2F%2Fr-forge.r-project.org%2Fprojects%2Fcaic%2F&sa=D&sntz=1&usg=AFQjCNF2fBSPM5wcqAD7udYNK2QTNiyZlw
http://www.google.com/url?q=http%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2Fape%2F&sa=D&sntz=1&usg=AFQjCNGwPI66ndW03WsQkekTCTBH2zuSLQ
http://www.google.com/url?q=http%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2Fape%2F&sa=D&sntz=1&usg=AFQjCNGwPI66ndW03WsQkekTCTBH2zuSLQ
http://www.google.com/url?q=http%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2Fape%2F&sa=D&sntz=1&usg=AFQjCNGwPI66ndW03WsQkekTCTBH2zuSLQ
http://www.google.com/url?q=http%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2Fape%2F&sa=D&sntz=1&usg=AFQjCNGwPI66ndW03WsQkekTCTBH2zuSLQ
http://www.google.com/url?q=http%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2Fape%2F&sa=D&sntz=1&usg=AFQjCNGwPI66ndW03WsQkekTCTBH2zuSLQ
http://www.google.com/url?q=http%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2Fape%2F&sa=D&sntz=1&usg=AFQjCNGwPI66ndW03WsQkekTCTBH2zuSLQ
http://www.google.com/url?q=http%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2Fape%2F&sa=D&sntz=1&usg=AFQjCNGwPI66ndW03WsQkekTCTBH2zuSLQ
http://www.google.com/url?q=http%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2Fape%2F&sa=D&sntz=1&usg=AFQjCNGwPI66ndW03WsQkekTCTBH2zuSLQ
http://www.google.com/url?q=http%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2Fape%2F&sa=D&sntz=1&usg=AFQjCNGwPI66ndW03WsQkekTCTBH2zuSLQ
http://www.google.com/url?q=http%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2Fape%2F&sa=D&sntz=1&usg=AFQjCNGwPI66ndW03WsQkekTCTBH2zuSLQ
http://www.google.com/url?q=http%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2Fape%2F&sa=D&sntz=1&usg=AFQjCNGwPI66ndW03WsQkekTCTBH2zuSLQ
http://www.google.com/url?q=http%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2Fape%2F&sa=D&sntz=1&usg=AFQjCNGwPI66ndW03WsQkekTCTBH2zuSLQ
http://www.google.com/url?q=http%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2Fape%2F&sa=D&sntz=1&usg=AFQjCNGwPI66ndW03WsQkekTCTBH2zuSLQ
http://www.google.com/url?q=http%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2Fape%2F&sa=D&sntz=1&usg=AFQjCNGwPI66ndW03WsQkekTCTBH2zuSLQ
http://www.google.com/url?q=http%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2Fape%2F&sa=D&sntz=1&usg=AFQjCNGwPI66ndW03WsQkekTCTBH2zuSLQ
http://www.google.com/url?q=http%3A%2F%2Fcran.r-project.org%2Fweb%2Fpackages%2Fape%2F&sa=D&sntz=1&usg=AFQjCNGwPI66ndW03WsQkekTCTBH2zuSLQ
http://www.google.com/url?q=http%3A%2F%2Fwww.evolution.rdg.ac.uk%2FBayesTraits.html&sa=D&sntz=1&usg=AFQjCNFhTBZeCAwxVMtkDOctV2X-P43PcA
http://www.google.com/url?q=http%3A%2F%2Fwww.evolution.rdg.ac.uk%2FBayesTraits.html&sa=D&sntz=1&usg=AFQjCNFhTBZeCAwxVMtkDOctV2X-P43PcA
http://www.google.com/url?q=http%3A%2F%2Fwww.evolution.rdg.ac.uk%2FBayesTraits.html&sa=D&sntz=1&usg=AFQjCNFhTBZeCAwxVMtkDOctV2X-P43PcA
http://www.google.com/url?q=http%3A%2F%2Fwww.evolution.rdg.ac.uk%2FBayesTraits.html&sa=D&sntz=1&usg=AFQjCNFhTBZeCAwxVMtkDOctV2X-P43PcA
http://www.google.com/url?q=http%3A%2F%2Fwww.evolution.rdg.ac.uk%2FBayesTraits.html&sa=D&sntz=1&usg=AFQjCNFhTBZeCAwxVMtkDOctV2X-P43PcA
http://www.google.com/url?q=http%3A%2F%2Fwww.evolution.rdg.ac.uk%2FBayesTraits.html&sa=D&sntz=1&usg=AFQjCNFhTBZeCAwxVMtkDOctV2X-P43PcA
http://www.google.com/url?q=http%3A%2F%2Fwww.evolution.rdg.ac.uk%2FBayesTraits.html&sa=D&sntz=1&usg=AFQjCNFhTBZeCAwxVMtkDOctV2X-P43PcA
http://www.google.com/url?q=http%3A%2F%2Fwww.evolution.rdg.ac.uk%2FBayesTraits.html&sa=D&sntz=1&usg=AFQjCNFhTBZeCAwxVMtkDOctV2X-P43PcA
http://www.google.com/url?q=http%3A%2F%2Fwww.evolution.rdg.ac.uk%2FBayesTraits.html&sa=D&sntz=1&usg=AFQjCNFhTBZeCAwxVMtkDOctV2X-P43PcA
http://www.google.com/url?q=http%3A%2F%2Fwww.evolution.rdg.ac.uk%2FBayesTraits.html&sa=D&sntz=1&usg=AFQjCNFhTBZeCAwxVMtkDOctV2X-P43PcA
http://www.google.com/url?q=http%3A%2F%2Fwww.evolution.rdg.ac.uk%2FBayesTraits.html&sa=D&sntz=1&usg=AFQjCNFhTBZeCAwxVMtkDOctV2X-P43PcA
http://www.google.com/url?q=http%3A%2F%2Fwww.evolution.rdg.ac.uk%2FBayesTraits.html&sa=D&sntz=1&usg=AFQjCNFhTBZeCAwxVMtkDOctV2X-P43PcA
http://www.google.com/url?q=http%3A%2F%2Fwww.evolution.rdg.ac.uk%2FBayesTraits.html&sa=D&sntz=1&usg=AFQjCNFhTBZeCAwxVMtkDOctV2X-P43PcA
http://www.google.com/url?q=http%3A%2F%2Fwww.evolution.rdg.ac.uk%2FBayesTraits.html&sa=D&sntz=1&usg=AFQjCNFhTBZeCAwxVMtkDOctV2X-P43PcA
http://www.google.com/url?q=http%3A%2F%2Fwww.evolution.rdg.ac.uk%2FBayesTraits.html&sa=D&sntz=1&usg=AFQjCNFhTBZeCAwxVMtkDOctV2X-P43PcA


θ=−1 – [ 1n∑ ( log( x
xmin ))]

−1

where the summation is over all values of x. In other cases the calculations may be 
different, so care is required to confirm that assumptions being used to determine 
the MLE of the parameters are consistent with the data to which the calculation is 
being applied. In the case of the power-law frequency distributions predicted by 
metabolic theory, MLEs for all possible detailed forms are available in White et al. 
(2008; see Johnson et al. 1994, 2005 for more technical treatments).

ARE THE FITTED PARAMETERS CONSISTENT WITH THEORETICAL 
PREDICTIONS?

Having fit a relationship of the same general form as the MTE predictions using the 
methods above, the next step in evaluating the MTE is to determine if the fitted 
parameters are consistent with the specific quantitative predictions of the theory.

In regression-based analyses this is typically done by determining whether or not 
the 95% confidence interval (CI) about the best fitting parameter includes the 
theoretical prediction. This is a well established practice and easy to apply (most 
statistical software that will generate parameter estimates will also generate 
confidence intervals for those estimates). However, there are two complexities to 
consider when using this method to evaluate theoretical predictions. First, 
hypothesis testing of this kind is not intended to determine whether two values of a 
parameter are similar. The appropriate interpretation of a CI containing the 
theoretical value is that we cannot reject the model, but this is not the same as 
supporting it. Alternatives that focus on determining whether or not two values are 
meaningfully similar are available (i.e., equivalence testing; Dixon and Pechmann 
2005) but have never been applied to metabolic theory and are only rarely used in 
ecology in general.

Comparing the parameters of frequency distributions to those predicted by theory 
can also be done using confidence intervals, which can be determined accurately 
for all forms of power-law distribution when the number of data points is large (see 
appendix in White et al. 2008) and for small sample sizes for the most common 
form of the distribution (the Pareto; Johnson et al. 1994, Newman 2005, Clauset et 
al. 2009). Confidence intervals can also be calculated using bootstrap or jackknife 
techniques if necessary (Newman 2005). An alternative approach is to explicitly test 
whether a distribution with a fitted value provides a meaningfully better fit to the 
data than one with the theoretical value. This can be done using likelihood ratio 
tests (Vuong 1989, Clauset et al. 2009).



IS THE SHAPE OF THE RELATIONSHIP CONSISTENT WITH 
THEORETICAL PREDICTIONS?

Goodness of fit tests

For frequency distributions it is possible to directly ask whether or not the observed 
form of the distribution is consistent with (i.e., not significantly different from) the 
form predicted by the theory. This is done using goodness of fit tests, where the null 
hypothesis is that observed data are drawn from the theoretical distribution. A 
number of goodness of fit tests are available that entail different detailed 
assumptions including the chi-square test, Kolmogorov-Smirnov test, and G-test. If 
the sample size is sufficiently large and data are continuously distributed all of 
these tests should give similar answers.

Determining the goodness of fit of regressions is more complicated and therefore 
simple tests are not available. Instead, it is standard to evaluate several 
assumptions of regression to determine whether the regression should be used or to 
compare the fits of linear regressions to more complex models (see below). 
Evaluating the assumptions of regression is good general practice and failure to 
satisfy these assumptions can indicate that the model is not sufficient for 
characterizing the pattern in the data. Specifically the two most relevant tests are to 
determine: 1) whether or not the residuals about the regression are normally 
distributed (which can be done using standard goodness of fit tests); and 2) whether 
the variance of the residuals does not change as a function of the value of the 
predictor variable (i.e., the residuals are homoscedastic).

Comparison to alternative models

The other approach to determining whether or not the observed relationship has the 
same shape as the predictions of MTE is to compare the fit of the relationship or 
distribution to alternative models. The most common example of this is the use of 
polynomial regression to determine whether or not a simple linear relationship 
(among log-transformed variables) is an appropriate fit to the data. The standard 
approach is to fit polynomial regressions that include one or more higher order 
terms (x2, x3, etc.) and determine whether or not those terms are significant in the 
regression. If they are, this is typically considered to be an indication that a 
different, or more complex, model than the simple linear relationship (on 
log-transformed data) is necessary. This polynomial approach has only rarely been 
used in MTE analyses, perhaps for reasons discussed below (see Model 
development vs. model testing), but it has been successfully utilized to indicate that 
the current metabolic theory predictions for the relationship between temperature 
and species richness are not sufficient to fully characterize the observed patterns 
(Hawkins et al. 2007, Algar et al. 2007; but see Gillooly and Allen 2007).



A more general approach is to use likelihood and information criteria based 
methods. These methods determine which of a set of models is most consistent 
with the empirical data and whether that model provides a meaningfully better fit 
than alternative models (Hilborn and Mangel 1997, Burnham and Anderson 2002). A 
full introduction to this area is beyond the scope of this chapter, but the basic 
approach is to calculate the likelihoods of all the candidate models and then 
compare those likelihoods to one another taking into account that some models 
have more parameters than others and are therefore more likely to provide good fits 
to empirical data (for ecological examples see Muller-landau et al. 2006 and Coomes 
and Allen 2007). We strongly recommend Hilborn and Mangel (1997) to those 
looking for an accessible introduction to this area of statistics. Equivalent Bayesian 
methods are also available, but have rarely been applied in the context of metabolic 
ecology. Good examples are available in Dietze et al. (2008) and Price et al. (2009) 
for those interested in this approach.

In addition to testing the basic shape of the predicted relationship and the specific 
parameter values, these methods can be used to assess the form of the error 
distribution to allow for decisions to be made about whether to use log-linear or 
nonlinear regression (Xiao et al. in review; see above) and to determine the degree 
of phylogenetic non-independence among data points that needs to be accounted 
for (Freckleton 2009).

THOUGHTS ON TESTING ECOLOGICAL THEORIES

It is useful and informative to compare the fits of metabolic theory models (and 
ecological models in general) to alternative models to see if a better 
characterization of the empirical data is possible. If an alternative model provides a 
better fit to the data there are two different conclusions that can be drawn: 1) the 
model is not useful and should be abandoned; or 2) the model is incomplete and 
requires further development. In ecology we have tended to prefer the language of 
rejection - any model for which data deviates from the prediction using a goodness 
of fit test, or for which an alternative model is found to provide a superior fit, is 
rejected. This attitude likely has its origins in an emphasis on Plattian inference 
(Platt 1964) and an, arguably improper (Hurlbert and Lombardi 2009), emphasis on 
the arbitrary definition of p < 0.05 as being “significant”. Further discussion of how 
a rejected model may be improved is rarely undertaken. However, in cases where a 
model is based on reasonable starting assumptions and makes reasonable 
predictions, it may be better to modify and improve that model than to abandon it. 
This iterative process of hypothesis refinement is considered essential for the 
development of ecology (Mentis, 1988), and several recent attempts to refine 
models from metabolic ecology are valuable contributions to this process (Banavar 
et al. 2010, Savage et al. 2010).

The goal of theory is to provide simplified characterizations of reality; so rejecting 
models is only useful if it leads to better models. Testing models and identifying 



their flaws is a necessary, but not sufficient, part of the process. This raises 
questions about the merits of comparing process based models to purely 
phenomenological models that lack a biological mechanism. Consistent, directional, 
deviations from a general theory indicates that the theory is either incomplete or 
simply wrong. However studies that only demonstrate the superior performance of 
phenomenological over mechanistic models often yield little direct progress towards 
acceptable theories. In contrast, comparing theoretical predictions to mechanistic 
models that include either additional or alternative processes has the potential to 
yield improved characterizations of biological systems. An illustrative example is 
Fisher’s sex ratio theory, which predicts a canonical ratio of 1:1. When sample sizes 
are large, significant deviations are almost always observed. This does not mean 
the theory is wrong. Indeed, considering the direction and magnitude of the 
deviations (large in eusocial hymenoptera, small in humans) leads to progress in 
understanding the additional processes that affect sex ratios in real populations.

It is important to consider the goal of a model when determining if it should be 
replaced or modified (Martinez del Rio 2008). For example, in many cases related to 
MTE the goal is to understand the fundamental processes that produce the 
first-order relationship between body size and metabolic rate. MTE is successful at 
characterizing the relevant empirical pattern, because a ¾ power allometric 
relationship is the best supported pattern both when analyzing large numbers of 
species and when the average form of the model across taxonomic groups is 
determined (Savage et al. 2004, Isaac and Carbone 2010). As such MTE may 
provide information about the underlying process. However, if the goal is to 
accurately predict the metabolic rate of species for which data are not available 
then it is necessary to consider the empirical evidence of variation among 
taxonomic groups (e.g., Nagy et al. 1999, Isaac and Carbone 2010). In this case 
models that incorporate taxonomic variation are an important improvement over 
the more general MTE (Isaac and Carbone 2010).

Evaluating models is further complicated by the fact that general ecological theories 
(including MTE) typically make predictions for multiple empirical patterns (see 
Brown et al. 2004). This generality is desirable because it makes metabolic theory 
applicable in a broad range of situations, but it also makes MTE easier to reject 
since rejection of any prediction implies rejection of the entire theory. However, it is 
unreasonable to compare a model that makes a large number of predictions to a 
model that makes one or a few specific predictions without penalizing the more 
specific model for its lack of generality and resultantly larger number of parameters 
per prediction (Price et al. 2009). Unfortunately there are no general approaches for 
dealing with this type of difference among models, and the one example that we are 
aware of (Price et al. 2009) represents a first attempt rather than a general solution 
to the challenge of evaluating models that make multiple predictions.

In conclusion, the goal of science is to develop models of reality that both capture 
general underlying patterns and processes, and incorporate important biological 



details. Developing general ecological theories allows us to understand how 
ecological systems operate and make predictions for how they will respond to global 
change and other major perturbations. Rigorous statistical approaches and proper 
testing of theories is necessary to accomplish this result. Efforts to improve 
methodological approaches and to use these approaches to test existing theories 
should always be undertaken with the goal of improving our understanding of 
ecological systems.
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Figure Legends

Figure 1. Examples of power-law relationships and exponential temperature 
relationships. Several power-law relationships are shown on untransformed (a) and 
logarithmically scaled (b) axes. Power-law relationships with exponents equal to one 
characterize direct proportionalities, which are linear relationships with intercepts of 
zero. Several temperature relationships are shown on untransformed (c) and 
Arrhenius plot axes (1/T vs. logarithmically scaled y) (d). Power-laws with exponents 
greater than one are described as superlinear because their slope is increasing in 
linear space and power-laws with exponents less than one are described as 
sublinear because their slope is decreasing. Relationships that have exponents 
equal to zero do not change with the variable of interest and are therefore 
described as invariant with respect to mass or temperature. Note that in the 
Arrhenius plots different coefficients are used to allow for clear presentation.

Figure 2. Plots of metabolic rate as a function of mass and temperature. (a) log-log 
plot of mass vs. metabolic rate not accounting for temperature. (b) Arrhenius plot of 
temperature vs. metabolic rate not accounting for mass. (c) log-log plot of mass vs. 
metabolic rate accounting for temperature. (d) Arrhenius plot of temperature vs. 
metabolic rate accounting for mass. Data is for reptiles from Gillooly et al. (2001).

Figure 3. Examples of visualizations of frequency distributions. Methods include (a) 
linear binning, (b) normalized-logarithmic binning, and (c) linearizing the cumulative 
distribution function. Data are from the Nosy Mangabe, Madagascar site of Alwyn 
Gentry’s tree transect data (Site 201; Phillips and Miller 2002).

Figure 4. Likelihood analysis comparing the fits of normal vs. log-normal error to 
471 biological power-laws, shows that most morphological and physiological 
relationships are better characterized by multiplicative log-normal error and 
therefore that traditional log-transformed regression is better in most cases than 
non-linear regression (Xiao et al. in press).

Figure 5. The Pagel λ approach to modeling the evolution process. (a) shows the 
phylogeny of five species A – E, which are descended from a common ancestor Z ; 
(b) shows how evolution is modeled if the species appear to be independent; (c) 
shows the type of intermediate model currently used (the Pagel λ model).


	Utah State University
	DigitalCommons@USU
	2012

	Methodological Tools
	Ethan P. White
	Xiao Xiao
	J. B. Nick
	Richard M. Sibly
	Recommended Citation


	tmp.1366840050.pdf.P1eZW

