1983

Estimated potential water needs for the eastern Grand Prairie region by irrigation scheduling

R. C. Peralta
Utah State University

Paul W. Dutram

Paul Killian

Follow this and additional works at: https://digitalcommons.usu.edu/cee_facpub

Part of the Civil and Environmental Engineering Commons

Recommended Citation
ESTIMATED POTENTIAL WATER NEEDS
FOR THE EASTERN GRAND PRAIRIE REGION
BY IRRIGATION SCHEDULING

by

Richard C. Peralta, Paul W. Dutram

and

Paul Killian

Prepared for The
Arkansas Soil and Water
Conservation Commission

Authors are respectively, Assistant Professor,
Water Management Researcher and Research Assistant
Agricultural Engineering Department
University of Arkansas
Fayetteville, AR 72701
TABLE OF CONTENTS

I. Project Objectives

II. Procedures

III. Results

References

Appendix

Table 1: Crop Recommendations by Soil Type
Table 2: Irrigation Water Pumping Estimates by Water Balance

Map 1: Eastern Grand Prairie Study Area
Map 2: Arkansas County
Map 3: Monroe County
Map 4: Prairie County

Fig. 1: Potential Irrigation Water Need for the Eastern Grand Prairie Region in April for an Average Season in Acre-Feet
Fig. 2: Potential Irrigation Water Need for the Eastern Grand Prairie Region in May for an Average Season in Acre-Feet
Fig. 3: Potential Irrigation Water Need for the Eastern Grand Prairie Region in June for an Average Season in Acre-Feet
Fig. 4: Potential Irrigation Water Need for the Eastern Grand Prairie Region in July for an Average Season in Acre-Feet
Fig. 5: Potential Irrigation Water Need for the Eastern Grand Prairie Region in August for an Average Season in Acre-Feet
Fig. 6: Potential Irrigation Water Need for the Eastern Grand Prairie Region in September for an Average Season in Acre-Feet
Fig. 7: Annual Potential Irrigation Water Need for the Eastern Grand Prairie Region for an Average Season in Acre-Feet

Fig. 8: Potential Irrigation Water need for the Eastern Grand Prairie Region in April for a Dry Season in Acre-Feet
Fig. 9: Potential Irrigation Water need for the Eastern Grand Prairie Region in May for a Dry Season in Acre-Feet
Fig. 10: Potential Irrigation Water need for the Eastern Grand Prairie Region in June for a Dry Season in Acre-Feet
Fig. 11: Potential Irrigation Water need for the Eastern Grand Prairie Region in July for a Dry Season in Acre-Feet
Fig. 12: Potential Irrigation Water need for the Eastern Grand Prairie Region in August for a Dry Season in Acre-Feet
Fig. 13: Potential Irrigation Water need for the Eastern Grand Prairie Region in September for a Dry Season in Acre-Feet
Fig. 14: Annual Potential Irrigation Water Need for the Eastern Grand Prairie Region for a Dry Season in Acre-Feet

Fig. 15: Peak Weekly Potential Irrigation Water Need for the Eastern Grand Prairie Region in Acre-Feet
"WATER NEEDS FOR THE EASTERN GRAND PRAIRIE REGION"

I. Project Objectives

1. Prepare maps showing the annual, monthly and peak weekly volume of irrigation water required in each 3 mile by 3 mile cell of the study area for the selected cropping pattern. Maps are presented for "average" and "dry" climatological conditions.

II. Procedures

1. Review the characteristics of the soil associations in the delineated area.
2. Determine the most water intensive reasonable crop which can be grown in each quarter square kilometer sub cell.
3. Develop irrigated water balances for the selected crops.
4. Estimate the maximum potential annual, monthly and peak weekly irrigation water demand for average and dry years for each 3 mile by 3 mile cell.
5. Prepare a written report and necessary maps.

III. Results

The potential crop usage of each quarter kilometer square in the Eastern Grand Prairie Region (Map 1) was determined based on soil designations from the 1977 Arkansas Resource Data Information System (RIDS) study and crop recommendations from the Soil Conservation Service's County Soil Surveys. Table 1 contains crop recommendations for particular soil types. Total acreages of rice, soybeans, and wheat were determined by aggregation for each 3 mile by 3 mile cell. (Cotton was exempted due to the historically low cotton acreages in this study area.)
The study area was assessed using a wheat-soybean single year double-cropping system for those areas recommended by the Soil Conservation Service for soybeans but not recommended for rice. For those areas which are recommended for rice, a fallow-rice-wheat-soybean two year rotation was utilized. These assumptions were made in order to obtain estimates of the maximum practical potential need for irrigation water in the study area.

Estimates of pumping for each month of average and dry seasons are found in Table 2. These are based upon 16 seasons of daily water balance simulation and irrigation scheduling. A more detailed description of the process and simulation programs is contained in Arkansas Agricultural Experiment Station Report Series No. 285 "Assessment of Potential Irrigation Needs in the Bayou Meto Watershed". Estimates do not include amounts which may be necessary for leaching to correct any potential salt buildup problems. Nor are losses incurred prior to delivery to the field included. Efficiencies of the irrigation system are considered in the calculation. Footnotes following the table contain references important in the following discussion. (It should be noted that any fish production operations could place an additional significant demand on available water if it is determined to be of adequate quality.)

1. Rice

An average irrigation period of June 1st to September 1st was used, based on the recommendation of the Extension Service expert on rice. Data from the period 1965-1979 was averaged and used to represent an average season. The study area experienced the least amount of summer rainfall in 1980 since the mid-50's drought. 1980's summer climatological data was therefore selected to represent a typical dry summer season. A daily water balance program was written and used to determine the irrigation water requirements for both an average and the 1980 season.
Leakage through the levees of flood irrigated rice is included in the seepage term. Other than that, a contoured levee irrigation system for flood irrigated rice is essentially 100% efficient. Therefore, the pumping requirements (in acre in./acre) are identical to the irrigation water requirements computed. Pumping requirements are listed in Table 2.

2. Soybeans

An average irrigation period of June 1st to September 9th was used. Irrigation water requirements were established by utilizing a daily simulated water balance. Approximately 60% of the soybean acreage is furrow irrigated at a system efficiency of 55% and approximately 40% is flood irrigated (in contour levees) at a system efficiency of 75%. Again 1980 climatological data was used as the base for a typical dry season. Pumping requirements are listed in Table 2.

3. Wheat

An average irrigation period of April 1st to May 25th was used based on information from Dr. Fred C. Collins, University of Arkansas. A water balance approach, as with soybeans, was utilized in establishing irrigation water requirements. The model indicated that wheat would have required more irrigation in 1977 than any other year because of the temporal distribution of rainfall in that growing season. A center pivot sprinkler system with an 82% system efficiency was chosen as the most practical if wheat is to be irrigated. Pumping requirements are listed in Table 2.

4. Computations

The monthly irrigation water value for each cell was computed in the following manner: The water need for "rice" was determined by summing the monthly rice and soybean needs and dividing by two to yield a spatially average need. This reflects the fact that, due to the two year rotation,
one half the "rice" land is in rice and one half in soybeans in any given year. This need was multiplied by the number of square miles of "rice" land per cell to yield the water need for land assigned to rice in that cell. The soybean water need was multiplied by the number of square miles of soybean land per cell to determine a monthly irrigation water need for the land assigned to soybeans in that cell. The sum of the rice and soybean irrigation needs were calculated for each cell for June through September.

In April and May only wheat is irrigated. In addition to that land recommended only for wheat, it was assumed that all the soybean land and half the "rice" land would be double-cropped with wheat. The monthly irrigation water need for wheat was based on those assumptions.

The peak weekly need will occur during the first week in June when the rice fields are initially flooded. Soil moisture conditions at that time of year are no different in a dry season than in an average season. Therefore, the number of square miles of "rice" land per cell was divided by two and multiplied by the amount necessary for initial flooding to yield the values for peak weekly need per cell.

Maps 2-4 show the boundaries and 3 mile by 3 mile cells for each county in the study area (Maps 2 and 4 are overlain with the RIDS quarter square kilometer subcells). Figures 1-6 show the monthly potential irrigation water needs of the Eastern Grand Prairie region for an average season in acre-feet. Figure 7 shows the annual potential irrigation water needs of the study area for an average season. Figures 8-13 show the monthly potential irrigation water needs of the Eastern Grand Prairie region for a dry season in acre-feet. The dry season values are a composite of the 1977 wheat season and 1980 rice and soybean seasons. They
should be treated as such. Figure 14 shows the annual potential irrigation water needs of the study area for a dry season. Figure 15 shows the potential irrigation water need per cell for the peak week.
REFERENCES


<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acadia silt loam - Woodland</td>
<td></td>
</tr>
<tr>
<td>Amagon silt loam - Rice</td>
<td></td>
</tr>
<tr>
<td>Amagon silt loam, heavy substratum - Rice</td>
<td></td>
</tr>
<tr>
<td>Amy silt loam, frequently flooded - Woodland</td>
<td></td>
</tr>
<tr>
<td>Calhoun silt loam - Rice</td>
<td></td>
</tr>
<tr>
<td>Calhoun silt loam (0-1% slopes) - Rice</td>
<td></td>
</tr>
<tr>
<td>Calloway silt loam - Rice</td>
<td></td>
</tr>
<tr>
<td>Calloway silt loam (0-1% slopes) - Rice</td>
<td></td>
</tr>
<tr>
<td>Caspian silt loam (0-1% slopes) - Soybeans</td>
<td></td>
</tr>
<tr>
<td>Commerce silt loam (0-1% slopes) - Rice</td>
<td></td>
</tr>
<tr>
<td>Commerce silt loam, frequently flooded - Soybeans</td>
<td></td>
</tr>
<tr>
<td>Crowley silt loam - Rice</td>
<td></td>
</tr>
<tr>
<td>Crowley silt loam (0-1% slopes) - Rice</td>
<td></td>
</tr>
<tr>
<td>Crowley and Stuttgart silt loams - Rice</td>
<td></td>
</tr>
<tr>
<td>Dubbs silt loam (0-1% slopes) - Soybeans</td>
<td></td>
</tr>
<tr>
<td>Dubbs silt loam (1-3% slopes) - Soybeans</td>
<td></td>
</tr>
<tr>
<td>Enders stony fine sandy loam (8-15% slopes) - Woodland</td>
<td></td>
</tr>
<tr>
<td>Falaya silt loam - Soybeans</td>
<td></td>
</tr>
<tr>
<td>Grenada silt loam (0-1% slopes) - Rice</td>
<td></td>
</tr>
<tr>
<td>Grenada silt loam (1-3% slopes) - Rice</td>
<td></td>
</tr>
<tr>
<td>Grenada silt loam (3-8% slopes) - Small Grain</td>
<td></td>
</tr>
<tr>
<td>Hebert silt loam - Soybeans</td>
<td></td>
</tr>
<tr>
<td>Hebert silt loam (0-1% slopes) - Soybeans</td>
<td></td>
</tr>
<tr>
<td>Jackport silt clay loam (0-1% slopes) - Rice</td>
<td></td>
</tr>
<tr>
<td>Jackport silt clay loam (1-3% slopes) - Soybeans</td>
<td></td>
</tr>
<tr>
<td>Keo silt loam (0-1% slopes) - Soybeans</td>
<td></td>
</tr>
<tr>
<td>Keo silt loam (1-3% slopes) - Soybeans</td>
<td></td>
</tr>
<tr>
<td>Kobel silty clay (0-1% slopes) - Rice</td>
<td></td>
</tr>
<tr>
<td>Kobel silty clay loam, frequently flooded - Soybeans</td>
<td></td>
</tr>
<tr>
<td>Leadvale silt loam (1-3% slopes) - Soybeans</td>
<td></td>
</tr>
<tr>
<td>Leadvale silt loam (3-8% slopes) - Soybeans</td>
<td></td>
</tr>
<tr>
<td>Linker-Enders - Mountainburg Complex (12-25% slopes) - Woodland</td>
<td></td>
</tr>
<tr>
<td>Loring silt loam (1-3% slopes) - Soybeans</td>
<td></td>
</tr>
<tr>
<td>Loring silt loam (3-8% slopes) - Soybeans</td>
<td></td>
</tr>
<tr>
<td>Loring silt loam (8-12% slopes) - Woodland</td>
<td></td>
</tr>
<tr>
<td>Loring - Makamie Complex (8-20% slopes) - Pasture</td>
<td></td>
</tr>
<tr>
<td>McKamie silt loam (0-1% slopes) - Rice</td>
<td></td>
</tr>
<tr>
<td>McKamie silt loam (1-3% slopes) - Soybeans</td>
<td></td>
</tr>
<tr>
<td>Miller silty clay - Soybeans</td>
<td></td>
</tr>
<tr>
<td>Moreland silty clay (1-3% slopes) - Rice</td>
<td></td>
</tr>
<tr>
<td>Moreland silt loam (3-8% slopes) - Soybeans</td>
<td></td>
</tr>
<tr>
<td>Norwood silt loam - Soybeans</td>
<td></td>
</tr>
<tr>
<td>Norwood silty clay (0-1% slopes) - Soybeans</td>
<td></td>
</tr>
<tr>
<td>Oaklimeter silt loam, occasionally flooded - Soybeans</td>
<td></td>
</tr>
<tr>
<td>Perry silty clay - Rice</td>
<td></td>
</tr>
<tr>
<td>Perry silty clay (0-1% slopes) - Rice</td>
<td></td>
</tr>
<tr>
<td>Perry silty clay, frequently flooded - Woodland</td>
<td></td>
</tr>
<tr>
<td>Portland silt loam (0-1% slopes) - Rice</td>
<td></td>
</tr>
<tr>
<td>Portland silt loam - Rice</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 1 (continued)

Rilla silt loam - Soybeans
Rilla silt loam (0-1% slopes) - Soybeans
Rilla silt loam (1-3% slopes) - Soybeans
Sacul fine sandy loam (3-8% slopes) - Pasture
Sawyer silt loam (3-8% slopes) - Pasture
Sharkey clay - Woodland
Smithdale sandy loam (5-8% slopes) - Pasture
Stuttgart silt loam (0-1% slopes) - Rice
Stuttgart silt loam (1-3% slopes) - Rice
Stuttgart silt loam (3-8% slopes) - Small Grain
Taft silt loam (0-2% slopes) - Soybeans
Tichnor silt loam - Rice
Tichnor silt loam, frequently flooded - Soybeans
Yorktown silty clay - Woodland
TABLE 2: Irrigation Water Pumping Estimates by Water Balance (in)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice</td>
<td>June</td>
<td>avg</td>
<td>6.5</td>
<td>3.7</td>
<td>1.6</td>
<td>1.8</td>
<td>---</td>
<td>11.2*</td>
<td>100%</td>
<td>11.2*</td>
<td>6/1 - 9/1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dry</td>
<td>7.2</td>
<td>1.5</td>
<td>1.6</td>
<td>0.0</td>
<td>---</td>
<td>12.3*</td>
<td>100%</td>
<td>12.3*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>July</td>
<td>avg</td>
<td>7.6</td>
<td>3.4</td>
<td>1.7</td>
<td>0.4</td>
<td>---</td>
<td>6.3</td>
<td>100%</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dry</td>
<td>9.7</td>
<td>0.3</td>
<td>1.7</td>
<td>0.0</td>
<td>---</td>
<td>11.1</td>
<td>100%</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>August</td>
<td>avg</td>
<td>6.9</td>
<td>3.4</td>
<td>1.7</td>
<td>1.1</td>
<td>---</td>
<td>6.3</td>
<td>100%</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dry</td>
<td>9.0</td>
<td>0.2</td>
<td>1.7</td>
<td>0.0</td>
<td>---</td>
<td>10.5</td>
<td>100%</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seasonal</td>
<td>avg</td>
<td>21.0</td>
<td>10.5</td>
<td>5.0</td>
<td>3.3</td>
<td>---</td>
<td>23.8*</td>
<td>100%</td>
<td>23.8*</td>
<td>6/1 - 9/1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dry</td>
<td>25.9</td>
<td>2.0</td>
<td>5.0</td>
<td>0.0</td>
<td>---</td>
<td>33.9*</td>
<td>100%</td>
<td>33.9*</td>
<td>6/1 - 9/1</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>------------</td>
<td>--------------------</td>
<td>---------------</td>
<td>---------</td>
<td>--------</td>
<td>-------------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Soybeans</td>
<td>June</td>
<td>avg</td>
<td>2.4</td>
<td>3.7</td>
<td>---</td>
<td>2.2</td>
<td>-0.9</td>
<td>0.0</td>
<td>61.6%</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dry</td>
<td>2.6</td>
<td>1.5</td>
<td>---</td>
<td>0.0</td>
<td>-1.1</td>
<td>0.0</td>
<td>61.6%</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>July</td>
<td>avg</td>
<td>4.6</td>
<td>3.4</td>
<td>---</td>
<td>0.7</td>
<td>-0.6</td>
<td>1.3</td>
<td>61.6%</td>
<td>2.1</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dry</td>
<td>5.9</td>
<td>0.3</td>
<td>---</td>
<td>0.0</td>
<td>-0.6</td>
<td>5.0</td>
<td>61.6%</td>
<td>8.1</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>August</td>
<td>avg</td>
<td>5.1</td>
<td>3.4</td>
<td>---</td>
<td>1.0</td>
<td>0.0</td>
<td>2.7</td>
<td>61.6%</td>
<td>4.4</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dry</td>
<td>6.7</td>
<td>0.2</td>
<td>---</td>
<td>0.0</td>
<td>-0.2</td>
<td>6.3</td>
<td>61.6%</td>
<td>10.2</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>September</td>
<td>avg</td>
<td>0.9</td>
<td>1.1</td>
<td>---</td>
<td>0.2</td>
<td>+0.3</td>
<td>0.3</td>
<td>61.6%</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dry</td>
<td>1.3</td>
<td>0.1</td>
<td>---</td>
<td>0.0</td>
<td>0.0</td>
<td>1.2</td>
<td>61.6%</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Seasonal</td>
<td>avg</td>
<td>13.0</td>
<td>11.6</td>
<td>---</td>
<td>4.1</td>
<td>-1.2</td>
<td>4.3</td>
<td>61.6%</td>
<td>7.0</td>
<td>6/1 - 9/9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dry</td>
<td>16.5</td>
<td>2.1</td>
<td>---</td>
<td>0.0</td>
<td>-1.9</td>
<td>12.5</td>
<td>61.6%</td>
<td>20.3</td>
<td>6/1 - 9/9</td>
</tr>
<tr>
<td>Wheat</td>
<td>April</td>
<td>avg</td>
<td>4.6</td>
<td>4.8</td>
<td>---</td>
<td>2.2</td>
<td>-1.1</td>
<td>0.9</td>
<td>82%</td>
<td>1.1</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dry</td>
<td>5.1</td>
<td>4.6</td>
<td>---</td>
<td>2.7</td>
<td>-1.7</td>
<td>1.5</td>
<td>82%</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>avg</td>
<td>4.4</td>
<td>4.4</td>
<td>---</td>
<td>1.9</td>
<td>-0.4</td>
<td>1.5</td>
<td>82%</td>
<td>1.8</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dry</td>
<td>5.1</td>
<td>0.6</td>
<td>---</td>
<td>0.0</td>
<td>0.0</td>
<td>4.5</td>
<td>82%</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>Seasonal</td>
<td>avg</td>
<td>9.0</td>
<td>9.2</td>
<td>---</td>
<td>4.1</td>
<td>-1.5</td>
<td>2.4</td>
<td>82%</td>
<td>2.9</td>
<td>4/1 - 5/25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dry</td>
<td>10.2</td>
<td>5.2</td>
<td>---</td>
<td>2.7</td>
<td>-1.7</td>
<td>6.0</td>
<td>82%</td>
<td>7.3</td>
<td>4/1 - 5/25</td>
</tr>
</tbody>
</table>

@ to convert from in. to cm. multiply by 2.54
* includes 5 acre-inch irrigation (1 inch to attain saturation and 4 inches of cover flood)

NOTE: All climatological data is from NOAA records for Stuttgart 9ESE, Arkansas, (1965-1979 for rice and soybeans, and 1965-1980 excluding 1977 for wheat for an average season; 1980 for rice and soybeans, and 1977 for wheat for a dry season) during the irrigation periods stated.
TABLE 2: Continued

1. All evapotranspiration was pan evaporation x .80 x the appropriate crop coefficients (with respect to its phenologic development). Crop coefficients: rice - see 2; soybeans - modified from N. Dakota Research Report #66, Stegman et al (Jan. 1977); wheat - modified from N. Dakota Research Report #66, Stegman et al (Jan. 1977).

2. Personal communication, James A. Ferguson, University of Arkansas, Fayetteville, Arkansas.

3. Daily portion of 5" seasonal loss.2

4. By computer model. For rice: runoff equaled all impounded water on a rice field whenever the flood exceeded 6" (levees drained to prevent overflow damage)2. For soybeans and wheat: runoff equaled any amount which at any time exceeded soil moisture at field capacity or the maximum amount which can infiltrate in a single event.

5. By computer model. Initial soil moisture for soybeans equalled 5" (assuming 2 1/2 ft. rooting depth), and for wheat equalled 4" (assuming 2 ft. rooting depth).


7. Rice: any losses due to inefficiency were included in the seepage term.2 Soybeans: combination of estimates of 60 percent furrow irrigated at 55% efficiency and 40% flood irrigated at 75% efficiency10. Wheat: using center pivot sprinkler irrigation system10.

8. Irrigation water required + irrigation system efficiency.


Map #1: Eastern Grand Prairie Study Area
<table>
<thead>
<tr>
<th>J</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>55.0</td>
<td>96.0</td>
<td>109.0</td>
<td>125.0</td>
<td>97.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>142.0</td>
<td>271.0</td>
<td>289.0</td>
<td>270.0</td>
<td>302.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>83.0</td>
<td>250.0</td>
<td>282.0</td>
<td>253.0</td>
<td>289.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.0</td>
<td>74.0</td>
<td>261.0</td>
<td>234.0</td>
<td>300.0</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>17.0</td>
<td>210.0</td>
<td>256.0</td>
<td>258.0</td>
<td>184.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7.0</td>
<td>218.0</td>
<td>250.0</td>
<td>278.0</td>
<td>103.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>160.0</td>
<td>208.0</td>
<td>230.0</td>
<td>263.0</td>
<td>29.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8.0</td>
<td>131.0</td>
<td>227.0</td>
<td>263.0</td>
<td>129.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>161.0</td>
<td>261.0</td>
<td>248.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>158.0</td>
<td>259.0</td>
<td>298.0</td>
<td>61.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>98.0</td>
<td>273.0</td>
<td>339.0</td>
<td>149.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2.0</td>
<td>263.0</td>
<td>284.0</td>
<td>176.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>63.0</td>
<td>263.0</td>
<td>316.0</td>
<td>141.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>42.0</td>
<td>273.0</td>
<td>292.0</td>
<td>227.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>161.0</td>
<td>294.0</td>
<td>309.0</td>
<td>74.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>78.0</td>
<td>231.0</td>
<td>229.0</td>
<td>119.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Potential Irrigation Water Need for the Eastern Grand Prairie Region in April for an Average Season in Acre-Feet
Figure 2: Potential Irrigation Water Need for the Eastern Grand Prairie Region in May for an Average Season in Acre-Feet
For June, the potential irrigation water need for the Eastern Grand Prairie Region in an average season is as follows:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>562.0</td>
<td>975.0</td>
<td>781.0</td>
<td>735.0</td>
<td>646.0</td>
</tr>
<tr>
<td>5</td>
<td>1442.0</td>
<td>2309.0</td>
<td>2347.0</td>
<td>2459.0</td>
<td>1052.0</td>
</tr>
<tr>
<td>6</td>
<td>804.0</td>
<td>2315.0</td>
<td>2278.0</td>
<td>2001.0</td>
<td>1318.0</td>
</tr>
<tr>
<td>7</td>
<td>9.0</td>
<td>634.0</td>
<td>2468.0</td>
<td>1940.0</td>
<td>1620.0</td>
</tr>
<tr>
<td>8</td>
<td>164.0</td>
<td>1854.0</td>
<td>2588.0</td>
<td>2529.0</td>
<td>1623.0</td>
</tr>
<tr>
<td>9</td>
<td>72.0</td>
<td>2217.0</td>
<td>2442.0</td>
<td>2462.0</td>
<td>738.0</td>
</tr>
<tr>
<td>10</td>
<td>1629.0</td>
<td>2113.0</td>
<td>2344.0</td>
<td>2422.0</td>
<td>208.0</td>
</tr>
<tr>
<td>11</td>
<td>78.0</td>
<td>1335.0</td>
<td>2307.0</td>
<td>2451.0</td>
<td>770.0</td>
</tr>
<tr>
<td>12</td>
<td>1638.0</td>
<td>2604.0</td>
<td>1701.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1606.0</td>
<td>2458.0</td>
<td>2292.0</td>
<td>493.0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1000.0</td>
<td>2431.0</td>
<td>1874.0</td>
<td>1026.0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>17.0</td>
<td>1891.0</td>
<td>1589.0</td>
<td>668.0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1476.0</td>
<td>1914.0</td>
<td>1603.0</td>
<td>288.0</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>608.0</td>
<td>1597.0</td>
<td>1854.0</td>
<td>1133.0</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: Potential Irrigation Water Need for the Eastern Grand Prairie Region in June for an Average Season in Acre-Feet
Figure 4: Potential Irrigation Water Need for the Eastern Grand Prairie Region in July for an Average Season in Acre-Feet
<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>534.0</td>
<td>926.0</td>
<td>868.0</td>
<td>804.0</td>
<td>746.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1369.0</td>
<td>2364.0</td>
<td>2457.0</td>
<td>2447.0</td>
<td>1774.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>780.0</td>
<td>2287.0</td>
<td>2391.0</td>
<td>2122.0</td>
<td>1915.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>13.0</td>
<td>649.0</td>
<td>2415.0</td>
<td>2013.0</td>
<td>2090.0</td>
<td>28.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>161.0</td>
<td>1871.0</td>
<td>2470.0</td>
<td>2439.0</td>
<td>1637.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>68.0</td>
<td>2106.0</td>
<td>2357.0</td>
<td>2478.0</td>
<td>758.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1547.0</td>
<td>2007.0</td>
<td>2226.0</td>
<td>2316.0</td>
<td>197.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>74.0</td>
<td>1268.0</td>
<td>2191.0</td>
<td>2350.0</td>
<td>798.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1555.0</td>
<td>2495.0</td>
<td>1638.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1525.0</td>
<td>2336.0</td>
<td>2243.0</td>
<td>468.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>950.0</td>
<td>2353.0</td>
<td>1846.0</td>
<td>875.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16.0</td>
<td>1796.0</td>
<td>1582.0</td>
<td>768.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>605.0</td>
<td>2445.0</td>
<td>1998.0</td>
<td>389.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>411.0</td>
<td>2440.0</td>
<td>2289.0</td>
<td>1635.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1402.0</td>
<td>1818.0</td>
<td>1589.0</td>
<td>274.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>578.0</td>
<td>1539.0</td>
<td>1849.0</td>
<td>1095.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Figure 5:** Potential Irrigation Water Need for the Eastern Grand Prairie Region in August for an Average Season in Acre-Feet
<table>
<thead>
<tr>
<th></th>
<th>J 6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>27.0</td>
<td>47.0</td>
<td>52.0</td>
<td>58.0</td>
<td>47.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>69.0</td>
<td>131.0</td>
<td>140.0</td>
<td>131.0</td>
<td>141.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>41.0</td>
<td>122.0</td>
<td>136.0</td>
<td>122.0</td>
<td>141.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.0</td>
<td>36.0</td>
<td>127.0</td>
<td>113.0</td>
<td>142.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8.0</td>
<td>102.0</td>
<td>125.0</td>
<td>126.0</td>
<td>89.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3.0</td>
<td>107.0</td>
<td>122.0</td>
<td>135.0</td>
<td>42.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>79.0</td>
<td>102.0</td>
<td>113.0</td>
<td>119.0</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4.0</td>
<td>64.0</td>
<td>111.0</td>
<td>121.0</td>
<td>45.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78.0</td>
<td>126.0</td>
<td>85.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>77.0</td>
<td>118.0</td>
<td>118.0</td>
<td>24.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48.0</td>
<td>122.0</td>
<td>98.0</td>
<td>49.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>91.0</td>
<td>85.0</td>
<td>48.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.0</td>
<td>124.0</td>
<td>104.0</td>
<td>20.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21.0</td>
<td>125.0</td>
<td>116.0</td>
<td>83.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>71.0</td>
<td>92.0</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29.0</td>
<td>80.0</td>
</tr>
</tbody>
</table>

Figure 6: Potential Irrigation Water Need for the Eastern Grand Prairie Region in September for an Average Season in Acre-Feet
Figure 7: Annual Potential Irrigation Needs for the Eastern Grand Prairie Region for an Average Season in Acre-Feet
Figure 8: Potential Irrigation Water Need for the Eastern Grand Prairie Region in April for a Dry Season in Acre-Feet
<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>276.0</td>
<td>478.0</td>
<td>545.0</td>
<td>624.0</td>
<td>487.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>708.0</td>
<td>1352.0</td>
<td>1444.0</td>
<td>1349.0</td>
<td>1508.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>415.0</td>
<td>1250.0</td>
<td>1410.0</td>
<td>1265.0</td>
<td>1496.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10.0</td>
<td>371.0</td>
<td>1302.0</td>
<td>1171.0</td>
<td>1500.0</td>
<td>18.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>86.0</td>
<td>1052.0</td>
<td>1278.0</td>
<td>1290.0</td>
<td>919.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>35.0</td>
<td>1089.0</td>
<td>1247.0</td>
<td>1387.0</td>
<td>515.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>800.0</td>
<td>1038.0</td>
<td>1151.0</td>
<td>1316.0</td>
<td>144.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>38.0</td>
<td>655.0</td>
<td>1132.0</td>
<td>1316.0</td>
<td>647.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>804.0</td>
<td>1307.0</td>
<td>1237.0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>788.0</td>
<td>1292.0</td>
<td>1491.0</td>
<td>304.0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>491.0</td>
<td>1363.0</td>
<td>1693.0</td>
<td>742.0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>8.0</td>
<td>1014.0</td>
<td>1420.0</td>
<td>880.0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>313.0</td>
<td>1312.0</td>
<td>1580.0</td>
<td>705.0</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>212.0</td>
<td>1363.0</td>
<td>1458.0</td>
<td>1137.0</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>807.0</td>
<td>1469.0</td>
<td>1548.0</td>
<td>368.0</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>392.0</td>
<td>1152.0</td>
<td>1142.0</td>
<td>595.0</td>
<td></td>
</tr>
</tbody>
</table>

Figure 9: Potential Irrigation Water Need for the Eastern Grand Prairie Region in May for a Dry Season in Acre-Feet
Figure 10: Potential Irrigation Water Need for the Eastern Grand Prairie Region in June for a Dry Season in Acre-Feet
Figure 11: Potential Irrigation Water Need for the Eastern Grand Prairie Region in July for a Dry Season in Acre-Feet
Figure 12: Potential Irrigation Water Need for the Eastern Grand Prairie Region in August for a Dry Season in Acre-Feet
<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>102.0</td>
<td>177.0</td>
<td>200.0</td>
<td>229.0</td>
<td>179.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>261.0</td>
<td>498.0</td>
<td>531.0</td>
<td>497.0</td>
<td>551.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>153.0</td>
<td>461.0</td>
<td>519.0</td>
<td>465.0</td>
<td>548.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.0</td>
<td>137.0</td>
<td>480.0</td>
<td>431.0</td>
<td>550.0</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>32.0</td>
<td>387.0</td>
<td>472.0</td>
<td>475.0</td>
<td>338.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>13.0</td>
<td>402.0</td>
<td>460.0</td>
<td>511.0</td>
<td>160.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>295.0</td>
<td>383.0</td>
<td>425.0</td>
<td>446.0</td>
<td>38.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.0</td>
<td>242.0</td>
<td>418.0</td>
<td>454.0</td>
<td>170.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>297.0</td>
<td>482.0</td>
<td>318.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>291.0</td>
<td>445.0</td>
<td>446.0</td>
<td>89.0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>181.0</td>
<td>461.0</td>
<td>370.0</td>
<td>186.0</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
<td>343.0</td>
<td>322.0</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>115.0</td>
<td>466.0</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>78.0</td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

Figure 13: Potential Irrigation Water Need for the Eastern Grand Prairie Region in September for a Dry Season in Acre-Feet
Figure 14: Annual Potential Irrigation Water Needs for the Eastern Grand Prairie Regaon for a Dry Season in Acre-Feet
## Figure 15: Peak Weekly Potential Irrigation Water Needs for the Eastern Grand Prairie Region in Acre-Feet

<table>
<thead>
<tr>
<th>I</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>251.0</td>
<td>435.0</td>
<td>349.0</td>
<td>328.0</td>
<td>288.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>643.0</td>
<td>1031.0</td>
<td>1047.0</td>
<td>1098.0</td>
<td>470.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>359.0</td>
<td>1033.0</td>
<td>1016.0</td>
<td>893.0</td>
<td>588.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.0</td>
<td>283.0</td>
<td>1101.0</td>
<td>866.0</td>
<td>723.0</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>73.0</td>
<td>827.0</td>
<td>1158.0</td>
<td>1128.0</td>
<td>724.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>32.0</td>
<td>989.0</td>
<td>1090.0</td>
<td>1099.0</td>
<td>329.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>727.0</td>
<td>943.0</td>
<td>1046.0</td>
<td>1081.0</td>
<td>93.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>35.0</td>
<td>596.0</td>
<td>1029.0</td>
<td>1094.0</td>
<td>344.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>731.0</td>
<td>1162.0</td>
<td>759.0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>717.0</td>
<td>1098.0</td>
<td>1023.0</td>
<td>220.0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>196.0</td>
<td>1085.0</td>
<td>836.0</td>
<td>458.0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>8.0</td>
<td>844.0</td>
<td>709.0</td>
<td>299.0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>284.0</td>
<td>1149.0</td>
<td>921.0</td>
<td>183.0</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>193.0</td>
<td>1136.0</td>
<td>1076.0</td>
<td>768.0</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>659.0</td>
<td>854.0</td>
<td>715.0</td>
<td>129.0</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>271.0</td>
<td>713.0</td>
<td>827.0</td>
<td>515.0</td>
<td></td>
</tr>
</tbody>
</table>