Synthesis and Biological Activity of Aminoglycosides and 1,4-Naphthoquinone Derivatives

Marina Fosso Yatchang
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

Part of the Chemistry Commons

Recommended Citation
Yatchang, Marina Fosso, "Synthesis and Biological Activity of Aminoglycosides and 1,4-Naphthoquinone Derivatives" (2012). All Graduate Theses and Dissertations. 1371. https://digitalcommons.usu.edu/etd/1371
SYNTHESIS AND BIOLOGICAL ACTIVITY OF AMINOGLYCOSIDES AND 1,4-NAPHTHOQUINONE DERIVATIVES

by

Marina Fosso Yatchang

A dissertation submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Chemistry

Approved:

Cheng-Wei Tom Chang, Ph.D.
Major Professor

Alvan C. Hengge, Ph.D.
Committee Member

Bradley S. Davidson, Ph.D.
Committee Member

Robert S. Brown, Ph. D.
Committee Member

Jon Y. Takemoto, Ph.D.
Committee Member

Mark R. McLellan, Ph. D.
Vice President for Research and Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2012
ABSTRACT

Synthesis and Biological Activity of Aminoglycosides and 1,4-Naphthoquinone Derivatives

by

Marina Fosso Yatchang, Doctor of Philosophy
Utah State University, 2012

Major Professor: Dr. Cheng-Wei Tom Chang
Department: Chemistry and Biochemistry

Aminoglycosides, such as streptomycin, kanamycin and neomycin, are a group of naturally occurring antibiotics that structurally consist of various amino-modified sugars. They have long been used clinically for their broad-spectrum activity against Gram-negative and Gram-positive bacteria. However, the incidence of bacterial resistance has considerably hampered their clinical efficacy, forcing researchers to explore new applications of aminoglycosides.

An aminoglycoside belonging to the class of pyrankancin was identified as the lead compound in the treatment of spinal muscular atrophy, an infantile disease caused by nonsense mutations. To further investigate its therapeutic capabilities, additional batches of this lead compound were prepared and its mode of action study revealed an unprecedented SMNΔ7 read-through event.
In addition, the chemical derivation of kanamycin B was examined in the aim of developing potential agro fungicides. Indeed, a library of kanamycin B analogs was synthesized to investigate the length of the alkyl chain and its position in kanamycin B that will confer to this latter an optimum antifungal activity. Results of this study revealed that the attachment of an octyl group at the \(O-4'' \) position of the core structure of the classical aminoglycoside kanamycin B converts this obsolete drug into a broad-spectrum fungicide. Another interesting finding was the simultaneous loss of antibacterial activity usually observed in aminoglycosides. This was essential as it paves the way for the development of a new class of aminoglycoside-based fungicides suitable for use in crop disease application.

Molecules with naphthoquinone scaffolds are also of great interest due to their important biological and pharmaceutical applications. Three synthetic protocols were examined to optimize the production of the 1,4-naphthoquinone derivatives and to conveniently synthesize a library of novel cationic anthraquinone analogs. The antibacterial activities of these compounds were evaluated and they were found to display much higher levels of activities against Gram-positive than Gram-negative bacteria. In addition, with double alkyl chains of various lengths \((C_2-C_{12})\) at N-1 and N-3 positions, a synergistic effect of the alkyl groups was observed, suggesting the importance of overall lipophilicity in the activity of this class of compounds against Gram-positive bacteria.
PUBLIC ABSTRACT

Synthesis and Biological Activity of Aminoglycosides
and 1,4-Naphthoquinone Derivatives

by

Marina Fosso Yatchang, Doctor of Philosophy
Utah State University, 2012

The research described in this dissertation is at the interface of organic chemistry and biology, and it aimed at designing and synthesizing biologically active molecules for the possible development of therapeutic agents.

Spinal muscular atrophy is an incurable disease that affects 1 in every 6000 babies, making it the leading genetic cause of infant mortality. While no treatment is available, efforts are being taken to solve this issue. Part of the work outlined in this dissertation was carried out in collaboration with researchers from the University of Missouri to investigate a potential therapeutic for this disease.

In addition, the continuous outbreak of diseases caused by bacteria demands for new and improved antibiotics that could help eradicate those pathogens. My research thus allowed me to discover molecules with interesting activity against bacteria for the possible development of potential antibacterial agents.

Finally, my research also allowed me to develop potential agro fungicides, which are still very much needed nowadays. Many crop diseases are due to fungal infections,
which globally cause enormous economic losses. The use of fungicides is still the main strategy to control these diseases. However, current agro fungicides show some limitations. This is illustrated with Fusarium head blight (FHB), a destructive and costly disease of wheat, barley and other small grains, whose economic losses in the Central United States alone were estimated to $2.7 billion.
DEDICATION

I would like to dedicate this work to my mother, KOUAKEP JOSETTE, for every single sacrifice she has ever made in her life for my well-being.
ACKNOWLEDGMENTS

First and foremost, I would like to express my profound gratitude to my supervisor, Dr. Cheng-Wei Tom Chang, for giving me the opportunity to conduct my doctoral research in his laboratory. He taught me how to work hard and think critically. His guidance, patience, and support throughout my program have been invaluable sources of motivation.

I would also like to thank my committee members, Dr. Alvan Hengge, Dr. Bradley Davidson, Dr. Robert Brown, and Dr. Jon Takemoto. Their insightful comments and suggestions, together with their encouragements, have enabled me to progress throughout my program.

I would like to thank my former lab mates, Christabel Tanifum, Jianjun Zhang, Katherine Keller, Anthony Litke, and Isabella Chan, for their help and the good memories. My thanks also go to my co-workers Qian Zhang, Vincent Nziko, Jaya Shrestha, and our undergraduate students John Oblad and Rylee Gregory. It feels good to have people to talk to in the lab; I sure had missed it at a certain point during my graduate program. The good times we shared together will never be forgotten.

I would also like to thank Sanjib Shrestha and Yukie Kawasaki for testing the biological activities of my compounds. At the end, this collaboration turned into great friendship. I will not forget Dr. John Lawson who gave me the opportunity to work in his company and improve my organic synthetic skills. He has also been so understanding during the time I was writing my dissertation.
I would like to thank all my friends in the U.S.A., Cameroon, and elsewhere, who have been supportive. Colette Tasha, Grace Kengne, and Hermine Mbouguella: I have always known you would be there for me anytime I needed you. Eric and Christabel Tanifum, “Auntie Ste” Marystella Beh, Joyce Mumah, Brenda and Alvin Lailam, Yannick Bidias, Alem, and Omar and Susie Arrieta, we sure had our good share of fun times. My AFSA (African Students Association) family at USU, you have helped me stay connected with my roots while in the United States, rendering this sojourn pleasant.

Special thanks go to Eric and Christabel Tanifum who have welcomed me in their family without knowing who I was. I will never say it enough but you guys have a special place in my heart.

To my “nounours” Yannick Bidias, you are certainly the one who has experienced my ups and downs during my doctoral program. You offered me your shoulder to cry on when nothing was going on well, and you were there to share every single moment of happiness I had. You are my best friend and I could not think of a better person to share my life with.

Last but not least, I must acknowledge the support of my mother, my sister Fosso Seukep Valerie, and my brothers Gangnang Fosso Aristide, Fosso Djetend Anaclet, and Fosso Kamsu Ghislain. Thank you all for always believing in me!

Marina Fosso Yatchang
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>PUBLIC ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF SCHEMES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF SPECTRA</td>
<td>xvi</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I. GENERAL INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. AMINOGLYCOSIDES AS THERAPEUTICS FOR SPINAL MUSCULAR ATROPHY</td>
<td>14</td>
</tr>
<tr>
<td>III. STRUCTURAL OPTIMIZATION OF ANTIFUNGAL KANAMYCIN B ANALOGS</td>
<td>24</td>
</tr>
<tr>
<td>IV. SYNTHESIS AND ANTIBACTERIAL STUDY OF CATIONIC 1,4-NAPHTHOQUINONE DERIVATIVES</td>
<td>46</td>
</tr>
<tr>
<td>V. CONCLUSIONS AND SIGNIFICANCE</td>
<td>57</td>
</tr>
<tr>
<td>VI. EXPERIMENTAL SECTION</td>
<td>60</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>110</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>122</td>
</tr>
<tr>
<td>CURRICULUM VITAE</td>
<td>263</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Minimal inhibitory concentrations (MICs) of FG08 and kanamycin B</td>
<td>31</td>
</tr>
<tr>
<td>2. MIC values of FG08 and FG03</td>
<td>36</td>
</tr>
<tr>
<td>3. MIC values of FG compounds against F. graminearum</td>
<td>44</td>
</tr>
<tr>
<td>4. Comparison of the different methods for the preparation of compounds 50-54</td>
<td>50</td>
</tr>
<tr>
<td>5. MIC values of cationic 1,4-naphthoquinone derivatives</td>
<td>54</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Structure of streptomycin</td>
<td>3</td>
</tr>
<tr>
<td>2. Structures of 2-deoxystreptamine (2-DOS) aminoglycosides</td>
<td>4</td>
</tr>
<tr>
<td>3. Bactericidal action of aminoglycosides</td>
<td>6</td>
</tr>
<tr>
<td>4. Structures of apramycin and geneticin (G418)</td>
<td>7</td>
</tr>
<tr>
<td>5. Suppression of nonsense mutation by aminoglycosides</td>
<td>8</td>
</tr>
<tr>
<td>6. Structures of vitamin K₁ (phylloquinone), vitamin K₂ (menaquinone), and vitamin K₃ (menadione)</td>
<td>11</td>
</tr>
<tr>
<td>7. 1,4-Naphthoquinone derivatives as redox cyclers</td>
<td>11</td>
</tr>
<tr>
<td>8. Structures of antibacterial 1,4-naphthoquinone derivatives</td>
<td>12</td>
</tr>
<tr>
<td>9. Structures of tobramycin, amikacin, and TC007</td>
<td>15</td>
</tr>
<tr>
<td>10. Structures of neomycin and pyramycin</td>
<td>16</td>
</tr>
<tr>
<td>11. Increase in SMN-positive gems after treatment with TC007</td>
<td>20</td>
</tr>
<tr>
<td>12. Schematic of SMN C-termini</td>
<td>21</td>
</tr>
<tr>
<td>13. Increase in muscle fiber size of TC007-treated mice</td>
<td>22</td>
</tr>
<tr>
<td>14. Disk diffusion inhibitory assay of FG01, FG02, and FG08</td>
<td>30</td>
</tr>
<tr>
<td>15. FG08 suppression of wheat leaf infection after exposure to F. graminearum</td>
<td>33</td>
</tr>
<tr>
<td>16. FG08 suppression of FHB disease in wheat spikelet florets</td>
<td>33</td>
</tr>
<tr>
<td>17. Structures of FG08 and FG03</td>
<td>35</td>
</tr>
<tr>
<td>18. Effect of the alkyl chain length on the MIC values of the cationic 1,4-naphthoquinone derivatives</td>
<td>55</td>
</tr>
</tbody>
</table>
LISTS OF SCHEMES

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Synthesis of the neamine derivative acceptor 2</td>
<td>17</td>
</tr>
<tr>
<td>2. Synthesis of the glycosyl donor 8</td>
<td>18</td>
</tr>
<tr>
<td>3. Synthesis of TC007</td>
<td>19</td>
</tr>
<tr>
<td>4. Formation of the β-glycosidic bond</td>
<td>19</td>
</tr>
<tr>
<td>5. Retrosynthetic analysis of FG01, FG02, and FG08</td>
<td>26</td>
</tr>
<tr>
<td>6. Anomeric effect</td>
<td>27</td>
</tr>
<tr>
<td>7. Synthesis of the neamine derivative acceptor 10</td>
<td>27</td>
</tr>
<tr>
<td>8. Synthesis of the glycosyl donors 11a, 11b, and 11c</td>
<td>28</td>
</tr>
<tr>
<td>9. Synthesis of FG01, FG02, and FG08</td>
<td>29</td>
</tr>
<tr>
<td>10. Synthesis of FG03</td>
<td>36</td>
</tr>
<tr>
<td>11. Proposed chemo-enzymatic synthesis of FG03</td>
<td>37</td>
</tr>
<tr>
<td>12. Synthesis of compound 23</td>
<td>37</td>
</tr>
<tr>
<td>13. Synthesis of FG05 and FG06</td>
<td>39</td>
</tr>
<tr>
<td>14. Synthesis of FG07</td>
<td>40</td>
</tr>
<tr>
<td>15. Synthesis of FG09</td>
<td>41</td>
</tr>
<tr>
<td>16. Synthesis of FG10 and FG11</td>
<td>42</td>
</tr>
<tr>
<td>17. Synthesis of FG12 and FG13</td>
<td>43</td>
</tr>
<tr>
<td>18. Protocols for the preparation of 50-54</td>
<td>48</td>
</tr>
<tr>
<td>19. Mechanistic explanation for the formation of 60-64</td>
<td>50</td>
</tr>
<tr>
<td>20. Synthesis of cationic 1,4-naphthoquinone derivatives</td>
<td>53</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>2-DOS</td>
<td>2-deoxystreptamine</td>
</tr>
<tr>
<td>Ac</td>
<td>acetyl</td>
</tr>
<tr>
<td>Ac₂O</td>
<td>acetic anhydride</td>
</tr>
<tr>
<td>ACOH</td>
<td>acetic acid</td>
</tr>
<tr>
<td>APCI</td>
<td>atmospheric pressure chemical ionization</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>BnBr</td>
<td>benzyl bromide</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-(dimethylamino)pyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>dimethyleneamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionization</td>
</tr>
<tr>
<td>FAB</td>
<td>fast atom bombardment</td>
</tr>
<tr>
<td>FHB</td>
<td>fusarium head blight</td>
</tr>
<tr>
<td>G-</td>
<td>gram negative</td>
</tr>
<tr>
<td>G+</td>
<td>gram positive</td>
</tr>
<tr>
<td>HTB</td>
<td>hexadecyltrimethylammonium bromide</td>
</tr>
<tr>
<td>MALDI</td>
<td>matrix-assisted laser desorption/ionization</td>
</tr>
<tr>
<td>MIC</td>
<td>minimum inhibitory concentration</td>
</tr>
<tr>
<td>NBS</td>
<td>N-bromosuccinimide</td>
</tr>
<tr>
<td>NIS</td>
<td>N-iodosuccinimide</td>
</tr>
</tbody>
</table>
PBS: phosphate buffer saline
r.t.: room temperature
ROS: reactive oxygen species
SMA: spinal muscular atrophy
SMN: survival motor neuron
S_N^2: bimolecular nucleophilic substitution
TBAI: tetrabutylammonium iodide
TBAHS: tetrabutyl ammonium hydrogen sulfate
TEA: triethylamine
Tf$_2$O: trifluoromethanesulfonyl acid anhydride
TfOH: trifluoromethanesulfonic acid
TFA: trifluoroacetic acid
THF: tetrahydrofuran
TMSOTf: trimethylsilyl trifluoromethanesulfonate
Tr: trityl or triphenylmethyl
Ts: tosyl
TsOH: p-toluene sulfonic acid
TsCl: toluenesulfonyl chloride
VPA: valproic acid
LIST OF SPECTRA

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1H NMR spectrum of compound 11a</td>
<td>124</td>
</tr>
<tr>
<td>2</td>
<td>13C NMR spectrum of compound 11a</td>
<td>125</td>
</tr>
<tr>
<td>3</td>
<td>1H NMR spectrum of compound 11c</td>
<td>126</td>
</tr>
<tr>
<td>4</td>
<td>13C NMR spectrum of compound 11c</td>
<td>127</td>
</tr>
<tr>
<td>5</td>
<td>1H NMR spectrum of compound 19a</td>
<td>128</td>
</tr>
<tr>
<td>6</td>
<td>13C NMR spectrum of compound 19a</td>
<td>129</td>
</tr>
<tr>
<td>7</td>
<td>1H NMR spectrum of compound 19c</td>
<td>130</td>
</tr>
<tr>
<td>8</td>
<td>13C NMR spectrum of compound 19c</td>
<td>131</td>
</tr>
<tr>
<td>9</td>
<td>1H NMR spectrum of compound FG01</td>
<td>132</td>
</tr>
<tr>
<td>10</td>
<td>13C NMR spectrum of compound FG01</td>
<td>133</td>
</tr>
<tr>
<td>11</td>
<td>1H NMR spectrum of compound FG02</td>
<td>134</td>
</tr>
<tr>
<td>12</td>
<td>13C NMR spectrum of compound FG02</td>
<td>135</td>
</tr>
<tr>
<td>13</td>
<td>1H NMR spectrum of compound 20</td>
<td>136</td>
</tr>
<tr>
<td>14</td>
<td>13C NMR spectrum of compound 20</td>
<td>137</td>
</tr>
<tr>
<td>15</td>
<td>1H NMR spectrum of compound 21</td>
<td>138</td>
</tr>
<tr>
<td>16</td>
<td>13C NMR spectrum of compound 21</td>
<td>139</td>
</tr>
<tr>
<td>17</td>
<td>1H NMR spectrum of compound 22</td>
<td>140</td>
</tr>
<tr>
<td>18</td>
<td>13C NMR spectrum of compound 22</td>
<td>141</td>
</tr>
<tr>
<td>19</td>
<td>1H NMR spectrum of compound FG03</td>
<td>142</td>
</tr>
<tr>
<td>20</td>
<td>13C NMR spectrum of compound FG03</td>
<td>143</td>
</tr>
</tbody>
</table>
Spectrum 21 1H NMR spectrum of compound 25 ... 144
Spectrum 22 13C NMR spectrum of compound 25 ... 145
Spectrum 23 1H NMR spectrum of compound 23 ... 146
Spectrum 24 13C NMR spectrum of compound 23 ... 147
Spectrum 25 1H NMR spectrum of compound 28a ... 148
Spectrum 26 13C NMR spectrum of compound 28a ... 149
Spectrum 27 1H NMR spectrum of compound 28b ... 150
Spectrum 28 13C NMR spectrum of compound 28b ... 151
Spectrum 29 1H NMR spectrum of compound 29a ... 152
Spectrum 30 13C NMR spectrum of compound 29a ... 153
Spectrum 31 1H NMR spectrum of compound 29b ... 154
Spectrum 32 13C NMR spectrum of compound 29b ... 155
Spectrum 33 1H NMR spectrum of compound FG05 ... 156
Spectrum 34 13C NMR spectrum of compound FG05 ... 157
Spectrum 35 1H NMR spectrum of compound FG06 ... 158
Spectrum 36 13C NMR spectrum of compound FG06 ... 159
Spectrum 37 1H NMR spectrum of compound 31 ... 160
Spectrum 38 1H NMR spectrum of compound 32 ... 161
Spectrum 39 13C NMR spectrum of compound 32 ... 162
Spectrum 40 1H NMR spectrum of compound 33 ... 163
Spectrum 41 13C NMR spectrum of compound 33 ... 164
Spectrum 42 1H NMR spectrum of compound 34 ... 165
| Spectrum 43 | 13C NMR spectrum of compound 34 166 |
| Spectrum 44 | 1H NMR spectrum of compound FG07 167 |
| Spectrum 45 | 13C NMR spectrum of compound FG07 168 |
| Spectrum 46 | 1H NMR spectrum of compound 36 169 |
| Spectrum 47 | 13C NMR spectrum of compound 36 170 |
| Spectrum 48 | 1H NMR spectrum of compound 37 171 |
| Spectrum 49 | 13C NMR spectrum of compound 37 172 |
| Spectrum 50 | 1H NMR spectrum of compound 38 173 |
| Spectrum 51 | 1H NMR spectrum of compound 39 174 |
| Spectrum 52 | 13C NMR spectrum of compound 39 175 |
| Spectrum 53 | 1H NMR spectrum of compound 40 176 |
| Spectrum 54 | 13C NMR spectrum of compound 40 177 |
| Spectrum 55 | 1H NMR spectrum of compound FG09 178 |
| Spectrum 56 | 13C NMR spectrum of compound FG09 179 |
| Spectrum 57 | 1H NMR spectrum of compound 44a 180 |
| Spectrum 58 | 13C NMR spectrum of compound 44a 181 |
| Spectrum 59 | 1H NMR spectrum of compound 44b 182 |
| Spectrum 60 | 13C NMR spectrum of compound 44b 183 |
| Spectrum 61 | 1H NMR spectrum of compound FG10 184 |
| Spectrum 62 | 13C NMR spectrum of compound FG10 185 |
| Spectrum 63 | 1H NMR spectrum of compound FG11 186 |
| Spectrum 64 | 13C NMR spectrum of compound FG11 187 |
Spectrum 65 \(^1\text{H NMR spectrum of compound } 45a+45b \) ... 188
Spectrum 66 \(^1\text{H NMR spectrum of compound } 47a+47b \) ... 189
Spectrum 67 \(^1\text{C NMR spectrum of compound } 47a+47b \) ... 190
Spectrum 68 \(^1\text{H NMR spectrum of compound } FG12+FG13 \) ... 191
Spectrum 69 \(^1\text{C NMR spectrum of compound } FG12+FG13 \) ... 192
Spectrum 70 \(^1\text{H NMR spectrum of compound } 51 \) ... 193
Spectrum 71 \(^1\text{C NMR spectrum of compound } 51 \) ... 194
Spectrum 72 \(^1\text{H NMR spectrum of compound } 61 \) ... 195
Spectrum 73 \(^1\text{C NMR spectrum of compound } 61 \) ... 196
Spectrum 74 \(^1\text{H NMR spectrum of compound } 63 \) ... 197
Spectrum 75 \(^1\text{C NMR spectrum of compound } 63 \) ... 198
Spectrum 76 \(^1\text{H NMR spectrum of compound } 50a \) ... 199
Spectrum 77 \(^1\text{C NMR spectrum of compound } 50a \) ... 200
Spectrum 78 \(^1\text{H NMR spectrum of compound } 50b \) ... 201
Spectrum 79 \(^1\text{C NMR spectrum of compound } 50b \) ... 202
Spectrum 80 \(^1\text{H NMR spectrum of compound } 50c \) ... 203
Spectrum 81 \(^1\text{C NMR spectrum of compound } 50c \) ... 204
Spectrum 82 \(^1\text{H NMR spectrum of compound } 50e \) ... 205
Spectrum 83 \(^1\text{C NMR spectrum of compound } 50e \) ... 206
Spectrum 84 \(^1\text{H NMR spectrum of compound } 50f \) ... 207
Spectrum 85 \(^1\text{C NMR spectrum of compound } 50f \) ... 208
Spectrum 86 \(^1\text{H NMR spectrum of compound } 51a \) ... 209
Spectrum 87 \(^{13}\)C NMR spectrum of compound 51a .. 210
Spectrum 88 \(^1\)H NMR spectrum of compound 51b.. 211
Spectrum 89 \(^{13}\)C NMR spectrum of compound 51b .. 212
Spectrum 90 \(^1\)H NMR spectrum of compound 51c.. 213
Spectrum 91 \(^{13}\)C NMR spectrum of compound 51c .. 214
Spectrum 92 \(^1\)H NMR spectrum of compound 51d.. 215
Spectrum 93 \(^{13}\)C NMR spectrum of compound 51d .. 216
Spectrum 94 \(^1\)H NMR spectrum of compound 51e.. 217
Spectrum 95 \(^{13}\)C NMR spectrum of compound 51e .. 218
Spectrum 96 \(^1\)H NMR spectrum of compound 51f.. 219
Spectrum 97 \(^{13}\)C NMR spectrum of compound 51f .. 220
Spectrum 98 \(^1\)H NMR spectrum of compound 52b.. 221
Spectrum 99 \(^{13}\)C NMR spectrum of compound 52b .. 222
Spectrum 100 \(^1\)H NMR spectrum of compound 52e.. 223
Spectrum 101 \(^{13}\)C NMR spectrum of compound 52e .. 224
Spectrum 102 \(^1\)H NMR spectrum of compound 52f.. 225
Spectrum 103 \(^{13}\)C NMR spectrum of compound 52f .. 226
Spectrum 104 \(^1\)H NMR spectrum of compound 53a.. 227
Spectrum 105 \(^{13}\)C NMR spectrum of compound 53a .. 228
Spectrum 106 \(^1\)H NMR spectrum of compound 53b.. 229
Spectrum 107 \(^{13}\)C NMR spectrum of compound 53b .. 230
Spectrum 108 \(^1\)H NMR spectrum of compound 53f.. 231
<table>
<thead>
<tr>
<th>Spectrum</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>109</td>
<td>13C NMR spectrum of compound 53f</td>
<td>232</td>
</tr>
<tr>
<td>110</td>
<td>1H NMR spectrum of compound 54a</td>
<td>233</td>
</tr>
<tr>
<td>111</td>
<td>13C NMR spectrum of compound 54a</td>
<td>234</td>
</tr>
<tr>
<td>112</td>
<td>1H NMR spectrum of compound 54b</td>
<td>235</td>
</tr>
<tr>
<td>113</td>
<td>13C NMR spectrum of compound 54b</td>
<td>236</td>
</tr>
<tr>
<td>114</td>
<td>1H NMR spectrum of compound 54c</td>
<td>237</td>
</tr>
<tr>
<td>115</td>
<td>13C NMR spectrum of compound 54c</td>
<td>238</td>
</tr>
<tr>
<td>116</td>
<td>1H NMR spectrum of compound 54d</td>
<td>239</td>
</tr>
<tr>
<td>117</td>
<td>13C NMR spectrum of compound 54d</td>
<td>240</td>
</tr>
<tr>
<td>118</td>
<td>1H NMR spectrum of compound 54e</td>
<td>241</td>
</tr>
<tr>
<td>119</td>
<td>13C NMR spectrum of compound 54e</td>
<td>242</td>
</tr>
<tr>
<td>120</td>
<td>1H NMR spectrum of compound 54f</td>
<td>243</td>
</tr>
<tr>
<td>121</td>
<td>13C NMR spectrum of compound 54f</td>
<td>244</td>
</tr>
<tr>
<td>122</td>
<td>1H NMR spectrum of compound 69</td>
<td>245</td>
</tr>
<tr>
<td>123</td>
<td>13C NMR spectrum of compound 69</td>
<td>246</td>
</tr>
</tbody>
</table>
Between 1940 and 2004, a staggering 335 infectious diseases have been discovered. And with an estimated three new diseases being identified every couple of years, this number is constantly increasing. Furthermore, diseases that were once treatable are resurging as a threat for a significant portion of the population. Through mutation or genetic exchange, infectious agents are able to develop resistance against available drugs and evolve into new deadly strains.

This alarming prevalence of drug-resistant microorganisms, together with the continuous emergence of infectious diseases, has enabled these pathogens to be two steps ahead of humans and contributed to ranking infectious diseases among the leading causes of mortality in the world.

In addition to these emerging infectious diseases, which are caused by external factors (bacteria, viruses, and fungi), abnormalities in an individual’s genome could also result in disorders called genetic diseases. Genetic diseases can either be inherited from the parents, or they could result from developed mutations or changes on the DNA. Changes that occur on a single gene give rise to Mendelian or single-gene disorders; meanwhile, multifactorial genetic diseases are caused by mutations in several genes, often coupled with environmental factors.

Spinal muscular atrophy (SMA) is an example of Mendelian disorders. It is caused by the homozygous loss of the Survival Motor Neuron 1 (SMN1) gene. It is an incurable neuromuscular disease characterized by the death of motor neurons present in
the anterior horn of the spinal cord.5,6 It manifests itself by the progressive weakness and degeneration of the muscles.7 Four types of SMA exist and they are categorized based upon the disease severity and the age of onset: 8

- **Type I or Werdnig-Hoffman disease** is the most severe form of SMA and manifests itself in the first months of life (0-6 months),
- **Type II or Dubowitz disease** is the intermediate form with an age of onset between 6 and 18 months,
- **Type III or Kugelberg-Welander disease** manifests after 18 months (juvenile form),
- **Type IV or adult-onset form** appears after 35 years.

With an incidence of one in every 5,000 – 10,000 births, SMA is the leading genetic cause of infant mortality.9,10

In light of these observations, the need to develop new and improved drugs that will help treat these diseases and alleviate this global threat becomes obvious. And what better place than nature to find the inspiration! This is clearly evidenced by the number of approved and clinical-trial drugs derived from natural products.11,12 For example, 26% of the new drugs approved by the Food and Drug Administration (FDA) in 2009-2010 were derived from nature.13

Aminoglycosides and naphthoquinones are two abundant, naturally occurring classes of compounds that have significant pharmacological properties. Anthracyclines, which can be viewed as 1,4-naphthoquinone derivatives, and aminoglycosides have even
been categorized as “drug-productive scaffolds”.13 It thus becomes apparent why we have directed our efforts toward these two classes of compounds.

I.1. Aminoglycosides

I.1.1. Classification and traditional mode of action of aminoglycosides

Streptomycin (Figure 1) was the first aminoglycoside to be discovered. Isolated from the actinobacterium \textit{Streptomyces griseus} in 1944,14 it was the first antibiotic effective in the treatment of tuberculosis. Since then, the broad-spectrum of activity of aminoglycosides against both Gram-negative and Gram-positive bacteria has stimulated multitude interests.

Aminoglycosides are a group of naturally occurring antibiotics that structurally consist of various amino-modified sugars. 2-Deoxystreptamine (2-DOS) has been found to play a pivotal role in the biological activity of aminoglycosides,15,16 resulting in its derivatives being among the most studied aminoglycosides. This includes the two major classes of neomycin and kanamycin (Figure 2). Members of the neomycin class can be viewed as 4,5-disubstituted 2-deoxystreptamines, while the kanamycin class encompasses the 4,6-disubstituted 2-deoxystreptamines.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{streptomycin Structure.png}
\caption{Figure 1: Structure of streptomycin.}
\end{figure}
4, 5-disubstituted 2-deoxystreptamines – Neomycin class

<table>
<thead>
<tr>
<th></th>
<th>R^1</th>
<th>R^2</th>
<th>R^3</th>
<th>R^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neomycin B</td>
<td>NH$_2$</td>
<td>OH</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Paromomycin I</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Lividomycin B</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Butirosin B</td>
<td>NH$_2$</td>
<td>OH</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Ribostamycin</td>
<td>NH$_2$</td>
<td>OH</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

4, 6-disubstituted 2-deoxystreptamines – Kanamycin class

<table>
<thead>
<tr>
<th></th>
<th>R^1</th>
<th>R^2</th>
<th>R^3</th>
<th>R^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanamycin A</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>Kanamycin B</td>
<td>OH</td>
<td>NH$_2$</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>Dibekacin</td>
<td>NH$_2$</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Arbekacin</td>
<td>NH$_2$</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Structures of 2-deoxystreptamine (2-DOS) aminoglycosides
Aminoglycosides are well known for their traditional role of antibacterial agents. Their mode of action has been extensively studied. They have been found to exert their bactericidal action by selectively binding to the A-site (aminoacyl site) decoding region of the 16S ribosomal RNA (rRNA) of bacteria.17,18 During the protein synthesis, binding of the correct tRNA to the mRNA causes conformational changes of two adenine residues (A1492 and A1493) in 16S rRNA, allowing them to contact with the mRNA-tRNA codon-anticodon hybrid.19 Since mispairing of codon and anticodon cannot induce this conformational change, this “proof-reading” process helps to ensure translational fidelity. However, the binding of the aminoglycosides at the decoding region impacts the conformational changes of A1492 and A1493.20,21 As a result, discrimination between cognate and near-cognate tRNA is reduced in the presence of aminoglycosides, enabling codon misreading.22 Misfolded proteins are then produced, some of which are incorporated in the bacterial membrane, leading to the loss of membrane integrity and increased permeability for the antibiotics. As a consequence, aminoglycosides accumulate rapidly in the cytoplasm and saturate all ribosomes, resulting in cell death (Figure 3).23-25

Despite these noticeable advantages, the nephrotoxicity and ototoxicity associated with aminoglycosides have considerably hampered their clinical usefulness.26

Aminoglycosides have also suffered from the emergence of drug-resistant bacteria. Over fifty aminoglycoside-deactivating enzymes have been identified.24,27-30 They act by modifying the structures of aminoglycoside antibiotics. This could be accomplished either through phosphorylation of a hydroxyl group (aminoglycoside
phosphoryltransferases, APH), adenylation of a hydroxyl group (aminoglycoside adenylyltransferases, AAD or ANT), or acetylation of an amino group (aminoglycoside acetyltransferases, AAC). Other mechanisms of resistance include the decrease of drug uptake into bacteria and the alteration of the ribosomal binding sites.

All these phenomena have rendered these once-before-acclaimed drugs obsolete, resulting in a growing interest in the development of new and modified aminoglycosides, with improved antibacterial activity.24,31 Despite all the efforts invested, a huge gap is still to be filled. This has thus forced other research groups to explore new applications of aminoglycosides.

\textbf{Figure 3}: Bactericidal action of aminoglycosides (Adapted from Kohanski, 2010 [Ref. 25])

I.1.2. \textbf{Aminoglycosides in the treatment of genetic diseases}

The selective binding of aminoglycoside antibiotics toward bacterial ribosome is crucial for their therapeutic use, and this is largely achieved through critical interactions
of the drug with nucleotides of the rRNA that are not similar in bacteria and human.32 For example, studies have demonstrated that A1408 and G1491 of the bacterial decoding site determine the selectivity of aminoglycosides.33,34 Eukaryotic cytoplasmic ribosomes are insensitive to aminoglycosides because a guanine residue is found at position 1408 and an adenine residue at position 1491 of 16S rRNA, which are all not able to interact with aminoglycosides.

However, it was found that certain aminoglycosides can bind to the small subunit of bacterial and eukaryotic ribosomes, especially at sites where nucleotides that are conserved between bacteria and eukaryotes are involved.35 For example, apramycin and geneticin (Figure 4) are known to bind to the human decoding site.32,36 This disadvantage turned out to be useful in the treatment of genetic diseases caused by nonsense mutations.

\textbf{Figure 4:} Structures of apramycin and geneticin (G418)

More than 1800 distinct heritable human diseases are caused by nonsense mutations,37 during which a change in a single nucleotide in a DNA sequence converts a codon that specified an amino acid into a stop codon. As a result, protein translation prematurely terminates, leading to the production of non-functional shortened
proteins. In 1985, Burke and Mogg showed that aminoglycosides can suppress the effect of a nonsense mutation; by binding to the decoding site, aminoglycosides reduce the translation fidelity and allow a random amino acid to be incorporated at a premature-termination codon in mammalian cells. As a result, the protein translation can proceed through the natural stop codon (Figure 5).

A) Normal protein translation

B) Nonsense mutation (C→A) - Premature termination of protein translation

C) Aminoglycoside insertion of a near-cognate tRNA - Restored protein translation

Figure 5: Suppression of nonsense mutation by aminoglycosides (Adapted from Malik, 2010 [Ref. 41])
This concept has introduced novel research avenues in the field of aminoglycosides, allowing them to emerge as stop codon read-through inducers. This new ability was tested as a therapeutic approach for human genetic diseases, including spinal muscular atrophy.

I.1.3. Aminoglycosides as antifungal agents

Fungal infections are mainly responsible for the huge economic losses generated from crop and turf diseases. Current strategies to control these infections include the direct application of chemical fungicides. However, their associated toxic side effects toward animals and humans oblige the growers to reduce their dependency on these antibiotics and seek for better alternatives. Unfortunately, while enormous efforts have been devoted to the development of new antibacterial, antiviral, and anticancer therapeutics, only a few new fungicides have been introduced since the mid-1980s.

Fungi are eukaryotic organisms whose cells contain a nucleus enclosed within a distinct membrane. As in any eukaryote, anionic sphingolipids are found on the outer surface of fungal cell membranes. Therefore, cationic molecules such as aminoglycosides would be expected to interact with the fungal cell walls. As a matter of fact, it was recently reported that certain commercially aminoglycosides are inhibitory to plant pathogenic oomycetes. However, the major drawback related to the use of aminoglycosides to combat crop diseases is their potential contribution to the propagation of bacterial resistant strains. Therefore, the best aminoglycoside agrofungicide candidates will be those that completely lose their antibacterial capabilities while gaining some antifungal activities.
I.2. 1,4-Naphthoquinone derivatives

I.2.1. History and biological functions

1,4-naphthoquinone belongs to the broad class of compounds called quinones. 1,4-naphthoquinone derivatives are of particular interest because of their large occurrence as natural products.\(^{47-51}\) They are found in various parts of plants such as leaves, flowers, roots, bark, and wood. In addition, they exhibit a wide range of interesting biological activities.\(^{52-56}\) Molecules bearing naphthoquinone scaffold have also been employed as inhibitors against vitamin K dependent carboxylase,\(^{57}\) protein kinase,\(^{58}\) coenzyme Q,\(^{59}\) and as growth stimulator for bifidobacteria.\(^{60}\)

A representative class of 1,4-naphthoquinone derivatives is the group of fat-soluble compounds called vitamin K. This includes the naturally occurring vitamin K\(_1\), or phylloquinone, required for blood coagulation, and vitamin K\(_2\), or menaquinone, which is of vital importance for bone health (Figure 6). A synthetic form of vitamin K is vitamin K\(_3\) or menadione (Figure 6), which is often used as a quinone model for in vivo studies.

Menadione has been shown to undergo both redox cycling and arylation reactions. This is mainly due to the two carbonyl groups, which give the ability to 1,4-naphthoquinone derivatives to accept one and/or two electrons.\(^{61}\) 1,4-naphthoquinone derivatives can accept an electron to form the semiquinone radicals upon catalysis by flavoenzymes such as NADPH-cytochrome P-450 reductase (Figure 7).\(^{52,62,63}\) The semiquinone radicals can be further reduced to hydroquinones. In aerobic conditions, reactive oxygen species (ROS) are produced by transfer of electrons to oxygen. ROS is
commonly used to refer to superoxide, hydroxyl radical, and hydrogen peroxide, which are all known to break DNA strands.64-66

\textbf{Figure 6:} Structures of vitamin K\textsubscript{1} (phylloquinone), vitamin K\textsubscript{2} (menaquinone), and vitamin K\textsubscript{3} (menadione)

\textbf{Figure 7:} 1,4-Naphthoquinone derivatives as redox cyclers
In addition, 1,4-naphthoquinone derivatives can undergo arylation reactions. They contain electrophilic \(\alpha,\beta \)-unsaturated carbonyl groups, which can react with nucleophilic moieties of proteins, such as thiolate groups, and form covalent bonds. This usually results in the inactivation and loss of protein function.\(^{67}\)

I.2.2. 1,4-Naphthoquinone derivatives as antibacterial agents

Various 1,4-naphthoquinone derivatives with antibacterial activity are known (Figure 8). This includes plumagin, juglone and lawsone, which are naturally occurring naphthoquinones of plant origin.\(^{68}\) Alkannin, shikonin, and their derivatives are other natural naphthoquinone products whose antimicrobial activity has been widely investigated.\(^{69}\) Pleosporone was isolated from a pleosporalean ascomycete.\(^{70}\)

![Structures of antibacterial 1,4-naphthoquinone derivatives](image)

Figure 8: Structures of antibacterial 1,4-naphthoquinone derivatives
1,4-naphthoquinone derivatives can exert their antibacterial activity by decoupling of oxidative phosphorylation, a process essential for ATP synthesis. Because of their ability to accept electrons, they can compete with electron carriers such as coenzyme Q and uncouple the electron transport chain.71

In addition, 1,4-naphthoquinone derivatives are known to inhibit the growth of Gram-positive bacteria such as *Staphylococcus aureus*, *Enterococcus faecium*, and *Bacillus subtilis*. However, they are ineffective against Gram-negative bacteria such as *Escherichia coli* and *Salmonella typhimurium*.69

I.3. Research summary

The aim of this research was to synthesize biologically active molecules. First of all, new therapeutic potentials of antibiotic aminoglycosides were investigated. A pyranmycin compound, an aminoglycoside, was re-synthesized and its mode of action in the treatment of spinal muscular atrophy was studied (chapter II). In addition, synthesis of various kanamycin B analogs revealed that a simple alkylation can convert this well-known antibacterial into an antifungal agent with potential use in agriculture (chapter III). Finally, a library of cationic 1,4-naphthoquinone derivatives was developed and their antibacterial activity studied (chapter IV).
CHAPTER II
AMINOGLYCOSIDES AS THERAPEUTICS
FOR SPINAL MUSCULAR ATROPHY

II.1. Rationale

Spinal muscular atrophy (SMA) is an autosomal recessive disease. SMA patients carry a pair of defective chromosomes 5 that both lack the \textit{Survival Motor Neuron-1} (\textit{SMN1}) gene on the long (q) arm, at position 13.2.72 \textit{SMN1} produces full-length transcripts that translate into high levels of the survival motor neuron (SMN) protein, essential for the maintenance of motor neurons (specialized nerve cells that control muscle movement). \textit{SMN2}, a nearly identical gene to \textit{SMN1} also found at locus 5q13.2,4 exhibits a critical C to T nucleotide variation within the 5´ end of exon 7.73 This causes \textit{SMN2}-derived transcripts to undergo alternative splicing at the junction of intron 6 and exon 7.74,75 As a result, 90% of the \textit{SMN2}-derived transcripts lack the exon 7 and will therefore code a truncated and unstable SMN\textDelta7 protein; only 10% will produce a fully functional SMN protein.4,76 Therefore, in the absence of \textit{SMN1}, \textit{SMN2} alone cannot produce enough SMN protein for the maintenance of motor neurons. However, an increase in the number of \textit{SMN2} copies will result in more \textit{SMN2}-derived SMN protein, and thus reduce the severity of SMA.

Dr. Christian Lorson and co-workers (Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri) have previously reported the ability

a Part of this chapter was coauthored by Virginia B Mattis, Marina Y Fosso, Cheng-Wei Chang and Christian L Lorson. Reproduced with kind permission from \textit{BMC Neurosc.} \textbf{2009}, \textit{10}:142. Copyright © 2009, BioMed Central.
of two aminoglycosides, tobramycin and amikacin (Figure 9), to elevate the SMN protein levels in SMA cells. By employing the capacity of aminoglycosides to read-through ribosomes past stop codons (see chapter I for more details), tobramycin and amikacin enable the incorporation of missing sequences at the C-terminus of SMN∆7 protein, thereby restoring the stability and the functionality of this novel SMN protein.

In light of these results, through collaboration with Dr. Lorson, our libraries of previously synthesized aminoglycosides were screened to identify TC007 (Figure 9) as the lead in the treatment of spinal muscular atrophy. Therefore, my goal was to prepare more TC007 in order to study its mode of action in the treatment of spinal muscular atrophy.
II. 2. Results and discussion

II.2.1. Synthesis of TC007

TC007 belongs to the class of pyranmycin compounds. These are neomycin analogs and they result from the replacement of the neobiosamine core (rings III and IV) of neomycin with a pyranose (Figure 10). It has been previously demonstrated that the glycosidic bond of a furanose is more prone to acid cleavage than that of a pyranose. Pyranmycin could therefore survive harsh acidic conditions that will otherwise degrade neomycin.

Following the protocol previously described by Dr. Ravi Rai, the synthesis of TC007 will start from the commercially available neomycin B. Conversion of the amino groups into azido groups followed by benzylation afforded compound 1 (Scheme 1). Cleavage of the glycosidic bond between rings II and III was accomplished by refluxing 1 in the presence of copper (II) chloride, and this gave the known neamine derivative 2. The free hydroxyl group at the 5-position is required for the final compound to be a 4,5-disubstituted 2-deoxystreptamine, thus an analog of neomycin.

Figure 10: Structures of neomycin and pyranmycin
Scheme 1: Synthesis of the neamine derivative acceptor 2

The synthesis of the glycosyl donor 8 started from the commercially available diacetone-\(\alpha\)-glucose 3 (Scheme 2). Swern oxidation of 3 and reduction of the corresponding ketone with NaBH\(_4\) gave the epimer alcohol 4.\(^{83}\) Triflation, which converts the free hydroxyl group into the better triflate leaving group, and \(S_N\text{2}\) azido substitution afforded compound 5.\(^{84}\) Acid-catalyzed hydrolysis, followed by acetylation, provided the tetraacetyl pyranose 6.\(^{85}\) Treatment with hydrazine acetate selectively hydrolyzed the acetyl group at the anomeric position to give 7,\(^{86}\) whose free hydroxyl group was then activated in the presence of trichloroacetonitrile to afford our glycosyl donor 8.\(^{87}\)

With the neamine acceptor 2 and the glycosyl donor 8 on hand, we were ready to embark on the synthesis of TC007 (Scheme 3). Glycosylation of 2 and 8 in the presence of the Lewis acid BF\(_3\)-OEt\(_2\) provided compound 9.\(^{87}\) The acetyl group present at C-2 of
the glycosyl donor 8 controls the formation of the β-glycosidic bond in 9 (Scheme 4). Indeed, as the donor 8 gets activated in the presence of BF$_3$-OEt$_2$, an oxocarbenium intermediate is formed, which in the presence of a 2-O-acyl group will give an acyloxonium intermediate. Therefore, the attack by a nucleophile (acceptor 2) can only happen from the open top face, resulting in the formation of the β-anomer in 9. The acetyl groups in compound 9 will then be hydrolyzed using K$_2$CO$_3$ in methanol. Staudinger reduction of the azide, followed by hydrogenolysis and ion-exchange, provide TC007 as a chloride salt.

Scheme 2: Synthesis of the glycosyl donor 8
Scheme 3: Synthesis of TC007

1) K₂CO₃, MeOH
2) PMe₅, THF, H₂O
3) H₂, Pd(OH)₂/C,
 H₂O:AcOH (4:1)
4) Dowex 1×8 (Cl⁻)

61%

Scheme 4: Formation of the β-glycosidic bond in compound 9
II.2.2. Mode of action of **TC007** in the treatment of spinal muscular atrophy

SMN proteins localize in nuclear bodies known as gems. Gem numbers have been frequently used as a biomarker for total cellular SMN protein levels in SMA patient fibroblasts. In a low throughput cell-based screen, **TC007** and other aminoglycosides were found to elevate SMN and gem numbers in SMA type I fibroblasts. Patient fibroblasts treated for 48 h in 100 µg/mL of aminoglycoside-media showed a higher amount of SMN nuclear gems (Figure 11). **TC007** was found to be even more effective than valproic acid (VPA), a previously identified histone deacetylase inhibitor compound known to increase SMN expression by stimulating the SMN2 promoter and SMN exon 7 inclusion.

*Figure 11: Increase in SMN-positive gems (white arrows) after treatment with **TC007**[^78]*

TC007 was found to induce SMN protein levels by a novel SMNA7 read-through event. Experiments carried out in Dr. Lorson’s laboratory revealed that **TC007** causes the
ribosome to incorporate a tyrosine into the first stop codon of SMN\textDelta7 exon 8 and read-through until the second stop, 16 nucleotides downstream (Figure 12).78 This allows the translational machinery to elongate the truncated protein by additional five amino acids, length which has been demonstrated sufficient to restore more functionality to the protein. This SMN read-through protein, while in the low level, enters into an SMN complex with the existing full-length protein, resulting into a small increase in SMN-functional (SMN-Fl) protein after treatment.

Animal model experiments performed in Dr. Lorson’s laboratory have revealed that TC007 can actually lessen the severity of SMA.94 As a result, subcutaneous administration of TC007 was found to increase myofiber size and gross motor function in SMA mice (Figure 13).95

\textbf{Figure 12:} Schematic of SMN C-termini78
II. 3. Conclusion

The bioactivity screening of a library of previously synthesized aminoglycosides has identified TC007 as the lead compound in the treatment of spinal muscular atrophy. To further investigate its mode of action, more TC007 was synthesized from neomycin B. The use of copper (II) chloride in the cleavage of the glycosidic bond between rings II and III of neomycin B was found to be slightly more effective than the previously used MeOH/HCl mixture.

TC007 was found to act through an unprecedented SMNΔ7 read-through event. TC007 triggers the insertion of an amino acid such as tyrosine, in the premature stop codon and allows the ribosome to read-through until the following natural stop codon. This elongates the truncated SMNΔ7 protein by an additional five amino acids, enabling
it to regain functionality. These findings could lead to the development of novel therapeutic approaches for the treatment of spinal muscular atrophy.
CHAPTER III
STRUCTURAL OPTIMIZATION OF ANTIFUNGAL KANAMYCIN B ANALOGS

III.1. Rationale

A recent report has demonstrated that aminoglycosides, including neomycin, paromomycin, ribostamycin, and streptomycin (Figures 1 and 2), can manifest modest to excellent antifungal activity against a panel of pathogenic fungi. However, all these aminoglycosides are clinically used antibiotics for the treatment of human bacterial pathogens. Therefore, if any of them happened to be involved in plant disease management, microbial resistance could easily be extended to human, leading to an increase of human illnesses and possibly death. This phenomenon has previously been observed with farm animals, when the overuse of in-feed antibiotics in livestock resulted in the detection of a large number of drug-resistant bacteria in human.

In addition, among the two most commonly used classes of aminoglycosides, neomycin and kanamycin, this study limited itself to the neomycin class of aminoglycosides (neomycin, paromomycin, and ribostamycin). No representative member of the kanamycin class was included.

To solve both issues, we decided to investigate the antifungal activity of some kanamycin class aminoglycosides. In addition, these aminoglycosides needed to be inactive against bacteria in order to be the ideal antifungal agent candidates.

Kanamycin B (Figure 2) is a naturally occurring antibacterial aminoglycoside. As the prototypal model of the kanamycin class of aminoglycosides, its antibiotic efficacy has been excessively used. The net result was the high prevalence of resistant bacteria and thus the loss of its clinical attractiveness. In the effort to restore its antibacterial activity, our group has been involved in the development of new strategies to derivatize this class of compounds and had previously synthesized a library of kanamycin B analogs.97-99 Screening of this library of analogs uncovered few compounds that inhibited the growth of fungi and yeasts. One compound, \textbf{FG08}, displayed broad spectrum fungicidal activity coupled with the loss of antibacterial activity. Therefore, more \textbf{FG08} had to be prepared to investigate its mechanism of action. In addition, other kanamycin B analogs would be synthesized in the aim of developing potential antifungal agents.

\textbf{III. 2. Results and discussion}

\textbf{III.2.1. Investigation of the optimum chain length}

The surprising antifungal activity of \textbf{FG08} was attributed to the attachment of a long (C8) alkyl chain. To investigate the chain length that will confer the optimum antifungal activity, two other kanamycin B analogs were synthesized: \textbf{FG01}, with a shorter (C4) alkyl chain, and \textbf{FG02}, with a longer (C12) alkyl chain.

\textbf{a) Retrosynthetic analysis of \textbf{FG01, FG02} and \textbf{FG08}}

\textbf{FG01, FG02}, and \textbf{FG08} are all kanamycin B analogs and thus share a pseudo-disaccharide core (neamine) substituted at the 6-position. Their syntheses could therefore start from the neamine derivative \textbf{10}97 and the phenylthioglycosyl donor \textbf{11} (Scheme 5).
Unlike the β-glycosidic bond, there is no general and stereospecific protocol for the formation of the α-glycosidic bond. However, a 2-\(O\)-Bn group does not favor the formation of the acyloxonium intermediate required for β-selectivity. Therefore, the phenylthioglycoside 11 will enable the formation of the α-glycosidic bond between rings II and III due to the anomeric effect. Indeed, upon activation by NIS and TMSOTf, 11 is converted into an oxocarbenium intermediate (Scheme 6). Nucleophilic attack by the acceptor 10 can occur from the top face to give the β-anomer, or from the bottom face to give the α-anomer. Because of the orbital overlap, the β-anomer is less favored than the α-anomer. Therefore, the α-anomer will be obtained as the major product. In addition, since 10 has two free hydroxyl groups, steric hindrance will prevent 5-OH from acting as the nucleophile, allowing glycosylation to happen only at the 6-position.

Scheme 5: Retrosynthetic analysis of FG01, FG02, and FG08

b) Syntheses of FG01, FG02 and FG08

Starting from neamine 12,\(^{100}\) conversion of the amino groups to azido groups gave 13\(^{101}\) (Scheme 7). Regioselective protection of the 1,2-diol at positions 5 and 6 gave 14.\(^{97}\)
Acetylation of the hydroxyl groups at positions 3’ and 4’, and acid cleavage of the cyclohexylidene protecting group afforded the neamine derivative 10.

![Chemical structures and reaction schemes]

Scheme 6: Anomeric effect

Scheme 7: Synthesis of the neamine derivative acceptor 10
The synthesis of the glycosyl donors started from the known compound 15102 (Scheme 8). Acetonolysis, followed by regioselective protection of the hydroxyl groups at positions 4 and 6 afforded 16102. Benzylaion and acid cleavage of the benzylidene protecting group gave 17102 as a 1,3-diol. Selective tosylation of the primary alcohol and reduction with LiAlH\textsubscript{4} gave 18103. Alkylation using n-butyl bromide, n-octyl bromide, and n-dodecyl bromide gave the glycosyl donors 11\textsubscript{a}, 11\textsubscript{b}, and 11\textsubscript{c}, respectively.

![Scheme 8: Synthesis of the glycosyl donors 11\textsubscript{a}, 11\textsubscript{b}, and 11\textsubscript{c}](image)

With the neamine acceptor 10 and the glycosyl donors 11\textsubscript{a}, 11\textsubscript{b}, and 11\textsubscript{c} on hand, we were ready to embark on the synthesis of FG01, FG02, and FG08 (Scheme 9). Glycosylation in the presence of NIS and TMSOTf followed by acetonolysis using NaOMe in MeOH/THF mixture afforded 19. Staudinger reduction of the azide into an amine, hydrogenation, and ion-exchange provided FG01, FG02, and FG08 as chloride salts.
c) The C8 alkyl chain confers optimum antifungal activity

Through collaboration with Dr. Jon Takemoto (Department of Biology, Utah State University), the effectiveness of each of the FG compounds was evaluated. The synthesized kanamycin B analogs were tested against *Rhodotorula piliminae* (Figure 14).104 From the disk diffusion growth inhibitory assay, **FG08** gave a larger zone of inhibition and thus is more active than **FG01** and **FG02** against *R. piliminae*.

Further alkyl chain lengths were not investigated because from a similar study of alkyl chain length vs. aminoglycoside bioactivity,105 it was reported that compounds with C7 and C10 alkyl chains showed reduced activities compared to the parent compound. Therefore, we reasoned that the C8 alkyl chain will still be the best at conferring an optimal antifungal activity.
Figure 14: Disk diffusion inhibitory assay of FG01, FG02, and FG08

Based on these results, more emphasis was directed toward the antimicrobial activity of FG08. Microbroth dilution assays performed in Dr. Takemoto’s laboratory revealed that FG08 exhibits little to no activity against Gram-positive and Gram-negative bacteria (Table 1). Its MIC values against both types of bacteria were at least 125-fold higher than shown by kanamycin B (Table 1).

In addition, FG08 was found to inhibit the growth of a wide range of yeasts, oomycetes, and true fungi with MICs ranging between 3.9 and 31.3 μg/mL (Table 1). On the other hand, kanamycin B was not active against those same microbes.

In light of these results, the ability of FG08 to control Fusarium head blight (FHB) was evaluated.
Table 1: Minimal inhibitory concentrations (MICs) of FG08 and kanamycin B

<table>
<thead>
<tr>
<th>Organism</th>
<th>FG08</th>
<th>Kanamycin B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli TG1<sup>b</sup></td>
<td>125-250</td>
<td>1.95</td>
</tr>
<tr>
<td>Staphylococcus aureus (ATCC 25923)<sup>c</sup></td>
<td>250</td>
<td><0.98</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa (ATCC 27853)<sup>b</sup></td>
<td>250</td>
<td>1.95</td>
</tr>
<tr>
<td>Enterococcus faecalis (ATCC 29212)<sup>c</sup></td>
<td>125-250</td>
<td><0.98</td>
</tr>
<tr>
<td>Klebsiella pneumoniae (ATCC 138883)<sup>b</sup></td>
<td>250</td>
<td>1.95</td>
</tr>
<tr>
<td>Klebsiella pneumoniae (ATCC 700603)<sup>b</sup></td>
<td>250</td>
<td>1.95</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhodotorula pilimanae (ATCC 26423)</td>
<td>7.8</td>
<td>>250</td>
</tr>
<tr>
<td>Candida albicans (ATCC 10231)</td>
<td>31.3</td>
<td>>250</td>
</tr>
<tr>
<td>Saccharomyces cerevisias W303</td>
<td>3.9</td>
<td>>250</td>
</tr>
<tr>
<td>Fusarium graminearum B-4-5A</td>
<td>31.3</td>
<td>>250</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>7.8</td>
<td>>250</td>
</tr>
<tr>
<td>Ulocladium spp.</td>
<td>7.8</td>
<td>ND<sup>d</sup></td>
</tr>
<tr>
<td>Pythium irregular</td>
<td>15.6</td>
<td>ND</td>
</tr>
<tr>
<td>Pythium ultimum</td>
<td>15.6</td>
<td>ND</td>
</tr>
<tr>
<td>Phytophthora parasitica</td>
<td>15.6</td>
<td>ND</td>
</tr>
<tr>
<td>Rhizopus stolonifer</td>
<td>31.3</td>
<td>ND</td>
</tr>
<tr>
<td>Cladosporium cladosporoides</td>
<td>31.3</td>
<td>ND</td>
</tr>
<tr>
<td>Curvularia brachyspora</td>
<td>31.3</td>
<td>ND</td>
</tr>
<tr>
<td>Botrytis cinerea</td>
<td>31.3</td>
<td>ND</td>
</tr>
<tr>
<td>Phoma spp.</td>
<td>31.3</td>
<td>ND</td>
</tr>
</tbody>
</table>

^aMicroboth dilution assays were performed at least twice, and each in triplate
^bGram-negative bacteria
^cGram-positive bacteria
^dNot determined
III.2.2. Antifungal activity of FG08 against *Fusarium graminearum*

F. graminearum is the causative agent of Fusarium head blight (FHB) and affects wheat, barley, and maize. With economic losses averaging $3 billion annually, FHB is among the most serious plant disease the U.S. has encountered.\(^{106}\) Efforts to eradicate this crop disease have not been successful yet. Therefore, the development of a fungicide that will inhibit *F. graminearum* is much awaited.

a) Green house experiments

FG08 was investigated for its ability to control FHB of wheat.\(^{104}\) Leaf infection assays performed by Yukie Kawasaki, a graduate student in Dr. Takemoto’s laboratory, revealed the ability of FG08 to suppress in planta *F. graminearum* infection at its in vitro MIC value. When FHB-susceptible wheat leaves were inoculated with 10 \(\mu\)L of a mixture of FG08 (30 \(\mu\)g/mL) and suspensions of *F. graminearum* macronidia, not only was mycelial growth prevented (Figure 15, upper panel), but a 5-fold decrease in leaf lesions was also observed (Figure 15, middle panel, white bars). At 180 \(\mu\)g/mL, FG08 was found to be phytotoxic (Figure 15, lower panel).

In addition, FG08 reduced the rate of FHB infection on cultivar Apogee (a rapidly maturing and FHB-susceptible variety of wheat) spikelet florets. Inoculation of FG08-pretreated spikelet florets with *F. graminearum* did not result in any of the FHB symptoms (chlorosis and curled spikes) that were noticeable within 4 days on non-pretreated spikelet florets (Figure 16). Therefore, the attachment of the octyl group triggered the loss of the antibacterial activity of FG08, while instantly imparting to it a fungicidal activity. This definitely suggested a different mode of action of FG08.
Figure 15: FG08 suppression of wheat leaf infection after exposure to *F. graminearum*.

Figure 16: FG08 suppression of FHB disease in wheat spikelet florets.
b) **Mechanism of action of FG08**

Aminoglycosides are known to kill bacteria by binding to the ribosome and inhibiting protein synthesis. However, studies with fluorescent dye SYTOX green demonstrated that FG08 exerts its antifungal activity by perturbation of the membrane function. Upon binding with nucleic acids, SYTOX green will fluoresce when excited at 450-490 nm. Unless the cell membrane is compromised, the dye does not have the ability to cross the membrane. When Mr. Sanjib Shrestha, a graduate student in Dr. Takemoto’s laboratory, performed the dye permeation experiment, it was found that FG08 rapidly influenced the dye permeability of *C. albicans* cells and *F. graminearum* hyphae (10 minutes). In addition, FG08 increased the membrane permeability of *C. albicans* 12 times better than kanamycin B. Also, FG08 did not lyse more than 20% of erythrocytes at a concentration 10-fold higher than its fungal MIC. This suggests that FG08 does not act as a surface-active agent that non-specifically disrupts membranes.

Aminoglycosides are polycationic at physiological conditions. They can then aggregate on the fungal cell membrane by electrostatic interaction with the anionic sphingolipids. Then, the lipophilic alkyl chain found on FG08 enabled it to insert itself into the membrane bilayer of the fungi and eventually form pores. Therefore, the C8 alkyl chain found in FG08 confers to it amphipatic properties.

III.2.3. Optimization of FG08

In light of the impressive antifungal activity of FG08, we decided to improve on its synthesis by preparing FG03. FG03 differs from FG08 by the hydroxyl group present at the 6′′ position (Figure 17).
a) **Synthesis of FG03**

Starting from the 1,3-diol 17, tritylation selectively protects the primary alcohol, leaving a free hydroxyl group at position 4 (Scheme 10). Alkylation of the 4-OH, followed by the acid-catalysed removal of the trityl group revealed the 6-OH in compound 20. Benzylolation afforded the thiophenyl donor 21. Glycosylation of 2 and 21, followed by acetonolysis, gave 22. Staudinger reduction of the azide into amine, hydrogenation, and ion-exchange provided FG03 as a chloride salt.

b) **Antimicrobial activities of FG03**

While maintaining its non-antibacterial activity, FG03 was also found to be effective against a number of fungi (Table 2). In addition, it was even more active than FG08 against *F. graminearum*.

![Figure 17: Structures of FG08 and FG03](image-url)
Table 2: MIC values of FG08 and FG03

<table>
<thead>
<tr>
<th>Organism</th>
<th>MIC (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td>FG08</td>
</tr>
<tr>
<td>Escherichia coli TG1<sup>b</sup></td>
<td>125-250</td>
</tr>
<tr>
<td>Staphylococcus aureus (ATCC25923)<sup>c</sup></td>
<td>250</td>
</tr>
<tr>
<td>Filamentous fungi</td>
<td>FG08</td>
</tr>
<tr>
<td>Fusarium graminearum B-4-5A</td>
<td>31.3</td>
</tr>
<tr>
<td>Pythium ultimum</td>
<td>15.6</td>
</tr>
<tr>
<td>Curvularia brachyspora</td>
<td>31.3</td>
</tr>
<tr>
<td>Bortrytis cinerea</td>
<td>31.3</td>
</tr>
<tr>
<td>Yeasts</td>
<td>FG08</td>
</tr>
<tr>
<td>Rhodotorula pilimanae (ATCC26423)</td>
<td>7.8</td>
</tr>
<tr>
<td>Candida albicans (ATCC10231)</td>
<td>31.3</td>
</tr>
</tbody>
</table>

^a Data obtained by Sanjib Shrestha
^b Gram-negative bacteria
^c Gram-positive bacteria
^d Not determined
The scale-up synthesis of FG03 by a chemoenzymatic approach was attempted in Dr. Takemoto’s laboratory (Scheme 11). Although unsuccessful, this approach required 4-O-octyl-D-glucopyranoside 23 and neamine 12, both chemically synthesized in our laboratory.

The synthesis of 23 started from compound 20. Treatment with N-bromosuccinimide gave 35, whose hydrogenation provided 23 (Scheme 12).

Scheme 11: Proposed chemo-enzymatic synthesis of FG03

Scheme 12: Synthesis of compound 23
III.2.4. Alkyl group mapping

From the promising results of FG03 and FG08, which both have a linear C8 alkyl chain at the O-4'' position, we decided to explore the effect of an octyl group at other positions, by synthesizing kanamycin B analogs FG05, FG06, FG07, FG09, FG10, and FG11.

a) Synthesis of FG05 and FG06 (alkylation at O-6'' position)

The synthesis started with the regioselective ring opening of the known compound 26 to obtain 27 with a free hydroxyl group at the 6-position (Scheme 13). Alkylation using n-hexyl bromide and n-octyl bromide provided the thiophenyl donors 28a and 28b, respectively. Glycosylation followed by acetonolysis gave 29a and 29b. Staudinger reaction, hydrogenation, and ion-exchange afforded FG05 and FG06, with C6 and C8 alkyl chain at the O-6'' position, respectively.

b) Synthesis of FG07 (Alkylation at O-3'' position)

The synthesis started with the alkylation of diacetone-D-glucose 3 (Scheme 14). This gave the known compound 30 whose acid-catalysed hydrolysis and acetylation provided 31. Treatment of 31 with thiophenol in the presence of BF3·OEt2 gave 32. Through neighboring group participation (see Scheme 4), the acetyl group present at position 2 in 32 will favor the formation of a β-anomer after glycosylation. However, a 2-O-Bn will provide the required α-glycosidic bond (see Scheme 6). Thus acetonolysis of 32, followed by benzylation, afforded the thiophenyl donor 33, with a 2-O-Bn. Glycosylation of 2 and 33 in the presence of NIS and TMSOTf, followed by acetonolysis,
gave 34. Staudinger reaction, hydrogenation, and ion-exchange afforded FG07, which has a C8 alkyl chain at the 3‴ position.

Scheme 13: Synthesis of FG05 and FG06

c) Synthesis of FG09 (alkylation at O-2‴ position)

The synthesis of FG09 started from the known compound 35110 (Scheme 15). Alkylation of the 2-OH gave 36, which upon treatment with Ac₂O/AcOH/H₂SO₄ provided 37. Reaction with thiophenol in the presence of BF₃·OEt₂ gave 38. Acetonolysis, followed by benzylation gave 39. Glycosylation of 2 and 39 in the presence of NIS and TMSOTf, followed by acetonolysis provided 40. Staudinger reaction, hydrogenation, and ion-exchange gave FG09 with the C8 alkyl chain at position 2‴.
d) **Synthesis of FG10 and FG11 (alkylation at O-5 position)**

Benzylation at the 3’ and 4’ positions of the neamine derivative 14,\(^{97}\) followed by the acid-catalyzed cleavage of the cyclohexylidene protecting group gave the glycosyl acceptor 41\(^{98}\) (Scheme 16). Glycosylation of 41 with the known thiophenyl donors 42a\(^{111}\) and 42b\(^{112}\) gave the compounds 43a and 43b, respectively. Both compounds have a free hydroxyl group at position 5 which will be alkylated to provide 44a and 44b, respectively. Staudinger reaction, hydrogenation, and ion-exchange afforded FG10 and
FG11, respectively, with the C8 alkyl chain at O-5 position. FG10 has a free hydroxyl (OH) group at position 3′′, while FG11 has an amino (NH₂) group at position 3′′′. FG10 is thus an analog of FG08 and FG11 looks more to kanamycin B.

Scheme 15: Synthesis of FG09
Scheme 16: Synthesis of FG10 and FG11

e) Synthesis of FG12 and FG13 (alkylation at O-3’ and O-4’ positions, respectively)

The neamine derivative 14[^97] has two free hydroxyl groups at position 3’ and 4’.
Selective benzylation of 14 afforded a mixture of regioisomers (45a and 45b), along with the dibenzylated compound 46 (Scheme 17). The regioisomer 45a has a Bn group at the 4’ position while the regioisomer 45b has the Bn group at the 3’ position. Attempts to separate 45a and 45b were unsuccessful. That mixture of 45a and 45b was then used as so. Alkylation of the free hydroxyl group in each regioisomer, followed by the acid-
cleavage of the cyclohexylidene protecting group gave compounds 47a and 47b as an inseparable mixture. Glycosylation of the acceptors 47a and 47b with the donor 42a afforded 48a and 48b, which upon Staudinger reduction, hydrogenolysis, and ion exchange gave a mixture of FG12 and FG13.

![Scheme 17: Synthesis of FG12 and FG13](image)

f) Alkylation at O-4´ position confers optimum antifungal activity

The effectiveness of the FG compounds was evaluated. The synthesized kanamycin B analogs were tested against the fungus *F. graminearum*. Microbroth
dilution assays performed in Dr. Takemoto’s laboratory revealed that FG08 and FG03, which both have an octyl group at the $O-4'''$ position, were the most active (Table 3). Indeed, FG08 and FG03 were found to inhibit the growth of *F. graminearum* at the minimum concentration of 7.8 µg/mL.

Table 3: MIC values of FG compounds against *F. graminearum*^a

<table>
<thead>
<tr>
<th>Alkylation site</th>
<th>Compound</th>
<th>MIC (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-2''</td>
<td>FG09</td>
<td>20</td>
</tr>
<tr>
<td>O-3''</td>
<td>FG07</td>
<td>62.5</td>
</tr>
<tr>
<td>O-4''</td>
<td>FG03 (6''-OH)</td>
<td>7.8</td>
</tr>
<tr>
<td>O-4''</td>
<td>FG08 (6''-H)</td>
<td>7.8</td>
</tr>
<tr>
<td>O-6''</td>
<td>FG05</td>
<td>125</td>
</tr>
<tr>
<td>O-6''</td>
<td>FG06</td>
<td>31.3</td>
</tr>
<tr>
<td>O-5</td>
<td>FG10 (3''-OH)</td>
<td><500</td>
</tr>
<tr>
<td>O-5</td>
<td>FG11 (3''-NH$_2$)</td>
<td>31.3</td>
</tr>
<tr>
<td>O-3' & O-4'</td>
<td>FG12 & FG13</td>
<td>≤500</td>
</tr>
</tbody>
</table>

^aData obtained by Yukie Kawasaki

On the other hand, the mixture of FG12 and FG13 showed no activity against *F. graminearum*. Since each compound constituted 50% of the mixture, we can therefore conclude that any of them, by itself, would be inactive against fungi.

From the MIC values, it is therefore obvious that a linear C8 alkyl chain imparts optimum antifungal activity when it is attached at the $O-4'''$ position.

III.3. Conclusion

The presence of a linear C8 alkyl chain was found to induce an antibacterial to antifungal transformation to kanamycin B. Indeed, FG08, which has a linear C8 alkyl chain at the $O-4'''$ position, displayed impressive antifungal activity against a wide range
of crop disease pathogens (fungi). FG03, which also has a linear C8 alkyl chain at the O-4′′ position, was synthesized with the intention to scale up the synthesis of FG08 by a chemo-enzymatic approach, but this route turned out unsuccessful.

By employing glycodiversification, various sites in kanamycin B have successfully been alkylated to give new analogs. The antifungal activity results indicate the importance of the O-4′′ position. Indeed, FG08 and FG03, which are both alkylated at the O-4′′ position, were the most potent antifungal agents.

In light of all these results, a structure-activity relationship can be drawn: attachment of a C8 alkyl chain at the O-4′′ position of kanamycin B converts this obsolete drug into a potent agro fungicide, with simultaneous loss of antibacterial activity.
CHAPTER IV
SYNTHESIS AND ANTIBACTERIAL STUDY OF CATIONIC
1,4-NAPHTHOQUINONE DERIVATIVES

IV.1. Rationale

With the growing rate of bacterial infections and antibiotic-resistance, there have been continuous calls for new antibacterial agents and natural products usually provide resourceful scaffolds. 1,4-naphthoquinone derivatives are ubiquitous in nature and display a wide range of biological activities. Our group has thus recently invested some efforts in the development of interesting molecules derived from 1,4-naphthoquinone. We have synthesized a class of 1-alkyl-1H-naphtho[2,3-\textit{d}][1,2,3]triazole-4,9-diones. These heterocyclic compounds combine two pharmacologically important moieties (1,4-naphthoquinone and 1,2,3-triazole), and were thus expected to exhibit unique biological activities. However, their poor solubility in aqueous media rendered them unavailable for biological testing. Nevertheless, methylation helped to solve this issue and led us to the discovery of a new series of anthraquinone analogs. Many of these anthraquinone analogs happened to exhibit impressive antibacterial activity, notably against G+ bacteria, which might somewhat be related to the alkyl chain length at N-1 position.

The aim of this project was therefore to optimize the production of 1-alkyl-1H-naphtho[2,3-\textit{d}][1,2,3]triazole-4,9-diones. In addition, we decided to synthesize a library of 1,3-dialkyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-\textit{d}][1,2,3] triazol-3-ium chloride.

salts, which are cationic 1,4-naphthoquinone derivatives. The study of their antibacterial activity will enable us to elucidate the structure-activity relationship that will result from the incorporation of various alkyl chains at both N-1 and N-3 positions.

IV.2. Results and discussion

IV.2.1. Optimization of the production of 1-alkyl-1H-naphtho[2,3-d][1,2,3]triazole-4,9-diones

The reaction between 1,4-naphthoquinone and azido compounds has been known to occur either via a [2+3] cycloaddition,915,116-118 or through a Michael addition and/or oxidation process.118,119 Our group has recently reported the synthesis of 1-alkyl-1H-naphtho[2,3-d][1,2,3]triazole-4,9-diones.114 This involves a thermodynamically-controlled cycloaddition of 1,4-naphthoquinone 49 with alkyl azides, followed by an oxidation. Interestingly, this simple but versatile reaction was found to provide structurally diverse molecules, depending on the order of addition of the different reagents or the reaction conditions.

For example, a one-pot/one-step [3+2] cycloaddition in which 49, sodium azide, and alkyl bromides were allowed to react in DMF provided our expected products 50-54 (Scheme 18, Method A).114 This method also afforded the byproducts 2-alkyl-2H-naphtho[2,3-d][1,2,3]triazole-4,9-diones 55-59. Although this protocol provided a one-pot divergent synthesis of both classes of compounds in a unique and simple fashion, difficulty in separating them arose. Indeed, they displayed almost identical Rf values on TLC plate rendering it very difficult to scale up this protocol.
Scheme 18: Protocols for the preparation of compounds 50-54
To circumvent this problem, we decided to approach the synthesis of compounds 50-54 in a one-pot/two-step fashion: the alkyl azides are first prepared in situ by reaction of sodium azide and alkyl bromides, before being allowed to react with 1,4-naphthoquinone 49 (Scheme 18, Method B). To our surprise, this also gave the byproducts 2-alkylamino-1,4-naphthoquinones 60-64. Even though this class of compounds has been extensively studied for their pharmacological activities (antimycobacterial agents120 and inhibitors of coenzyme Q57), it was important to understand their formation.

We suggested that the formation of 2-alkylamino-1,4-naphthoquinones 60-64 results from the presence of an excess amount of alkyl bromides in the reacting vessel (Scheme 19). Following the initial cycloaddition of 49 with the alkyl azide, it is possible to have an S_N^2 nucleophilic substitution via N-3 of the triazoline adduct 65 toward the alkyl bromide. The unstable molecule 66 can undergo decomposition to give the intermediate species 67. Re-protonation of 67 affords the byproduct 2-alkylamino-1,4-naphthoquinone. In this proposed mechanism, the remaining alkyl bromide from the previous step can actually function as a catalyst that facilitates the formation of 2-alkylamino-1,4-naphthoquinone.

In light of these results, we expected that a third alternative, a two-pot/two-step synthesis, whereby the alkyl azides were prepared separately and allowed to react with 49 in another reacting vessel, would only provide our desired compounds 50-54 (Scheme 18, Method C). As expected, Method C generated only 50-54 with yields comparable to the other two methods (Table 4). More importantly, purification of compounds 50-54
produced in Method C was much easier as they could be isolated by precipitation in diethyl ether, avoiding the use of a column chromatography.

Scheme 19: Mechanistic explanation for the formation of compounds 60-64

Table 4: Comparison of the different methods for the preparation of compounds 50-54

<table>
<thead>
<tr>
<th>Alkyl bromides</th>
<th>1-alkyl-1H-naphtho[2,3-d] [1,2,3] triazole-4,9-dione</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 n-pentyl bromide</td>
<td>50<sup>a</sup></td>
<td>Method A<sup>a</sup> 41</td>
</tr>
<tr>
<td>2 n-hexyl bromide</td>
<td>51</td>
<td>n.a.</td>
</tr>
<tr>
<td>3 n-octyl bromide</td>
<td>52<sup>a</sup></td>
<td>52</td>
</tr>
<tr>
<td>4 n-decyl bromide</td>
<td>53<sup>a</sup></td>
<td>64</td>
</tr>
<tr>
<td>5 n-dodecyl bromide</td>
<td>54<sup>a</sup></td>
<td>68</td>
</tr>
</tbody>
</table>

^a: Ref. 114^b; obtained as inseparable mixtures of 1-alkyl-1H-naphtho[2,3-d] [1,2,3] triazole-4,9-dione and 2-alkylamino-1,4-naphthoquinone. The yields of 50-54 are estimated from the integral ratio of the 1H NMR.
IV.2.2. Synthesis of novel cationic 1,4-naphthoquinone derivatives

Our initial class of cationic 1,4-naphthoquinone derivatives was obtained by methylation at the N-3 position of the triazole motif of compounds 50-54. In order to investigate the effect of the chain length at N-3 position, we synthesized analogs with various chain lengths at both nitrogen atoms (N-1 and N-3) using alkyl triflates (ROTf) prepared in situ from the corresponding alcohol (a-f) (Scheme 20). After alkylation, the TfO\(^-\) anion was exchanged with Cl\(^-\) anion using ion-exchange resin to yield our library of cationic 1,4-naphthoquinone derivatives. This protocol enabled the parallel synthesis of 24 novel 1,3-dialkyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride salts.

IV.2.3. Antibacterial study

Similarly to the series of previously synthesized cationic anthraquinone analogs, each member of our library bears the structural scaffolds of naphthoquinone, cation and lipophilic alkyl chain, and was therefore expected to show similar biological activity.

The 1,3-dialkyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d] [1,2,3]triazol-3-ium chloride salts were tested against *E. coli* (ATCC 25922, G-) and *S. aureus* (ATCC 25923, G+) using neomycin, kanamycin, vancomycin, amikacin and hexadecyltrimethylammonium bromide (HTB) as the controls. The MIC values determined in standard fashion using serial 2-fold dilutions are listed in Table 5. The results show that these cationic compounds are more active against G+ bacteria than G-
bacteria, which is consistent with the antibacterial profile of naphthoquinone63 and cationic antiseptic agents such as HTB and cetrimonium bromide.121

For cationic 1,4-naphthoquinone derivatives with a methyl group at N-3 position, we had previously observed that the antibacterial activity against \textit{S. aureus} slightly increased with the number of carbon atoms in the alkyl group at N-1, reaching a maximum with the octyl group and then decreasing as the chain length was extended to 16 carbons.115

The presence of a different alkyl group at N-3 was however found to have a profound influence on antibacterial activity (Figure 18a). In general, compounds with MIC values below or equal to 1 \textmu g/mL against \textit{S. aureus} were obtained when the total number of carbon atoms of the alkyl groups on both nitrogen atoms was between 9 and 16. This synergistic effect of alkyl group suggests that overall lipophilicity is an important factor in the antibacterial activity. In fact, antiseptic agents with lipophilic alkyl chains have been noted for their ability to disrupt the bacterial membrane of \textit{S. aureus}.122 It should also be noted that those cationic antiseptic agents generally have a C\textsubscript{12} or longer hydrophobic tail length. This new library therefore combines shorter-chain and longer-chain compounds.

On the other hand, no general trend could be deduced from the MIC values based on the chain length against \textit{E. coli} suggesting that lipophilicity might not be a prerequisite for the antibacterial activity of this library against G- bacteria (Figure 18b).
Scheme 20: Synthesis of cationic 1,4-naphthoquinone derivatives
Table 5: MIC values of cationic 1,4-naphthoquinone derivatives (μg/mL)

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>R'</th>
<th>E.coli</th>
<th>S. aureus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neomycin B</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>1-2</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>-</td>
<td>-</td>
<td>64-125</td>
<td>0.5</td>
</tr>
<tr>
<td>Amikacin</td>
<td>-</td>
<td>-</td>
<td>0.125</td>
<td>0.5</td>
</tr>
<tr>
<td>HTB</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0.5-1</td>
</tr>
<tr>
<td>68(^a)</td>
<td>C(6)H({11})</td>
<td>CH(_3)</td>
<td>8-16</td>
<td>2</td>
</tr>
<tr>
<td>50a</td>
<td>C(6)H({11})</td>
<td>C(_2)H(_5)</td>
<td>≥250</td>
<td>2-4</td>
</tr>
<tr>
<td>50b</td>
<td>C(6)H({11})</td>
<td>C(_4)H(_9)</td>
<td>≥250</td>
<td>0.5</td>
</tr>
<tr>
<td>50c</td>
<td>C(6)H({11})</td>
<td>C(6)H({11})</td>
<td>≥250</td>
<td>1</td>
</tr>
<tr>
<td>50e</td>
<td>C(6)H({11})</td>
<td>C(6)H({17})</td>
<td>32-64</td>
<td>0.125</td>
</tr>
<tr>
<td>50f</td>
<td>C(6)H({11})</td>
<td>C({10})H({21})</td>
<td>8-16</td>
<td>1-2</td>
</tr>
<tr>
<td>69(^b)</td>
<td>C(6)H({13})</td>
<td>CH(_3)</td>
<td>125-250</td>
<td>1-2</td>
</tr>
<tr>
<td>51a</td>
<td>C(6)H({13})</td>
<td>C(_2)H(_5)</td>
<td>125-250</td>
<td>1</td>
</tr>
<tr>
<td>51b</td>
<td>C(6)H({13})</td>
<td>C(_4)H(_9)</td>
<td>125-250</td>
<td>1</td>
</tr>
<tr>
<td>51c</td>
<td>C(6)H({13})</td>
<td>C(6)H({11})</td>
<td>125</td>
<td>1-2</td>
</tr>
<tr>
<td>51d</td>
<td>C(6)H({13})</td>
<td>C(6)H({13})</td>
<td>32-64</td>
<td>0.5-1</td>
</tr>
<tr>
<td>51e</td>
<td>C(6)H({13})</td>
<td>C(6)H({17})</td>
<td>4-8</td>
<td>0.5-1</td>
</tr>
<tr>
<td>51f</td>
<td>C(6)H({13})</td>
<td>C({10})H({21})</td>
<td>2</td>
<td>0.25-0.5</td>
</tr>
<tr>
<td>70(^b)</td>
<td>C(6)H({17})</td>
<td>CH(_3)</td>
<td>16-32</td>
<td>0.032-0.064</td>
</tr>
<tr>
<td>52a</td>
<td>C(6)H({17})</td>
<td>C(_2)H(_5)</td>
<td>≥250</td>
<td>0.25-0.5</td>
</tr>
<tr>
<td>52b</td>
<td>C(6)H({17})</td>
<td>C(_4)H(_9)</td>
<td>64</td>
<td>1-2</td>
</tr>
<tr>
<td>52e</td>
<td>C(6)H({17})</td>
<td>C(6)H({17})</td>
<td>≥250</td>
<td>2-4</td>
</tr>
<tr>
<td>52f</td>
<td>C(6)H({17})</td>
<td>C({10})H({21})</td>
<td>32-64</td>
<td>1-2</td>
</tr>
<tr>
<td>71(^a)</td>
<td>C({10})H({21})</td>
<td>CH(_3)</td>
<td>32</td>
<td>0.032</td>
</tr>
<tr>
<td>53a</td>
<td>C({10})H({21})</td>
<td>C(_2)H(_6)</td>
<td>≥250</td>
<td>0.125-0.25</td>
</tr>
<tr>
<td>53b</td>
<td>C({10})H({21})</td>
<td>C(_4)H(_9)</td>
<td>64-125</td>
<td>0.25</td>
</tr>
<tr>
<td>53f</td>
<td>C({10})H({21})</td>
<td>C({10})H({21})</td>
<td>125-250</td>
<td>16-32</td>
</tr>
<tr>
<td>72(^a)</td>
<td>C({12})H({25})</td>
<td>CH(_3)</td>
<td>16-32</td>
<td>0.064-0.125</td>
</tr>
<tr>
<td>54a</td>
<td>C({12})H({25})</td>
<td>C(_2)H(_5)</td>
<td>32</td>
<td>0.125</td>
</tr>
<tr>
<td>54b</td>
<td>C({12})H({25})</td>
<td>C(_4)H(_9)</td>
<td>≥250</td>
<td>0.5-1</td>
</tr>
<tr>
<td>54c</td>
<td>C({12})H({25})</td>
<td>C(6)H({11})</td>
<td>125-250</td>
<td>0.25-0.5</td>
</tr>
<tr>
<td>54d</td>
<td>C({12})H({25})</td>
<td>C(6)H({13})</td>
<td>125</td>
<td>0.5-1</td>
</tr>
<tr>
<td>54e</td>
<td>C({12})H({25})</td>
<td>C(6)H({17})</td>
<td>125-250</td>
<td>2-4</td>
</tr>
<tr>
<td>54f</td>
<td>C({12})H({25})</td>
<td>C({10})H({21})</td>
<td>>250</td>
<td>16-32</td>
</tr>
</tbody>
</table>

\(^a\): Ref. 115; \(^b\): Compound 69 was synthesized according to the protocol described in reference 115.
Figure 18: Effect of the alkyl chain length on the MIC values of the cationic 1,4-naphthoquinone derivatives against (a) S. aureus and (b) E. coli
IV.3. Conclusion

We have developed a new and improved protocol for the synthesis of 1-alkyl-$1H$-naphtho[2,3-d][1,2,3]triazole-4,9-diones. To further investigate the effect of alkyl substitution at N-3 position, we constructed a library of 4,9-dioxo-4,9-dihydro-$1H$-naphtho[2,3-d][1,2,3]triazol-3-ium chloride salts and tested them against a representative G+ and G- bacterium. When the total number of carbon atoms of the alkyl groups at both N-1 and N-3 ranged between 9 and 16, these cationic 1,4-naphthoquinone derivatives will exhibit nanomolar-level antibacterial activity against $S.\ aureus$, suggesting a synergistic effect of the alkyl group. However, they showed little or no activity against $E.\ coli$.
CHAPTER V

CONCLUSIONS AND SIGNIFICANCE

Aminoglycosides and 1,4-naphthoquinone derivatives are two classes of naturally occurring compounds that have long attracted interest due their important biological and pharmaceutical applications, earning them the title of “drug-productive scaffolds.”

Aminoglycosides are clinically used antibiotics with a broad-spectrum of activity against Gram-negative and Gram-positive bacteria. However, the continuous emergence of bacterial resistance has seriously hampered their efficacy. While many efforts have been devoted to reviving their antibacterial activity, novel avenues have also been explored in the field of aminoglycosides. Their ability to bind to the ribosome has been exploited in the development of new therapeutic approaches to treat genetic diseases caused by premature nonsense mutations. Our laboratory has previously synthesized libraries of aminoglycosides and the bioactive screening of these libraries has enabled the identification of a lead compound, TC007, in the treatment of spinal muscular atrophy. By slightly modifying the original protocol, more TC007 was prepared and it was found to restore the functionality of the truncated and unstable SMNΔ7 protein by allowing the incorporation of a near-cognate amino acid at the premature stop codon.

Another screening of our libraries of aminoglycosides has revealed FG08, a kanamycin B analog, as a potential antifungal agent with application in agriculture. FG08 was found to inhibit the growth of several pathogenic fungi that are responsible for a large number of crop diseases. In particular, FG08 was found to suppress Fusarium head blight, a crop disease that has incurred huge economic losses to the U.S. government.
More interesting, unlike other antibiotics used in plant disease control, FG08 did not show any activity against bacteria. As a result, FG08 will unlikely contribute to the transfer of bacterial resistance. The main chemical feature of FG08 that enabled it to “switch” from an antibacterial agent (kanamycin) to a fungicide was found to be the C8 alkyl chain present at O-4’’ position. Novel kanamycin B analogs were then synthesized to investigate the alkyl chain length and the position of its attachment that will confer optimum fungicidal activity. First, two different alkyl groups (n-butyl and n-dodecyl) were inserted at the O-4’’ position of ring III, which was later on attached by regio- and stereoselective glycosylation at the O-6 position of neamine. Second, an n-octyl group was introduced at various positions of ring I (O-2’’, O-3’’, O-4’’, and O-6’’), ring II (O-5), and ring III (O-3’ and O-4’) to afford seven additional kanamycin B analogs. A bioactive screening of these analogs allowed us to draw a SAR for the optimization of kanamycin B analogs as potential agro fungicides.

Finally, a protocol was developed to improve the production of 1-alkyl-1H-naphtho[2,3-d][1,2,3]triazole-4,9-diones and a library of cationic 1,4-naphthoquinone derivatives was synthesized. Unlike the previously reported one-pot/one-step [3+2] cycloaddition that gives an inseparable mixture of 1-alkyl-1H-naphtho[2,3-d][1,2,3]triazole-4,9-diones and its byproduct,115 a two-pot/two-step method provided only the desired compound upon precipitation in diethyl ether, avoiding the use of a column chromatography. This enabled the facile synthesis of a library of cationic 1,4-naphthoquinone derivatives whose several members were found to exhibit antibacterial activity in the nanomolar range. More importantly, these compounds were more active
against Gram-positive bacteria than Gram-negative. They could be of great importance when antibiotics with narrow-spectrum activity are required. For example, *Clostridium difficile* is a Gram positive bacterium responsible for clodistrium difficile infection (CDI), which is a severe inflammation of the colon. CDI is usually observed following surgery, when the gut flora has been eradicated by the use of antibiotics. The human body lacking the ability to defend itself, invasion of *C. difficile* is now inevitable, unless a drug with specific activity against Gram-positive bacteria is used.

This research has therefore contributed to the investigation of new applications of aminoglycosides, and developed novel cationic 1,4-naphthoquinone derivatives. However, more work is still to be done to get as close as possible to the development of a new drug. With the finding of the conversion of the antibacterial kanamycin B to an agrofungicide as a result of the attachment of a C8 alkyl chain at the 4’´ position, an appropriate 4-**O**-octyl glucopyranose derivative needs to be developed for a facile chemoenzymatic synthesis of **FG08** or **FG03**. In addition, novel cationic 1,4-naphthoquinone derivatives with aryl groups at N-1 position could be synthesized.
CHAPTER VI

EXPERIMENTAL SECTION

Chemical reagents and chromatography solvents were purchased from Aldrich Chemical Co. or Acros Chemical Co. and were used without purification unless otherwise noted. Dichloromethane was freshly distilled from calcium hydride. Pyridine and triethylamine were stored over 4 Å molecular sieves. Column chromatographic purifications were carried out on silica gel 230x450 mesh, Sorbent Tech. Analytical TLC was performed on Sorbent Technologies silica gel glass TLC plates. Visualization was accomplished with UV light (254 nm) followed by staining with diluted sulfuric acid (5% in methanol) solution and heating.

Proton magnetic resonance spectra were recorded using JEOL 300 or Bruker ARX 400 spectrometers. Chemical shifts were reported as parts per million (ppm) downfield from tetramethylsilane in δ unit and coupling constants were given in cycles per seconds (Hz). Signal multiplicities were indicated by s (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). ¹³C NMR spectra were obtained using JEOL 300 at 75 MHz, or Bruker ARX 400 at 100 MHz. Routine ¹³C NMR spectra were fully decoupled by broad-band WALTZ decoupling. All NMR spectra were at ambient temperature. High-resolution fast-atom bombardment (HRFAB), high-resolution MALDI, chemical ionization (CI), atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI) were provided by the Mass Spectrometry Facilities, University of California, Riverside.
General Procedure for Aminoglycoside Treatment of SMA (performed in Dr. Lorson’s laboratory). 3,813 SMA type I patient fibroblasts cells were plated on cover slips and grown in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% (v/v) fetal bovine serum and antibiotics for 24 h. Cells were washed three times with phosphate-buffered saline (PBS) and re-fed with DMEM containing the aminoglycoside diluted to the indicated concentration. In prolonged experiments, the medium containing freshly diluted aminoglycoside was changed every 24 h for the indicated duration (up to 96 h). For cells used in Western blot analysis, cells were plated at ~80% confluence in six-well dishes and treated for 48 h. Fresh drug-containing media was replaced every 24 h, diluted to 100 μg/mL. Cells were initially identified by DAPI staining, not by the presence or the absence of SMN and gems. Only after obtaining a field of view, the SMN/FTIC channel was observed. The DAPI field was done randomly across a large number of treated cells, providing an unbiased assessment of gem numbers throughout the cell population.

General Procedure for Mice and TC007 Treatment (performed in Dr. Lorson’s laboratory). All animal experiments were carried out in accordance with protocols approved by the Animal Care and Use Committee of the University of Missouri. Mice were genotyped and litters excluded. TC007 was initially resuspended in distilled water, further diluted in PBS, and administered by subcutaneous injection (10 μL/gram of body weight) on post-natal days 2 through 15. PBS (vehicle) was injected as a negative control. To assess gross motor function, righting reflex was measured starting at post-natal day 5.
General Procedure for MIC Determination. A solution of selected bacteria was inoculated in the Trypticase Soy broth at 35 °C for 1-2 h. The bacteria concentration was found and diluted with broth, if necessary, to an absorption value of 0.08 to 0.1 at 625 nm. The adjusted inoculated medium (100 µL) was diluted with 10 mL of broth and then applied to a 96-well microtiter plate (50 µL). A series of solutions (50 µL each in 2-fold dilution) of the tested compounds was added to the testing wells. The 96-well plate was incubated at 35 °C for 12-18 h. The minimum inhibitory concentration (MIC) is defined as the minimum concentration of compound needed to inhibit the growth of bacteria. The MIC results are repeated at least three times.

General Procedure for Leaf Infection Assay (performed by Ms. Yukie Kawasaki, a graduate student of Dr. Jon Takemoto. All the figures/data related to leaf infection assay remain her sole propriety). Suspensions of *F. graminearum* macroconidia (2.0x10^4 mL^-1) were prepared in sterile solution of 0.25% (wt vol^-1) agar and 0.20% (by volume) of Tween 20 and mixed with equal volumes of aminoglycoside made in the same solution.

FHB Disease Suppression (performed by Ms. Yukie Kawasaki, a graduate student of Dr. Jon Takemoto. All the figures/data related to FHB disease suppression remain her sole propriety). Rapid-maturing cultivar Apogee was grown for 5-6 weeks in a greenhouse to the flowering stage. Florets (one per spikelet) were treated with a solution of aminoglycoside at the indicated concentration, and then inoculated with suspension of *F. graminearum* macroconidia (10 µL, 10^5 conidia mL^-1). After 4 days, the spikelets were visually inspected for disease symptoms (chlorosis, spikelet curling, and dehydration).
General Procedure for O-Alkylation of Sugars. To a solution of starting material in anhydrous DMF, alkyl bromide (2.0 equivalents), NaH (2.0 equivalents), and catalytic amount of TBAI were added. The reaction was stirred overnight. When complete, the reaction was quenched by addition of MeOH (5 mL) and was slowly poured into a mixture of ice and EtOAc. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with 1 N aqueous HCl, water, saturated aqueous NaHCO₃ and brine, and then dried over solid Na₂SO₄. After removal of the solvent and purification with gradient column chromatography (hexane:EtOAc = 100:0 to 60:40), the product was obtained.

General Procedure for the Glycosylation using Thiophenyl donor, and Hydrolysis. A solution of glycosyl donor, neamine derivative (1.2 equivalents), and activated powder 4 Å molecular sieve was stirred at room temperature for 2 h in 12 mL of a mixed anhydrous solution Et₂O:CH₂Cl₂ = 3:1. The mixture was cooled to -70 °C and N-iodosuccinimide (1.2 equivalents) was quickly added. After the temperature has warmed up to -40 °C, trifluoromethanesulfonic acid (0.15 equivalents) was added. The solution was stirred at low temperature till the complete consumption of the glycosyl donor. The reaction mixture was quenched by addition of solid NaHCO₃, Na₂S₂O₃, and Na₂SO₄. After being stirred for 15 minutes, the reaction mixture was filtered through celite. The residue was washed thoroughly with EtOAc. After removal of the solvents, the crude product was purified with gradient column chromatography. The glycosylated compounds were often mixed with inseparable impurities, and were therefore fully characterized after hydrolysis. The glycosylated product was dissolved in THF (1 mL).
and MeOH (5 mL), and 1M NaOMe in MeOH (0.5 mL) was added. The mixture was stirred at room temperature until TLC analysis indicated completion of the reaction (about 30 minutes). The reaction was neutralized with Amberlite IR-120 (H\(^+\)), and filtered through celite. After removal of the solvents, the crude product was purified with gradient column chromatography (Hexane:EtOAc = 100:0 to 50:50) to afford the expected product.

General Procedure for Cycloaddition of 1,4-Naphthoquinone

Method A. is described in ref 114.

Method B. A solution of NaN\(_3\) (~0.1 g) and alkyl bromide (2 equivalents) in DMF (10 mL) was stirred at 80 °C for one day in a sealed vial. Then naphthoquinone (2 equivalents) was added and the mixture was heated for another day at 110 °C. The solvent was evaporated and the crude product was purified by column chromatography (eluted from hexane:EtOAc = 100:0 to 50:50) to afford a mixture containing both 1-alkyl-1\(H\)-naphtho[2,3-\(d\)]triazole-4,9-diones and 2-alkylamino-1,4-naphthoquinones. The 2-alkylamino-1,4-naphthoquinones were recovered after N-3 alkylation.

Method C. A solution of alkyl azide (~0.3 g), which was obtained using the method described in reference 124, and naphthoquinone (2 equivalents) in DMF (10 mL) was stirred at 110 °C overnight in a sealed vial. The solvent was evaporated and cold diethyl ether (50 mL) was added. The solid that precipitated was collected by filtration through a Hirsh funnel and washed with more diethyl ether to afford the expected product as a pale brown solid.
General Procedure for N-3 Alkylation. The alcohol (2 equivalents) and pyridine (4 equivalents) were dissolved in anhydrous toluene (10 mL) and cooled in an ice-water bath before Tf₂O (4 equivalents) was slowly added. The mixture was stirred at 0 °C for 2 h and the triazole (0.11 g, 1 equivalent) was then added. This mixture was then refluxed at 110 °C for 6-8 h. After completion of the reaction, the solvent was removed and the crude product was purified by column chromatography (eluted with 300 mL Hexane:EtOAC = 50:50, 200 mL pure EtOAc, and finally 100 mL EtOAc:MeOH = 80:20) to afford the expected product, which was then eluted through a small column packed with Dowex 1x8 (Cl⁻) resin for ion exchange.

Hexaazido-hepta-O-benzyl Neomycin (1). NaN₃ (54.8 g, 842.2 mmol) was first dissolved with distilled water (75 mL) in a 1L round-bottomed flask. Dichloromethane (125 mL) was then added and the flask was transferred in an ice-water bath. Tf₂O (28.4 mL, 168.5 mmol) was slowly added and the mixture was stirred at low temperature. Two hours later, the reaction mixture was transferred into a 1L separatory funnel and a saturated aqueous NaHCO₃ solution was added. The funnel was shaken to release CO₂ gas and the CH₂Cl₂ phase was separated. The aqueous phase was extracted with an additional 75 mL CH₂Cl₂. The organic layers were then combined and washed with saturated NaHCO₃ solution until no more gas was produced. This freshly prepared dichloromethane solution of triflic azide was slowly added to a mixture of neomycin trisulfate (10.0 g, 14.04 mmol), CuSO₄.5H₂O (0.35 g, 1.40 mmol), K₂CO₃ (15.5 g, 112.3 mmol) in H₂O (150 mL) and MeOH (300 mL). The mixture was stirred at room temperature overnight until TLC analysis showed complete reaction. The solvent was
then removed under reduced pressure, and the residue was redissolved in EtOAc. The filtrate obtained following filtration through a celite bed was subsequently extracted with 1N aqueous HCl, saturated aqueous NaHCO₃, water and brine. The organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure to provide a greenish crude product. After being dried under vacuum pump for a few hours, the crude product (14.07 g, 18.3 mmol) was dissolved in DMF (100 mL), and BnBr (32.8 mL, 274.1 mmol) and a catalytic amount of TBAI were added. The mixture was then transferred in an ice-water bath and NaH (11.0 g, 274.1 mmol) was slowly added. When TLC analysis performed the following day indicated completion, the reaction was quenched with MeOH (20 mL) and poured over ice. The mixture was diluted with EtOAc, extracted with 1N aqueous HCl, saturated aqueous NaHCO₃, water and brine, dried over Na₂SO₄, filtered, and concentrated. Purification of the crude product by gradient column chromatography (hexane:EtOAc = 100:0 to 50:50) provided 1 (7.44 g, 5.3 mmol, 38% from neomycin sulfate).

1,3,2′,6′-Tetraazido-6,3′,4′-tri-O-benzyl Neamine (2). 82 Compound 1 (7.44 g, 5.3 mmol) was dissolved in CH₃CN (100 mL) and CuCl₂.2H₂O (1.81 g, 10.6 mmol) was added. The mixture was stirred at 80 °C overnight until TLC analysis showed completion of the reaction. The solvent was then removed under reduced pressure. The residue obtained was redissolved in EtOAc and filtered through a celite bed. The filtrate was then extracted with water and brine, dried over Na₂SO₄, filtered, and concentrated. Purification by gradient column chromatography (hexane:EtOAc = 100:0 to 20:80) provided 2 (2.10 g, 3.0 mmol, 57%).
1,2:5,6-Di-O-isopropylidene-α-D-allofuranose (4).\(^{83}\) To a sealed round-bottomed flask containing anhydrous CH\(_2\)Cl\(_2\) (400 mL) at -78 °C, oxaly chloride (5.03 mL, 57.6 mmol) and anhydrous DMSO (8.2 mL, 115.3 mmol) were added dropwise. When the temperature warmed up to -65 °C, a solution of diacetone-D-glucose 3 in anhydrous CH\(_2\)Cl\(_2\) (100 mL) was added, and the reaction was allowed to stir until the temperature reaches -45 °C. At that moment, anhydrous Et\(_3\)N (32.3 mL, 230.6 mmol) was added and the reaction mixture was stirred until room temperature. The mixture was diluted with CH\(_2\)Cl\(_2\) and washed with 1N aqueous HCl, pH 7 buffer (3 times), and brine. The organic layer was dried over Na\(_2\)SO\(_4\), filtered, and concentrated. The crude product obtained was then dissolved in anhydrous MeOH and the solution was cooled down to 0 °C. NaBH\(_4\) (4.36 g, 115.3 mmol) was then slowly added and the reaction was allowed to stir overnight till room temperature. The reaction was quenched by adding HCl dropwise until the solution reaches pH 8. Removal of the solvents gave a syrup-like residue that was diluted with EtOAc. Filtration through layers of silica gel and celite provided a solution that was concentrated and purified by gradient column chromatography (hexane:EtOAc = 100:0 to 40:60) to afford 4 (4.62 g, 17.7 mmol, 46%).

3-Azido-3-deoxy-1,2:5,6-di-O-isopropylidene-α-D-glucopyranose (5).\(^{84}\) To a solution of 4 (4.59 g, 17.6 mmol) in anhydrous CH\(_2\)Cl\(_2\) (100 mL), pyridine (4.2 mL, 51.1 mmol) was added and the mixture was cooled down to 0 °C in an ice-water bath. Tf\(_2\)O (7.5 mL, 44.1 mmol) was then added dropwise and the reaction was allowed to stir for 2 h, during which time the temperature reached 20 °C. The reaction mixture was diluted with CH\(_2\)Cl\(_2\) and washed with water, saturated aqueous NaHCO\(_3\) (twice), and brine. The
organic layer was dried over Na₂SO₄, filtered, and concentrated. The crude triflate was added to a solution of NaN₃ (3.44 g, 52.9 mmol) in DMF (50 mL) and the reaction was stirred at room temperature overnight until TLC analysis confirmed completion of the reaction. The solvent was then removed to afford a residue that was dissolved in EtOAc. The organic layer was washed with water and brine, dried over Na₂SO₄, filtered, and concentrated. Purification by gradient column chromatography (hexane:EtOAc = 100:0 to 20:80) provided 5 (3.68 g, 12.9 mmol, 73%).

1,2,4,6-Tetra-O-acetyl-3-azido-3-deoxy-D-glucopyranose (6). A solution of 5 (4.40 g, 15.4 mmol) in 150 mL of a mixed solution of AcOH/TFA/H₂O (80/1/19) was stirred at 55 °C overnight. When TLC analysis indicated completion of the reaction, the solvents were removed. After being dried in vacuo for a few hours, the crude product was dissolved in Ac₂O (50 mL) and TFA (5 mL), and the mixture was stirred at room temperature overnight. Solid NaHCO₃ was then added to neutralize the excess acid. EtOAc was added to dilute the solution and the organic layer was washed with water, saturated aqueous NaHCO₃ (3 times), and brine. The organic layer was then dried over Na₂SO₄, filtered, and concentrated. Purification by gradient column chromatography (hexane:EtOAc = 100:0 to 40:60) provided 6 (5.42 g, 14.5 mmol, 94%) as a mixture of α/β anomers in a 1/1 ratio.

2,4,6-Tri-O-acetyl-3-azido-3-deoxy-D-glucopyranose (7). To a solution of 6 (0.37 g, 0.99 mmol) in anhydrous DMF (5 mL) was added hydrazine acetate (0.11 g, 1.2 mmol). The reaction mixture was stirred at room temperature for 6 h when TLC analysis indicated completion of the reaction. The reaction mixture was then filtered through a
short column packed with layers of silica gel and celite. The column was eluted thoroughly with EtOAc. After removal of the solvents, the crude product was purified by gradient column chromatography (hexane: EtOAc = 100:0 to 0:100) to afford 7 (0.32 g, 0.97 mmol, 98%) as a mixture of α/β anomers in a 1/1 ratio.

3-Azido-2,4,6-tri-O-acetyl-3-deoxy-α-D-glucopyranosyl trichloroacetimidate (8). To a solution of 7 (0.66 g, 2.0 mmol) and trichloroacetonitrile (1.0 mL, 10.0 mmol) in anhydrous CH₂Cl₂, DBU (0.08 mL, 0.50 mmol) was added dropwise. The solution was stirred at room temperature until TLC analysis indicated completion of the reaction, sometimes as fast as 10 minutes. Then charcoal was added to the reaction mixture. This was then filtered through a short column packed with celite and the column was thoroughly eluted with EtOAc. After removal of the solvents, the crude product was loaded in a column that has been pretreated with triethylamine. Purification by gradient column chromatography (hexane: EtOAc = 100:0 to 50:50) provided 8 (0.63 g, 1.3 mmol, 66%). This was kept in the fridge until needed to prevent it from degrading at room temperature.

5-O-(3′″-Azido-2′″,4′″,6′″-tri-O-acetyl-3-deoxy-β-D-glucopyranosyl)-1,3,2′,6′-tetrazido-6,3′,4′-tri-O-benzyl neamine (9). A solution of neamine derivative 2 (0.20 g, 0.29 mmol), glycosyl trichloroacetimidate 8 (0.16 g, 0.34 mmol), and activated powder 4 Å molecular sieve was stirred in anhydrous diethyl ether (10 mL) at room temperature for 2 h, then cooled to -50 °C. BF₃-OEt₂ (0.05 mL) was then added. The solution was stirred till the complete consumption of 2. The reaction mixture was quenched by the addition of powder NaHCO₃. After being stirred for 15 minutes, the reaction mixture was filtered
through celite. The residue was washed thoroughly with EtOAc. After removal of the solvents, the crude product was purified with gradient column chromatography (hexane:EtOAc = 100:0 to 50:50) to afford 9 (0.22 g, 0.22 mmol, 76%).

5-O-(3-Amino-3-deoxy-β-D-glucopyranosyl)neamine (TC007). A solution of 9 (0.33 g, 0.33 mmol) and K₂CO₃ (0.41 g, 2.94 mmol) was stirred in MeOH (10 mL) at room temperature overnight until TLC analysis indicated completion of the reaction. The solvent was removed, and the reaction mixture was diluted with EtOAc and filtered through a short column packed with layers of silica gel and celite. The column was eluted with EtOAc and MeOH. After removal of the solvents, the crude product was dissolved in THF (5 mL) and the solution was transferred in a reaction flask equipped with a reflux condenser. Then H₂O (0.6 mL) and PMe₃ (1M in THF, 1.36 mL, 1.36 mmol) were added. The reaction mixture was stirred at 50 °C for 2 h until completion of the reaction. Removal of the solvents afforded a crude product that was dissolved in 5 mL of degassed AcOH/H₂O (1/4). Then a catalytic amount of Pd(OH)₂/C (20% Degussa type) was added and the reaction mixture was further degassed. The reaction mixture was then stirred at room temperature under atmospheric H₂ pressure for one day. The reaction mixture was then filtered through celite. The residue was washed with water, and the combined solutions were concentrated, affording a crude product that was eluted through an ion-exchange column packed with Dowex 1X8 resin (Cl⁻ form). Removal of the solvents afforded TC007 as a chloride salt (136.3 mg, 0.20 mmol, 61% over 4 steps).

1,3,2´,6´-Tetraazidoneamine (13). NaN₃ (50.0 g, 768.9 mmol) was first dissolved with distilled water (46 mL) in a 1L round-bottomed flask. Dichloromethane
(77 mL) was then added and the flask was transferred in an ice-water bath. Tf$_2$O (26.0 mL, 153.8 mmol) was slowly added and the mixture was stirred at low temperature. Two hours later, the reaction mixture was transferred into a 1L separatory funnel and saturated aqueous NaHCO$_3$ was added. The funnel was shaken to release CO$_2$ gas and then the CH$_2$Cl$_2$ phase was separated. The aqueous phase was extracted with an additional 75 mL CH$_2$Cl$_2$. The organic layers were then combined and washed with saturated aqueous NaHCO$_3$ solution until no more gas was produced. (Even though an explosion never happened whenever I had to prepare triflic azide, extra precaution should be taken throughout its synthesis as it is known to be very explosive). This freshly prepared dichloromethane solution of triflic azide was slowly added to a mixture of neamine hydrochloride 12 (9.0 g, 19.2 mmol), CuSO$_4$.5H$_2$O (0.48 g, 1.92 mmol), and K$_2$CO$_3$ (21.2 g, 153.8 mmol) in H$_2$O (150 mL) and MeOH (300 mL). The mixture was stirred at room temperature overnight until TLC analysis showed complete reaction. The solvent was then removed under reduced pressure, and the residue was redissolved in EtOAc. The filtrate obtained following filtration through a celite bed was subsequently extracted with 1N aqueous HCl, saturated aqueous NaHCO$_3$, water and brine. The organic layer was dried over Na$_2$SO$_4$, filtered and concentrated. Purification with gradient column chromatography (hexane:EtOAc = 100:0 to 0:100) afforded 13 (4.26 g, 10.0 mmol, 52%).

1,3,2′,6′-Tetraazido-5,6-O-cyclohexyldi eneneamine (14). To a solution of 13 (7.95 g, 18.6 mmol) and p-toluenesulfonic acid monohydrate (1.77 g, 9.32 mmol) in anhydrous CH$_3$CN (100 mL), cyclohexanone dimethyl ketal (12.8 mL, 83.9 mmol) was added, and the mixture was stirred overnight at room temperature. The reaction mixture
was quenched by addition of Et$_3$N (2.6 mL) and was concentrated. The residue obtained was redissolved in EtOAc, washed with water and brine, dried over Na$_2$SO$_4$, and concentrated. Purification with column chromatography provided 14 (4.8 g, 9.5 mmol, 51%).

1,3,2′,6′-Tetraazido-3′,4′-di-O-acetylneamine (10). To a solution of 14 (3.20 g, 6.32 mmol) in anhydrous CH$_2$Cl$_2$ (50 mL), Et$_3$N (6.2 mL, 44.3 mmol) and DMAP (0.31 g, 2.53 mmol) were slowly added, followed by Ac$_2$O (3.0 mL, 32.6 mmol). The reaction was stirred at room temperature for 3 h. When complete, the reaction mixture was quenched with saturated aqueous NaHCO$_3$ and extracted with EtOAc. The organic layer was washed with 1N aqueous HCl, water, saturated aqueous NaHCO$_3$, brine, and dried over solid Na$_2$SO$_4$. After removal of the solvent, a brownish, oily crude product was obtained, to which 80 mL of a mixed solution of dioxane:H$_2$O = 1:1 was added, followed by 50 mL glacial acetic acid. The resulting mixture was refluxed at 60~65°C overnight. When complete, the reaction mixture was quenched with saturated aqueous NaHCO$_3$ and extracted with EtOAc. The organic layer was washed with 1N aqueous HCl, water, saturated aqueous NaHCO$_3$, brine, and dried over solid Na$_2$SO$_4$. After removal of the solvent followed by purification with a gradient column chromatography (hexane:EtOAc = 100:0 to 40:60), 10 was obtained (2.03 g, 4.0 mmol, 63%).

Phenyl 4,6-O-(phenylmethylene)-1-thio-β-D-glucopyranoside (16). To a solution of 15 (10.0 g, 22.7 mmol) in anhydrous MeOH (300 mL), 5 mL of a 1M solution of NaOMe in MeOH was added and the mixture was stirred at room temperature for 2 h. When complete, the reaction was quenched by adding Amberlite IR 120 H$^+$ resin to the
mixture, followed by filtration through celite and concentration of the filtrate. The crude product obtained was diluted in anhydrous DMF (50 mL), and TsOH.H₂O (2.23 g, 11.7 mmol) and benzaldehyde dimethyl acetal (3.53 mL, 23.4 mmol) were added. The reaction flask was then attached to a rotavapor and rotated at 60 °C for 1 h. The temperature of the water bath was then raised to 100 °C and most of the DMF was removed. The reaction mixture was cooled down to room temperature and saturated aqueous NaHCO₃ (60 mL) was added. Lots of white precipitates were formed. The solution was then stirred at 90 °C and cooled down again to room temperature. The solids were filtered through a Buchner funnel, washed with plenty of water, and dried under reduced pressure to give 16 (7.4 g, 20.4 mmol, 90%).

Phenyl 2,3-di-O-benzyl-1-thio-β-D-glucopyranoside (17). To a solution of 16 (2.24 g, 6.2 mmol) in DMF (40 mL), BnBr (3.0 mL, 24.9 mmol) and a catalytic amount of TBAI were added. The mixture was then transferred in an ice-water bath and NaH (1.00 g, 24.9 mmol) was slowly added. When TLC analysis performed the following day indicated completion, the reaction was quenched with MeOH (5 mL) and poured over ice. The mixture was diluted with EtOAc. The organic layer was washed with 1N aqueous HCl, saturated aqueous NaHCO₃, water and brine, dried over Na₂SO₄, filtered, and concentrated. The obtained crude product was dissolved in 30 mL of a mixed solution of MeOH:H₂O = 1:1, and p-toluenesulfonic acid monohydrate (0.59 g, 3.1 mmol) was added. The reaction mixture was stirred at room temperature overnight. When complete, the reaction was quenched by addition of Et₃N (1.3 mL) and concentrated. The residue obtained was redissolved in EtOAc, washed with water and brine, dried over
Na₂SO₄, and concentrated. Purification with gradient column chromatography (hexane:EtOAc = 100:0 to 50:50) provided 17 (1.29 g, 2.9 mmol, 46%).

Phenyl 2,3-di-0-benzyl-6-deoxy-1-thio-β-D-glucopyranoside (18). To a solution of 17 (5.13 g, 11.3 mmol) in anhydrous pyridine was slowly added TsCl (2.59 g, 13.6 mmol) at 0 °C. The reaction mixture was stirred overnight allowing the reaction to warm to room temperature. After completion of the reaction, the reaction mixture was extracted with EtOAc. The combined organic layer was washed with aqueous 1 N HCl (3 times), saturated aqueous NaHCO₃, and brine, and dried over Na₂SO₄. After removal of the solvent, the tosylated crude product was dissolved in anhydrous THF (100 mL) and LiAlH₄ (0.99 g, 26.0 mmol) was added. The reaction was stirred at room temperature overnight and then refluxed for 2 h. When complete, the reaction mixture was quenched by slow addition to ice then filtered through celite. The filtered residue was eluted with more EtOAc. The combined organic layers were washed with 1 N HCl, water, saturated aqueous NaHCO₃ and brine, and dried over Na₂SO₄. Removal of the solvent followed by purification with gradient column chromatography (hexane: EtOAc = 90:10 to 40:60) afforded 18 (2.17 g, 4.97 mmol, 44%).

Phenyl 2,3-di-O-benzyl-6-deoxy-4-O-n-butyl-1-thio-β-D-glucopyranoside (11a). Please refer to the general procedure for O-alkylation of sugars. Compound 11a was obtained with 72% yield. ¹H NMR (CDCl₃, 400 MHz) δ 7.2 - 7.8 (m, 15H), 5.01 (d, J = 10.3 Hz, 1H), 4.9 - 5.0 (m, 2H), 4.85 (d, J = 10.3 Hz, 1H), 4.77 (d, J = 9.8 Hz, 1H, H-1), 3.9 (m, 1H, H-4), 3.7 (m, 2H), 3.57 (dd, J = 9.0, 9.5 Hz, 1H, H-2), 3.4 - 3.5 (m, 1H, H-5), 3.13 (t, J = 9.2 Hz, 1H, H-3), 1.6 - 1.7 (m, 2H), 1.48 (d, J = 6.1 Hz, 3H, H-6), 1.4 -
1.6 (m, 2H), 1.01 (t, $J = 7.4$ Hz, 3H); 13C NMR (CDCl$_3$, 100 MHz) δ 138.9, 138.5, 134.3, 132.2 (2 carbons), 129.2 (2 carbons), 128.7 (4 carbons), 128.5 (2 carbons), 128.1 (3 carbons), 128.0, 127.7, 87.7, 86.2, 84.1, 81.5, 76.1 (2 carbons), 75.8, 73.6, 32.9, 14.3; ESI/APCI calcd for C$_{30}$H$_{36}$O$_4$SNa ([M+Na]$^+$) m/z 515.2232; measured m/z 515.2231.

Phenyl 2,3-di-O-benzyl-6-deoxy-4-O-n-octyl-1-thio-β-D-glucopyranoside (11b). Please refer to the general procedure for O-alkylation of sugars. Compound 11b was obtained with 63% yield.

Phenyl 2,3-di-O-benzyl-6-deoxy-4-O-n-dodecyl-1-thio-β-D-glucopyranoside (11c). Please refer to the general procedure for O-alkylation of sugars. Compound 11c was obtained with 64% yield. 1H NMR (CDCl$_3$, 400 MHz) δ 7.3 - 7.7 (m, 15H), 5.0 (m, 3H), 4.83 (d, $J = 10.3$ Hz, 1H), 4.74 (d, $J = 9.7$ Hz, 1H, H-1), 3.9 (m, 1H, H-4), 3.7 (m, 2H), 3.4 - 3.6 (m, 2H), 3.12 (t, $J = 9.2$ Hz, 1H, H-3), 1.6 - 1.7 (m, 2H), 1.46 (d, $J = 6.1$ Hz, 3H, H-6), 1.4 (m, 18H), 0.99 (t, $J = 6.6$ Hz, 3H); 13C NMR (CDCl$_3$, 100 MHz) δ 138.9, 138.5, 134.3, 132.1 (2 carbons), 129.2 (2 carbons), 128.7 (4 carbons), 128.5 (2 carbons), 128.1 (3 carbons), 127.9, 127.7, 87.7, 86.8, 84.0, 81.4, 76.1 (2 carbons), 75.7, 73.9, 32.2, 30.8, 30.0 (2 carbons), 29.9 (2 carbons), 29.8, 29.7, 26.5, 23.0, 18.4, 14.5; ESI/APCI calcd for C$_{30}$H$_{36}$O$_4$SNa ([M+Na]$^+$) m/z 627.3484; measured m/z 627.3478.

6-O-(2,3-Di-O-benzyl-6-deoxy-4-O-n-butyl-D-glucopyranosyl)-1,3,2′,6′-tetraazidoneamine (19a). Please refer to the general procedure for glycosylation using thiophenyl donor, and hydrolysis. Compound 19a was obtained with 71% yield. 1H NMR (CDCl$_3$, 300 MHz) δ 7.2 - 7.4 (m, 10H), 5.69 (d, $J = 3.8$ Hz, 1H, H-1′), 4.92 (d, $J = 3.4$ Hz, 1H, H-3′), 4.76 (d, $J = 3.4$ Hz, 1H, H-4′), 4.62 (d, $J = 3.4$ Hz, 1H, H-6′). 13C NMR (CDCl$_3$, 100 MHz) δ 138.9, 138.5, 134.3, 132.1 (2 carbons), 129.2 (2 carbons), 128.7 (4 carbons), 128.5 (2 carbons), 128.1 (3 carbons), 127.9, 127.7, 87.7, 86.8, 84.0, 81.4, 76.1 (2 carbons), 75.7, 73.9, 32.2, 30.8, 30.0 (2 carbons), 29.9 (2 carbons), 29.8, 29.7, 26.5, 23.0, 18.4, 14.5; ESI/APCI calcd for C$_{30}$H$_{36}$O$_4$SNa ([M+Na]$^+$) m/z 627.3484; measured m/z 627.3478.
Hz, 1H, H-1´´), 4.6 - 4.9 (m, 4H), 4.2 (m, 1H), 3.8 - 4.0 (m, 4H), 2.9 - 3.6 (m, 12H), 2.3 (m, 1H), 1.3 - 1.6 (m, 5H), 1.24 (d, J = 6.2 Hz, 3H, H-6´´), 0.88 (t, J = 7.2 Hz, 3H); 13C NMR (CDCl3, 75 MHz) δ 138.8, 138.2, 128.7, 128.5 (2 carbons), 128.4 (2 carbons), 128.2 (2 carbons), 128.0 (2 carbons), 127.7, 98.5, 98.2, 86.2, 83.6, 81.0, 79.8, 79.7, 75.9, 75.5, 73.7, 73.5, 71.6, 71.3, 71.1, 68.8, 63.2, 59.4, 59.1, 51.3, 32.6, 32.4, 19.4, 17.8, 14.0; ESI/APCI calcd for C_{36}H_{48}N_{12}O_{10}Na^+ ([M+Na]^+) m/z 831.3509; measured m/z 831.3500.

6-O-(2,3-Di-O-benzyl-6-deoxy-4-O-n-octyl-α-D-glucopyranosyl)-1,3,2´,6´-tetraazidoneamine (19b). Please refer to the general procedure for glycosylation using thiophenyl donor, and hydrolysis. Compound 19b was obtained with 83% yield.

6-O-(2,3-Di-O-benzyl-6-deoxy-4-O-n-dodecyl-α-D-glucopyranosyl)-1,3,2´,6´-tetraazidoneamine (19c). Please refer to the general procedure for glycosylation and hydrolysis. Compound 19c was obtained with 74% yield. 1H NMR (CDCl3, 300 MHz) δ 7.2 - 7.4 (m, 10H), 5.67 (d, J = 3.8 Hz, 1H, H-1´), 4.94 (d, J = 3.8 Hz, 1H, H-1´´), 4.6 - 4.9 (m, 4H), 4.2 (m, 1H), 3.8 - 4.0 (m, 4H), 2.9 - 3.6 (m, 12H), 2.3 (m, 1H), 1.5 - 1.6 (m, 2H), 1.33 (d, J = 6.2 Hz, 3H, H-6´´), 1.2 - 1.3 (m, 19H), 0.88 (t, J = 6.9 Hz, 3H); 13C NMR (CDCl3, 75 MHz) δ 138.8, 138.2, 128.6 (2 carbons), 128.5 (2 carbons), 128.1 (2 carbons), 128.0 (2 carbons), 127.8, 127.7, 98.4, 98.2, 85.9, 83.7, 81.0, 79.8, 79.7, 75.9, 75.7, 74.0, 73.5, 71.6, 71.3, 71.2, 68.7, 63.2, 59.4, 59.1, 51.3, 32.4, 32.0, 30.5, 29.8 (2 carbons), 29.7 (2 carbons), 29.6, 29.5, 26.2, 22.8, 17.8, 14.2; ESI/APCI calcd for C_{44}H_{64}N_{12}O_{10}Na^+ ([M+Na]^+) m/z 943.4761; measured m/z 943.4751.

6-O-(6-Deoxy-4-O-n-butyl-α-D-glucopyranosyl)neamine (FG01). Please refer to the general procedure for the final synthesis of kanamycin B analogs. FG01 was
obtained with 45% yield as a chloride salt. 1H NMR (D$_2$O, 300 MHz) δ 5.84 (d, $J = 4.1$ Hz, 1H, H-1'), 4.84 (d, $J = 3.1$ Hz, 1H, H-1''), 3.2 - 4.0 (m, 15H), 3.15 (dd, $J = 6.9$, 13.4 Hz, 1H), 2.89 (t, $J = 9.3$ Hz, 1H), 2.4 (m, 1H), 1.7 - 1.8 (m, 1H), 1.4 (m, 2H), 1.2 (m, 2H), 1.15 (d, $J = 6.5$ Hz, 3H, H-6'), 0.73 (t, $J = 7.2$ Hz, 3H); 13C NMR (D$_2$O, 75 MHz) δ 101.6, 95.8, 83.6, 83.0, 77.4, 74.1, 73.2, 72.5, 71.9, 70.6, 69.2, 68.21, 68.17, 53.4, 49.9, 48.3, 40.1, 31.4, 28.0, 18.6, 16.9, 13.1; ESI/APCI calcd for C$_{22}$H$_{45}$N$_4$O$_{10}^+$ ([M+H]$^+$) m/z 525.3130; measured m/z 525.3140.

6-O-(6-Deoxy-4-O-n-octyl-α-D-glucopyranosyl)amine (FG08) Please refer to the general procedure for the final synthesis of kanamycin B analogs. FG08 was obtained with 20% yield as a chloride salt.

6-O-(6-Deoxy-4-O-n-dodecyl-α-D-glucopyranosyl)amine (FG02). Please refer to the general procedure for the final synthesis of kanamycin B analogs. FG02 was obtained with 34% yield as a chloride salt. 1H NMR (CDCl$_3$, 300 MHz) δ 5.86 (s, 1H, H-1'), 4.86 (s, 1H, H-1''), 3.2 - 4.0 (m, 17H), 2.3 (m, 1H), 1.7 (m, 2H), 1.46 (d, $J = 7.5$ Hz, 3H, H-6'), 1.1 (m, 19H), 0.7 (m, 3H); 13C NMR (CDCl$_3$, 75 MHz) δ 101.6, 95.9, 83.8, 83.6, 77.9, 74.1, 73.9, 72.7, 72.1, 70.8, 69.2, 68.5, 68.1, 53.6, 50.0, 48.4, 40.2, 31.7, 29.6, 29.3 (4 carbons), 29.1 (2 carbons), 28.6, 25.5, 22.4, 17.1, 13.8; ESI/APCI calcd for C$_{30}$H$_{61}$N$_4$O$_{10}^+$ ([M+H]$^+$) m/z 637.4382; measured m/z 37.4395.

Phenyl 2,3-di-O-benzyl-4-O-n-octyl-1-thio-β-D-glucopyranoside (20). To a solution of 17 (1.80 g, 3.98 mmol) in anhydrous CH$_2$Cl$_2$ were added TrCl (1.77 g, 6.36 mmol), Et$_3$N (1.12 mL, 7.95 mmol) and a catalytic amount of DMAP. The reaction mixture was stirred overnight at room temperature. When complete, the reaction was
quenched by addition of MeOH (5 mL). Then the mixture was washed with water, saturated aqueous NaHCO₃, and brine, dried over Na₂SO₄ and concentrated. The tritylated crude product was then dissolved in anhydrous DMF, and octyl bromide (1.7 mL, 9.79 mmol), NaH (0.39 g, 9.79 mmol) and a catalytic amount of TBAI were added. The reaction was stirred overnight. When complete, the reaction was quenched by addition of MeOH (5 mL) and was slowly poured into a mixture of ice and EtOAc. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water, saturated aqueous NaHCO₃ and brine, and then dried over Na₂SO₄. After removal of the solvent, the obtained crude product was dissolved in 50 mL of a mixed solution of CH₂Cl₂:MeOH = 1:1 and p-toluenesulfonic acid monohydrate (0.61 g, 3.20 mmol) was added. The resulting mixture was stirred at room temperature overnight. When complete, the reaction mixture was quenched with Et₃N (1.35 mL) and extracted with EtOAc. The organic layer was washed with 1N aqueous HCl, water, saturated aqueous NaHCO₃, brine, and dried over Na₂SO₄. After removal of the solvent and purification with a gradient column chromatography (hexane:EtOAc = 100:0 to 40:60), 20 was obtained as a white solid (1.84 g, 3.26 mmol, 84%). ¹H NMR (CDCl₃, 300 MHz) δ 7.5 (m, 2H), 7.2 – 7.4 (m, 13H), 4.88 (d, J = 10.3 Hz, 1H), 4.85 (s, 1H), 4.84 (s, 1H), 4.74 (d, J = 10.3 Hz, 1H), 4.70 (d, J = 10.0 Hz, 1H), 3.9 (m, 1H), 3.5 – 3.8 (m, 4H), 3.43 (t, J = 9.6 Hz, 1H), 3.3 (m, 2H), 1.94 (t, J = 6.9 Hz, 1H, OH), 1.5 (m, 2H), 1.2 (m, 10H), 0.87 (t, J = 6.9 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 138.5, 138.0, 133.5, 131.9 (2 carbons), 129.1 (2 carbons), 128.5 (4 carbons), 128.3 (2 carbons), 128.0, 127.9, 127.82 (2 carbons), 127.75,
Phenyl 2,3,6-tri-O-benzyl-4-O-n-octyl-1-thio-β-D-glucopyranoside (21). To a solution of 20 (1.15 g, 2.04 mmol) in DMF (40 mL) were added BnBr (0.49 mL, 4.07 mmol) and a catalytic amount of TBAI. The mixture was then transferred in an ice-water bath and NaH (0.16 g, 4.07 mmol) was slowly added. When TLC analysis performed the following day indicated completion, the reaction was quenched with MeOH (2 mL) and poured over ice. The mixture was extracted with EtOAc. The organic layer was washed with 1N aqueous HCl, saturated aqueous NaHCO₃, water and brine, and then dried over Na₂SO₄. After removal of the solvent and purification with a gradient column chromatography (hexane:EtOAc = 100:0 to 50:50), 21 was obtained (1.26 g, 1.92 mmol, 95%). ¹H NMR (CDCl₃, 300 MHz) δ 7.6 (m, 2H), 7.2 – 7.4 (m, 18H), 4.9 (m, 3H), 4.6 – 4.8 (m, 4H), 3.7 – 3.9 (m, 3H), 3.4 – 3.7 (m, 5H), 1.5 (m, 2H), 1.3 (m, 10H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 138.6, 138.5, 138.2, 134.0, 132.0 (2 carbons), 129.2 (2 carbons), 128.5 (4 carbons), 128.4 (2 carbons), 128.3 (2 carbons), 127.9 (2 carbons), 127.8, 127.7 (3 carbons), 127.6, 127.5, 87.5, 86.8, 80.8, 79.4, 78.2, 75.9, 75.6, 73.5, 73.4, 69.2, 32.0, 30.5, 29.6, 29.4, 26.3, 22.8, 14.3; ESI/APCI calcd for C₄₁H₅₀O₅Na ([M+Na]⁺) m/z 677.3271; measured m/z 677.3280.

6-O-(2,3,6-Tri-O-benzyl-4-O-n-octyl-α-D-glucopyranosyl)-1,3,2′,6′-tetraazidoneamine (22). Please refer to the general procedure for glycosylation and hydrolysis. Compound 22 was obtained with 47% yield. ¹H NMR (CDCl₃, 300 MHz) δ 7.2 – 7.4 (m, 15H), 5.63 (d, J = 3.4 Hz, 1H, H-1´), 5.02 (d, J = 3.8 Hz, 1H, H-1´´), 4.92
(d, J = 11.0 Hz, 1H), 4.75 (d, J = 12.4 Hz, 1H), 4.72 (m, 2H), 4.64 (d, J = 12.0 Hz, 1H),
4.51 (d, J = 12.4 Hz, 1H), 4.1 – 4.2 (m, 1H), 4.0 – 4.1 (m, 1H), 3.96 (d, J = 10.3 Hz, 1H),
3.89 (d, J = 10.0 Hz, 1H), 3.2 – 3.8 (m, 18H), 2.31 (ddd, J = 13.1, 4.5, 4.1 Hz, 1H, H-2eq),
1.51 (ddd, J = 13.0, 12.4, 12.4 Hz, 1H, H-2ax), 1.4 – 1.5 (m, 2H), 1.2 (m, 10H),
0.88 (t, J = 6.9 Hz, 3H); 13C NMR (CDCl3, 75 MHz) δ 138.8, 138.1, 137.8, 128.55 (2
carbons), 128.49 (2 carbons), 128.4 (2 carbons), 128.13 (2 carbons), 128.06 (2 carbons),
128.0 (3 carbons), 127.9, 127.7, 98.6, 98.2, 86.3, 86.1, 81.4, 79.6, 78.0, 75.9, 75.7, 73.7,
73.5 (2 carbons), 71.6 (2 carbons), 71.4, 71.1, 68.5, 62.9, 59.6, 59.2, 51.3, 32.4, 31.9,
30.4, 29.6, 29.3, 26.2, 22.8, 14.2; ESI/APCI calcd for C47H62N12O11Na ([M+Na]+) m/z
993.4553; measured m/z 993.4563.

6-O-(4-O-n-Octyl-D-glucopyranosyl)neamine (FG03). Please refer to the
general procedure for the final synthesis of kanamycin B analogs. FG03 was obtained
with 42% yield as a chloride salt. 1H NMR (D2O, 300 MHz) (chloride salt) δ 5.81 (d, J =
3.8 Hz, 1H, H-1´), 4.93 (d, J = 3.8 Hz, 1H, H-1´´), 3.3 - 4.0 (m, 17H), 3.1 – 3.2 (m, 2H),
2.4 (m, 1H), 1.7 - 1.9 (m, 1H), 1.4 – 1.5 (m, 2H), 1.1 - 1.2 (m, 10H), 0.71 (t, J = 6.9 Hz,
3H); 13C NMR (D2O, 100 MHz) (chloride salt) δ 101.7, 96.1, 83.8, 77.8, 77.6, 74.3, 73.7,
72.9, 72.3, 71.8, 70.9, 69.4, 68.4, 60.4, 53.7, 49.9, 48.5, 40.3, 31.3, 29.4, 28.7, 28.6, 28.2,
25.4, 22.2, 13.7; ESI/APCI calcd for C26H53N4O11+ ([M+H]+) m/z 597.3705; measured
m/z 597.3708.

2,3-Di-O-benzyl-4-O-n-octyl-D-glucopyranose (25). Compound 20 (0.90 g,
1.59 mmol) was dissolved in a mixture of acetone (35 mL) and CH2Cl2 (10 mL). Distilled
water (3.44 mL, 191.2 mmol) was added and the mixture was cooled down to 0 °C. N-
bromosuccinimide (0.68 g, 3.82 mmol) was added and the reaction mixture was stirred overnight till room temperature. When complete, the solvent was evaporated and the residue was redissolved in EtOAc. The organic layer was washed with water and brine, and dried over Na₂SO₄. After removal of the solvent, purification by gradient column chromatography (Hexane:EtOAc = 100:0 to 0:100) afforded 25 (0.68 g, 1.44 mmol, 90%) as a mixture of α/β anomers in a 1/1 ratio. ¹H NMR (α-anomer) (CDCl₃, 300 MHz) δ 7.2 – 7.4 (m, 10H), 5.16 (dd, J = 3.1, 3.1 Hz, 1H, H-1), 4.6 - 4.9 (m, 4H), 3.3 - 4.0 (m, 7H), 3.17 (d, J = 2.4 Hz, 1H), 2.28 (dd, J = 7.2, 5.8 Hz, 1H), 1.94 (dd, J = 7.9, 4.8 Hz, 1H), 1.5 (m, 2H), 1.2 (m, 10H), 0.87 (t, J = 6.9 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 138.7, 137.9, 128.6, 128.5 (3 carbons), 128.2, 128. 1 (2 carbons), 128.0, 127.9, 127.7, 91.4, 83.1, 80.0, 78.0, 75.6, 75.0, 73.5, 71.2, 62.0, 31.9, 30.5, 29.6, 29.4, 26.2, 22.7, 14.2; ESI/APCI calcd for C₂₈H₄₀O₆Na ([M+Na⁺]⁺) m/z 495.2717; measured m/z 495.2720.

4-O-n-Octyl-d-glucopyranose (23). Compound 25 (0.20 g, 0.42 mmol) was dissolved in a degassed mixture MeOH:H₂O (1:1) and a catalytic amount of Pd(OH)₂/C was added. The vial was then sealed and freed of air before H₂ balloon was loaded. The reaction was stirred overnight under H₂ atmosphere. The reaction was filtered through a short column packed with celite and eluted with water. Removal of the solvent afforded 23 as a mixture of α/β anomers in a 10/9 ratio. (0.12 g, 0.41 mmol, 96%). ¹H NMR (α-anomer) (CD₃OD, 300 MHz) δ 5.07 (d, J = 3.8 Hz, 1H, H-1), 3.0 – 4.0 (m, 8H), 1.5 – 1.6 (m, 2H), 1.3 (m, 10 H), 0.88 (t, J = 6.9 Hz, 3H); ¹³C NMR (CD₃OD, 100 MHz) δ 92.6, 78.3, 76.0, 73.8, 72.7, 71.0, 61.1, 31.2, 30.2, 29.5, 29.3, 26.0, 22.5, 13.3; ESI/APCI calcd for C₁₄H₂₈O₆Na ([M+Na⁺]⁺) m/z 315.1778; measured m/z 315.1780.
Phenyl 2,3,4-tri-O-benzyl-1-thio-β-D-glucopyranoside (27). 26 (2.00 g, 3.70 mmol) was dissolved in 40 mL of a mixed solution of anhydrous Et₂O:CH₂Cl₂ (1:1) and LiAlH₄ (0.66 g, 17.4 mmol) was slowly added. The mixture was then gently heated. Then a solution of AlCl₃ (1.97 g, 14.8 mmol) in anhydrous CH₂Cl₂ (20 mL) was added to the hot reaction mixture over a 1 h period. The combined solutions were then refluxed at 40 °C. Two hours later, the reaction was complete as confirmed by TLC analysis. The reaction was quenched by transferring it to flask containing ice and EtOAc. The organic layer was washed with 1 N HCl, water, saturated aqueous NaHCO₃, and brine, and dried over Na₂SO₄. Removal of the solvent gave a crude product that was recrystallized in diethyl ether and hexane to give 27 (1.34 g, 2.47 mmol, 67%).

Phenyl 2,3,4-tri-O-benzyl-6-O-n-hexyl-1-thio-β-D-glucopyranoside (28a).

Please refer to the general procedure for O-alkylation of sugars. Compound 28a was obtained with 99% yield. ¹H NMR (CDCl₃, 300 MHz) δ 7.6 – 7.7 (m, 2H), 7.2 – 7.5 (m, 18H), 4.9 – 5.0 (m, 4H), 4.77 (d, J = 10.0 Hz, 1H), 4.70 (d, J = 10.0 Hz, 2H), 3.6 – 3.8 (m, 4H), 3.4 – 3.6 (m, 4H), 1.6 (m, 2H), 1.2 – 1.5 (m, 6H), 0.93 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 138.6, 138.3, 138.2, 134.1, 132.0 (2 carbons), 129.0 (2 carbons), 128.60 (5 carbons), 128.57 (2 carbons), 128.4 (2 carbons), 128.03 (2 carbons), 127.97 (3 carbons), 127.9, 127.5, 87.6, 86.9, 81.0, 79.3, 78.0, 76.0, 75.6, 75.2, 71.9, 69.7, 31.9, 30.0, 26.0, 22.3, 14.3; ESI/APCI calcd for C₃₉H₄₆O₅S Na ([M+Na]⁺) m/z 649.2958, measured m/z 649.2971.

Phenyl 2,3,4-tri-O-benzyl-6-O-n-octyl-1-thio-β-D-glucopyranoside (28b).

Please refer to the general procedure for O-alkylation of sugars. Compound 28b was
obtained with 97% yield. 1H NMR (CDCl$_3$, 300 MHz) δ 7.6 – 7.7 (m, 2H), 7.2 – 7.5 (m, 18H), 4.9 – 5.0 (m, 4H), 4.79 (d, J = 10.3 Hz, 1H), 4.71 (d, J = 10.0 Hz, 2H), 3.7 – 3.8 (m, 4H), 3.4 – 3.6 (m, 4H), 1.6 (m, 2H), 1.2 – 1.5 (m, 10H), 0.94 (t, J = 6.9 Hz, 3H); 13C NMR (CDCl$_3$, 100 MHz) δ 138.6, 138.4, 138.2, 134.2, 132.0 (2 carbons), 129.0 (2 carbons), 128.63 (5 carbons), 128.64 (2 carbons), 128.4 (2 carbons), 128.1 (2 carbons), 128.0 (3 carbons), 127.9, 127.5, 87.7, 86.9, 81.0, 79.4, 78.0, 76.0, 75.6, 75.2, 71.9, 69.8, 32.1, 30.1, 29.7, 29.5, 26.4, 22.9, 14.3; ESI/APCI calcd for C$_{41}$H$_{50}$O$_5$SNa ([M+Na]$^+$) m/z 677.3271, measured m/z 677.3280.

6-O-(2,3,4-Tri-O-benzyl-6-O-n-hexyl-α-D-glucopyranosyl)-1,3,2′,6′-tetraazidoneamine (29a). Please refer to the general procedure for glycosylation and hydrolysis. Compound 29a was obtained with 40% yield. 1H NMR (CDCl$_3$, 300 MHz) δ 7.2 - 7.4 (m, 15H), 5.69 (d, J = 3.8 Hz, 1H, H-1'), 5.05 (d, J = 3.8 Hz, 1H, H-1''), 4.97 (d, J = 11.0 Hz, 1H), 4.88 (d, J = 10.7 Hz, 1H), 4.82 (d, J = 11.0 Hz, 1H), 4.75 (s, 1H), 4.74 (s, 1H), 4.59 (d, J = 10.7 Hz, 1H), 4.48 (d, J = 2.4 Hz, 1H), 4.1 – 4.2 (m, 1H), 3.9 – 4.1 (m, 3H), 3.1 – 3.7 (m, 15H), 2.97 (d, J = 3.4 Hz, 1H), 2.92 (d, J = 4.1 Hz, 1H), 2.32 (ddd, J = 13.1, 4.5, 4.1 Hz, 1H, H-2eq), 1.6 (m, 2H), 1.50 (ddd, J = 13.1, 12.7, 12.7 Hz, 1H, H-2ax), 1.2 – 1.4 (m, 6H), 0.88 (t, J = 6.9 Hz, 3H); 13C NMR (CDCl$_3$, 75 MHz) δ 138.8, 138.16, 138.07, 128.61 (2 carbons), 128.58 (2 carbons), 128.51 (2 carbons), 128.16 (2 carbons), 128.10 (4 carbons), 128.04 (2 carbons), 127.8, 98.6, 98.2, 85.9, 81.5, 79.7, 79.6, 75.8 (2 carbons), 75.4, 73.5, 71.9 (2 carbons), 71.7, 71.6, 71.4, 71.1, 69.1, 63.0, 59.6, 59.2, 51.3, 32.4, 31.7, 29.4, 25.8, 22.7, 14.2; ESI/APCI calcd for C$_{47}$H$_{62}$N$_{12}$O$_{11}$Na ([M+Na]$^+$) m/z 965.4240; measured m/z 965.4255.
6-O-(2,3,4-Tri-O-benzyl-6-O-n-octyl-α-D-glucopyranosyl)-1,3,2′,6′-tetraazidoneamine (29b). Please refer to the general procedure for glycosylation and hydrolysis. Compound 29b was obtained with 38% yield.

1H NMR (CDCl$_3$, 300 MHz) δ 7.2 - 7.4 (m, 15H), 5.69 (d, $J = 3.8$ Hz, 1H, H-1′), 5.05 (d, $J = 3.8$ Hz, 1H, H-1″), 4.97 (d, $J = 11.0$ Hz, 1H), 4.88 (d, $J = 10.7$ Hz, 1H), 4.82 (d, $J = 11.0$ Hz, 1H), 4.75 (s, 1H), 4.74 (s, 1H), 4.59 (d, $J = 10.7$ Hz, 1H), 4.48 (d, $J = 2.4$ Hz, 1H), 4.1 – 4.2 (m, 1H), 3.9 – 4.1 (m, 3H), 3.1 – 3.7 (m, 15H), 2.97 (d, $J = 3.4$ Hz, 1H), 2.92 (d, $J = 4.1$ Hz, 1H), 2.32 (ddd, $J = 13.1$, 4.5, 4.1 Hz, 1H, H-2eq), 1.6 (m, 2H), 1.50 (ddd, $J = 13.1$, 12.7, 12.7 Hz, 1H, H-2ax), 1.2 – 1.4 (m, 6H), 0.88 (t, $J = 6.9$ Hz, 3H); 13C NMR (CDCl$_3$, 100 MHz) δ 138.9, 138.3, 138.2, 128.7 (4 carbons), 128.6 (2 carbons), 128.23 (2 carbons), 127.9, 98.7, 98.3, 85.8, 81.6, 79.8 (2 carbons), 77.7, 75.9 (2 carbons), 75.5, 73.6, 72.0, 71.8, 71.7, 71.6, 71.3, 69.2, 63.2, 59.7, 59.3, 51.4, 32.5, 32.1, 29.7, 29.6, 29.5, 26.3, 22.9, 14.3; ESI/APCI calcd for C$_{47}$H$_{62}$N$_{12}$O$_{11}$Na ([M+Na]$^+$) m/z 993.4611; measured m/z 993.4578.

6-O-(6-O-Hexyl-D-glucopyranosyl)neamine (FG05). Please refer to the general procedure for the final synthesis of kanamycin B analogs. FG05 was obtained with 86% yield as a chloride salt.

1H NMR (D$_2$O, 300 MHz) (chloride salt) δ 5.85 (d, $J = 4.1$ Hz, 1H, H-1′), 4.89 (d, $J = 3.5$ Hz, 1H, H-1″), 3.2 - 4.0 (m, 18H), 3.1 (m, 1H), 2.4 (m, 1H), 1.8 (m, 1H), 1.3 – 1.5 (m, 2H), 1.0 - 1.2 (m, 6H), 0.69 (t, $J = 6.9$ Hz, 3H); 13C NMR (D$_2$O, 100 MHz) (chloride salt) δ 101.9, 95.5, 83.8, 77.0, 74.3, 72.9, 72.11, 72.07, 71.7, 70.8, 69.4, 69.3, 68.8, 68.4, 53.6, 49.9, 48.4, 40.4, 31.1, 28.6, 28.1, 25.0, 22.1, 13.6; ESI/APCI calcd for C$_{24}$H$_{49}$N$_{4}$O$_{11}$ ([M+H]$^+$) m/z 569.3392; measured m/z 569.3408.
6-O-(6-O-n-Octyl-d-glucopyranosyl)neamine (FG06). Please refer to the general procedure for the final synthesis of kanamycin B analogs. FG06 was obtained with 82% yield as a chloride salt. 1H NMR (D$_2$O, 300 MHz) (chloride salt) δ 5.92 (d, J = 4.1 Hz, 1H, H-1´), 4.95 (d, J = 3.8 Hz, 1H, H-1´´), 3.3 - 4.0 (m, 18H), 3.2 (m, 1H), 2.4 – 2.5 (m, 1H), 1.9 (m, 1H), 1.4 – 1.5 (m, 2H), 1.1 - 1.2 (m, 10H), 0.74 (t, J = 7.2 Hz, 3H); 13C NMR (D$_2$O, 100 MHz) (chloride salt) δ 102.0, 95.6, 83.8, 76.9, 74.3, 72.9, 72.2, 72.1, 71.8, 70.9, 69.5, 69.3, 68.8, 68.4, 53.7, 49.9, 48.6, 40.4, 31.3, 28.8, 28.7, 28.6, 28.0, 25.4, 22.2, 13.7; ESI/APCI calcd for C$_{26}$H$_{53}$N$_4$O$_{11}$ ([M+H]$^+$) m/z 597.3705; measured m/z 597.3708.

1,2:5,6-Di-O-isopropylidene-3-O-n-octyl-α-D-glucopyranose (30). Please refer to the general procedure for O-alkylation of sugars. Compound 30 was obtained with 99% yield.

1,2,4,6-Tetra-O-acetyl-3-O-n-octyl-D-glucopyranose (31). Please refer to the synthesis of 6. Compound 31 was obtained with 87% yield as a mixture of α/β anomers in the ratio 1/2. 1H NMR (CDCl$_3$, 300 MHz) (α and β anomers) δ 6.27 (d, J = 3.8 Hz, 1H, H-1α), 5.62 (d, J = 8.3 Hz, 1H, H-1β), 4.9 – 5.5.1 (m, 4H), 3.9 – 4.2 (m, 4H), 3.4 – 3.8 (m, 8H), 2.0 – 2.1 (m, 24H), 1.1 – 1.3 (m, 24H), 0.86 (t, J = 6.9 Hz, 6H).

Phenyl 2,4,6-tri-O-acetyl-3-O-n-octyl-1-thio-β-D-glucopyranoside (32). A solution of 31 (4.04 g, 8.77 mmol) and thiophenol (3.4 mL, 33.3 mmol) in anhydrous CH$_2$Cl$_2$ (50 mL) was cooled down to 0 °C and BF$_3$-OEt$_2$ was slowly added. The reaction was stirred for 2 days till completion. Solid NaHCO$_3$, Na$_2$SO$_4$ and some few drops of water were then added and the mixture was stirred for 1 h. The solution was then filtered
through a Fritz funnel and the collected solids were washed with EtOAc. After removal of the solvents, purification by gradient column chromatography afforded \(32\) (2.91 g, 5.70 mmol, 65\%). \(^1\)H NMR (CDCl\(_3\), 300 MHz) \(\delta\) 7.4 (m, 2H), 7.1 – 7.2 (m, 3H), 4.89 (dd, \(J = 9.6, 9.6\) Hz, 1H, H-2), 4.88 (dd, \(J = 9.6, 9.6\) Hz, 1H, H-4), 4.56 (d, \(J = 10.3\) Hz, 1H, H-1), 3.9 – 4.1 (m, 3H), 3.5 – 3.6 (m, 1H), 3.4 – 3.5 (m, 2H), 2.03 (s, 3H), 2.00 (s, 3H), 1.95 (s, 3H), 1.3 – 1.4 (m, 2H), 1.1 – 1.2 (m, 10H), 0.77 (t, \(J = 6.9\) Hz, 3H), \(^{13}\)C NMR (CDCl\(_3\), 100 MHz) \(\delta\) 170.6, 169.4, 169.2, 132.9, 132.5 (2 carbons), 129.0 (2 carbons), 128.1, 86.2, 81.9, 76.1, 72.9, 71.5, 69.8, 62.7, 31.9, 30.4, 29.5, 29.4, 26.1, 22.7, 21.1, 20.9, 20.8, 14.2; ESI/APCI calcd for C\(_{26}\)H\(_{38}\)O\(_8\)SNa ([M+Na]\(^+\)) \(m/z\) 533.2180; measured \(m/z\) 533.2187.

Phenyl 2,3,6-tri-O-benzyl-4-O-\(n\)-octyl-1-thio-\(\beta\)-D-glucopyranoside (33). To a solution of \(32\) (2.91 g, 5.70 mmol) in anhydrous MeOH (40 mL), 0.5 mL of a 1M solution of NaOMe in MeOH was added and the mixture was stirred at room temperature for 1 h. When complete, the reaction was quenched by adding amberlite IR 120 H\(^+\) resin to the mixture, followed by filtration through celite and concentration of the filtrate. The obtained crude product was dissolved in DMF (40 mL), and BnBr (10.0 mL, 84.0 mmol) and a catalytic amount of TBAI were added. The mixture was then transferred in an ice-water bath and NaH (3.36 g, 84.0 mmol) was slowly added. When TLC analysis performed the following day indicated completion, the reaction was quenched with MeOH (5 mL) and poured over ice. The mixture was diluted with EtOAc, extracted with 1N aqueous HCl, saturated aqueous NaHCO\(_3\), water and brine, and dried over Na\(_2\)SO\(_4\). After removal of the solvents, purification by gradient column chromatography
(Hexane:EtOAc = 100:0 to 50:50) gave 33 (2.00 g, 3.05 mmol, 44%). 1H NMR (CDCl$_3$, 300 MHz) δ 7.2 – 7.8 (m, 20H), 5.0 (m, 2H), 4.86 (d, J = 10.3 Hz, 1H), 4.6 – 4.8 (m, 4H), 3.8 – 4.0 (m, 4H), 3.5 – 3.7 (m, 4H), 1.7 – 1.8 (m, 2H), 1.3 - 1.5 (m, 10H), 1.01 (t, J = 6.9 Hz, 3H); 13C NMR (CDCl$_3$, 100 MHz) δ 138.7, 138.65, 138.55, 134.3, 132.3 (2 carbons), 129.2 (2 carbons), 128.75 (4 carbons), 128.67 (2 carbons), 128.5 (2 carbons), 128.3 (2 carbons), 128.1 (2 carbons), 128.0 (2 carbons), 127.9, 127.7, 87.7, 87.1, 81.2, 79.4, 78.1, 75.7, 75.3, 74.4, 73.7, 69.4, 32.2, 31.0, 29.9, 29.6, 26.7, 23.0, 14.5; ESI/APCI calcd for C$_{41}$H$_{50}$O$_5$Na ([M+Na]$^+$) m/z 677.3271; measured m/z 677.3270.

6-O-(2,4,6-Tri-O-benzyl-3-O-n-octyl-α-D-glucopyranosyl)-1,3,2′,6′-tetraazidoneamine (34). Please refer to the general procedure for glycosylation and hydrolysis. Compound 34 was obtained with 59% yield. 1H NMR (CDCl$_3$, 300 MHz) δ 7.1 – 7.5 (m, 15H), 5.60 (d, J = 3.8 Hz, 1H, H-1′), 5.02 (d, J = 3.8 Hz, 1H, H-1′′), 4.83 (d, J = 10.7 Hz, 1H), 4.76 (d, J = 12.0 Hz, 1H), 4.70 (d, J = 11.7 Hz, 1H), 4.61 (d, J = 12.4 Hz, 1H), 4.54 (s, 1H), 4.53 (s, 1H), 4.49 (d, J = 12.4 Hz, 1H), 4.45 d, J = 10.7 Hz, 1H), 4.0 – 4.1 (m, 2H), 3.0 – 4.0 (m, 18H), 2.30 (ddd, J =13.1, 4.5, 4.1 Hz, 1H, H-2eq), 1.6 – 1.7 (m, 2H), 1.49 (ddd, J = 12.7, 12.7, 12.7 Hz, 1H, H-2ax), 1.2 - 1.4 (m, 10H), 0.88 (t, J = 6.9 Hz, 3H); 13C NMR (CDCl$_3$, 100 MHz) δ 138.4, 138.1, 137.9, 128.7 (6 carbons), 128.32 (2 carbons), 128.25 (2 carbons), 128.1 (4 carbons), 128.0, 98.7, 98.4, 85.8, 81.5, 79.9, 79.6, 77.8, 75.9, 75.4, 74.0, 73.6 (2 carbons), 71.7, 71.5 (2 carbons), 71.3, 68.5, 63.0, 59.7, 59.3, 51.4, 32.5, 32.1, 30.9, 29.8, 29.5, 26.5, 22.9, 14.3; ESI/APCI calcd for C$_{47}$H$_{62}$N$_{12}$O$_{11}$Na ([M+Na]$^+$) m/z 993.4553; measured m/z 993.4564.
6-O-(3-O-n-Octyl-D-glucopyranosyl)neamine (FG07). Please refer to the general procedure for the final synthesis of kanamycin B analogs. FG07 was obtained with 42% yield as a chloride salt. 1H NMR (D$_2$O, 300 MHz) (chloride salt) δ 5.81 (d, $J = 4.1$ Hz, 1H, H-1´), 4.93 (d, $J = 4.0$ Hz, 1H, H-1´´), 3.3 - 4.0 (m, 18H), 3.16 (dd, $J = 13.7$, 6.9 Hz, 1H), 2.42 (ddd, $J = 12.4$, 4.1, 4.1 Hz, 1H, H-2eq), 1.87 (ddd, $J = 12.7$, 12.4, 12.4 Hz, 1H, H-2ax), 1.4 – 1.5 (m, 2H), 1.0 - 1.3 (m, 10H), 0.71 (t, $J = 6.9$ Hz, 3H); 13C NMR (D$_2$O, 100 MHz) (chloride salt) δ 101.8, 96.2, 83.8, 81.3, 77.7, 74.2, 73.4, 73.2, 71.3, 70.8, 69.4, 68.9, 68.4, 60.5, 53.6, 49.9, 48.4, 40.3, 31.3, 29.5, 28.7, 28.6, 28.1, 25.3, 22.2, 13.6; ESI/APCI calcd for C$_{26}$H$_{53}$N$_4$O$_{11}$ ([M+H]$^+$) m/z 597.3705; measured m/z 597.3720.

Methyl 3-O-benzyl-4,6-O-benzylidene-2-O-n-octyl-α-D-glucopyranoside (36).

Please refer to the general procedure for O-alkylation of sugars. Compound 36 was obtained with 90% yield. 1H NMR (CDCl$_3$, 300 MHz) δ 7.5 (m, 2H), 7.2 – 7.4 (m, 8H), 5.58 (s, 1H), 4.89 (d , $J = 11.3$ Hz, 1H), 4.84 (d, $J = 3.8$ Hz, 1H, H-1), 4.82 (d, $J = 11.3$ Hz, 1H), 4.30 (dd, $J = 9.6$, 4.1 Hz, 1H, H-2), 3.98 (dd, $J = 9.3$, 8.9 Hz, 1H, H-4), 3.6 – 3.9 (m, 6H), 3.46 (s, 3H), 1.6 – 1.7 (m, 2H), 1.2 – 1.4 (m, 10H), 0.90 (t, $J = 6.9$ Hz, 3H); 13C NMR (CDCl$_3$, 100 MHz) δ 139.0, 137.7, 129.1, 128.5 (2 carbons), 128.4 (2 carbons), 128.2 (2 carbons), 127.7, 126.3 (2 carbons), 101.5, 99.2, 82.2, 80.7, 78.6, 75.5, 72.4, 69.3, 62.6, 55.2, 32.1, 30.3, 29.7, 29.5, 26.2, 22.9, 14.4 ; ESI/APCI calcd for C$_{26}$H$_{40}$O$_6$Na ([M+Na]$^+$) m/z 507.2717; measured m/z 507.2723.

1,3,4,6-Tetra-O-acetyl-2-O-n-octyl-D-glucopyranose (37). Please refer to the synthesis of 6. Compound 37 was obtained with 76% yield as a mixture of $α/β$ anomers in a 6/1 ratio. 1H NMR ($α$-anomer) (CDCl$_3$, 300 MHz) δ 6.25 (d, $J = 3.8$ Hz, 1H, H-1), 5.21
(dd, J = 10.0, 9.6 Hz, 1H, H-4), 4.94 (dd, J = 10.3, 9.6 Hz, 1H, H-3), 4.17 (dd, J = 13.0, 4.1 Hz, 1H), 3.9 – 4.0 (m, 2H), 3.4 – 3.6 (m, 2H), 3.3 (m, 1H), 2.05 (s, 3H), 1.95 (s, 3H), 1.92 (s, 3H), 1.91 (s, 3H), 1.3 – 1.4 (m, 2H), 1.1 (m, 10H), 0.75 (t, J = 6.9 Hz, 3H); 13C NMR (CDCl3, 100 MHz) δ 170.5, 170.1, 169.7, 169.0, 89.3, 76.7, 71.6 (2 carbons), 69.8, 68.1, 61.7, 31.9, 29.8, 29.3 (2 carbons), 25.9, 22.7, 21.0, 20.8, 20.72, 20.66, 14.1; ESI/APCI calcd for C22H36O10Na ([M+Na]+) m/z 483.2201; measured m/z 483.2192.

Phenyl 3,4,6-tri-O-acetyl-2-O-n-octyl-1-thio-D-glucopyranoside (38). Please refer to the synthesis of 32. Compound 38 was obtained with 56% yield as a mixture of α/β anomers in a 3/1 ratio. 1H NMR (α-anomer) (CDCl3, 300 MHz) δ 7.5 (m, 2H), 7.3 (m, 3H), 5.77 (d, J = 5.5 Hz, 1H, H-1), 5.30 (dd, J = 9.6, 9.6 Hz, 1H, H-4), 5.01 (dd, J = 10.3, 9.3 Hz, 1H, H-3), 4.54 (ddd, J = 10.3, 5.2, 2.1 Hz, 1H, H-5), 4.29 (dd, J = 12.0, 5.2 Hz, 1H, H-6), 3.99 (dd, J = 12.4, 2.1 Hz, 1H, H-6'), 3.6 – 3.8 (m, 2H), 3.3 – 3.5 (m, 1H), 2.04 (s, 3H), 2.03 (s, 3H), 2.01 (s, 3H), 1.5 (m, 2H), 1.2 – 1.4 (m, 10H), 0.87 (t, J = 6.9 Hz, 3H).

Phenyl 3,4,6-tri-O-benzyl-2-O-n-octyl-1-thio-α-D-glucopyranoside (39). Please refer to the synthesis of 33. Compound 39 was obtained with 95% yield. 1H NMR (CDCl3, 300 MHz) δ 7.5 – 7.7 (m, 2H), 7.2 -7.5 (m, 18H), 5.86 (d, J = 4.8 Hz, 1H, H-1), 5.10 (d, J = 11.0 Hz, 1H), 4.95 (d, J = 10.7 Hz, 1H), 4.87 (d, J = 10.7 Hz, 1H), 4.68 (d, J = 11.7 Hz, 1H), 4.59 (d, J = 11.0 Hz, 1H), 4.50 (d, J = 12.1 Hz, 1H), 3.5 – 4.0 (m, 8H), 1.6 – 1.8 (m, 2H), 1.3 – 1.5 (m, 10H), 0.95 (t, J = 7.2 Hz, 3H); 13C NMR (CDCl3, 100 MHz) δ 139.2, 138.6, 138.3, 135.1, 132.0, 131.8 (2 carbons), 129.2 (2 carbons), 128.7 (5 carbons), 128.3 (3 carbons), 128.2 (3 carbons), 128.0 (2 carbons), 127.9, 127.3, 87.2,
6-O-(3,4,6-Tri-O-benzyl-2-O-n-octyl-α-D-glucopyranosyl)-1,3,2′,6′-tetraazidoneamine (40). Please refer to the general procedure for glycosylation and hydrolysis. Compound 40 was obtained with 59% yield. 1H NMR (CDCl$_3$, 300 MHz) δ 7.1 – 7.5 (m, 15H), 5.60 (d, J = 3.8 Hz, 1H, H-1’), 5.02 (d, J = 3.8 Hz, 1H, H-1’’), 4.83 (d, J = 10.7 Hz, 1H), 4.76 (d, J = 12.0 Hz, 1H), 4.70 (d, J = 11.7 Hz, 1H), 4.61 (d, J = 12.4 Hz, 1H), 4.54 (s, 1H), 4.53 (s, 1H), 4.49 (d, J = 12.4 Hz, 1H), 4.45 (d, J = 10.7 Hz, 1H), 4.0 – 4.1 (m, 2H), 3.0 – 4.0 (m, 18H), 2.30 (ddd, J =13.1, 4.5, 4.1 Hz, 1H, H-2eq), 1.6 – 1.7 (m, 2H), 1.49 (ddd, J = 12.7, 12.7, 12.7 Hz, 1H, H-2ax), 1.2 -1.4 (m, 10H), 0.88 (t, J = 6.9 Hz, 3H); 13C NMR (CDCl$_3$, 100 MHz) δ 138.4, 138.1, 137.9, 128.7 (6 carbons), 128.32 (2 carbons), 128.25 (2 carbons), 128.1 (4 carbons), 128.0, 98.7, 98.4, 85.8, 81.5, 79.9, 79.6, 77.8, 75.9, 75.4, 74.0, 73.6 (2 carbons), 71.7, 71.5 (2 carbons), 71.3, 68.5, 63.0, 59.7, 59.3, 51.4, 32.5,32.1,30.9, 29.8, 29.5, 26.5, 22.9, 14.3 ; ESI/APCI calcd for C$_{47}$H$_{62}$N$_{12}$O$_{11}$Na ([M+Na]$^+$) m/z 993.4553; measured m/z 993.4564.

6-O-(2-O-n-Octyl-D-glucopyranosyl)neamine (FG09). Please refer to the general procedure for the final synthesis of kanamycin B analogs. FG09 was obtained with 52% yield as a chloride salt. 1H NMR (D$_2$O, 300 MHz) (chloride salt) δ 5.81 (d, J = 3.8 Hz, 1H, H-1’), 5.06 (d, J = 3.4 Hz, 1H, H-1’’), 3.0 - 4.0 (m, 19H), 2.4 (m, 1H), 1.4 – 1.5 (m, 3H), 1.1 - 1.2 (m, 10H), 0.72 (t, J = 6.5 Hz, 3H); 13C NMR (D$_2$O, 100 MHz) (chloride salt) δ 100.3, 96.4, 83.9, 80.1, 78.0, 74.4, 73.3, 73.2, 72.7, 70.8, 69.5, 69.4,
68.4, 60.7, 53.7, 49.8, 48.4, 40.3, 31.3, 29.3, 28.7, 28.5, 28.0, 25.1, 22.2, 13.6; ESI/APCI calcd for C_{26}H_{53}N_{4}O_{11} ([M+H]^+) m/z 597.3705; measured m/z 597.3701.

3’,4’-Di-O-benzyl-1,3,2’,6’-Tetraazidoneamine (41){superscript 98}. To a solution of 14 (3.60 g, 7.11 mmol) in DMF (40 mL) were added BnBr (3.40 mL, 28.5 mmol) and a catalytic amount of TBAI. The mixture was then transferred in an ice-water bath and NaH (1.14 g, 28.5 mmol) was slowly added. When TLC analysis performed the following day indicated completion, the reaction was quenched with MeOH (2 mL) and poured over ice. The mixture was extracted with EtOAc. The organic layer was washed with 1N aqueous HCl, saturated aqueous NaHCO₃, water and brine, and dried over Na₂SO₄. After removal of the solvent, a brownish crude product was obtained, to which 80 mL of mixed solution of dioxane: H₂O = 1:1 was added, followed by 35 mL glacial acetic acid. The resulting mixture was refluxed at 60–65 °C overnight. When complete, the reaction mixture was quenched with saturated aqueous NaHCO₃ and extracted with EtOAc. The organic layer was washed with 1N aqueous HCl, water, saturated aqueous NaHCO₃, brine, and dried over Na₂SO₄. After removal of the solvent followed by purification with a gradient column chromatography (pure hexane to hexane: EtOAc = 40:60), 41 was obtained (2.03 g, 6.62 mmol, 42%).

6-O-(2,3,4,6-Tetra-O-benzyl-α-d-glucopyranosyl)-3’,4’-O-dibenzyl-1,3,2’,6’-tetraazidoneamine (43a). A solution of 41 (0.20 g, 0.33 mmol), 42a (0.25 g, 0.40 mmol), and activated powder 4 Å molecular sieve was stirred at room temperature for 2 h in 12 mL of a mixed anhydrous solution Et₂O:CH₂Cl₂ = 3:1. The mixture was cooled to -70 °C and N-iodosuccinimide (0.09 g, 0.40 mmol) was quickly added. After the
temperature has warmed up to -40 °C, trifluoromethanesulfonic acid (0.05 mL) was added. The solution was stirred at low temperature till the complete consumption of the glycosyl donor. The reaction mixture was quenched by addition of solid NaHCO₃, Na₂S₂O₃ and Na₂SO₄. After being stirred for 15 minutes, the reaction mixture was filtered through celite. The residue was washed thoroughly with EtOAc. After removal of the solvents, the crude product was purified with gradient column chromatography (Hexane:EtOAc = 100:0 to 50:50) to afford 43a. Because it was mixed with inseparable impurities, it was used as so in the next step.

6-O-(3-Azido-3-deoxy-2,4,6-tri-O-benzyl-α-D-glucopyranosyl)-3’,4’-O-dibenzyl-1,3,2’,6´-tetraazidoneamine (43b). Please refer to the synthesis of 43a. Compound 43b was also obtained mixed with inseparable impurities and was then used as so in the next step.

6-O-(2,3,4,6-Tetra-O-benzyl-α-D-glucopyranosyl)-3’,4´-O-dibenzyl-5-O-n-octyl-1,3,2’,6´-tetraazidoneamine (44a). Please refer to the general procedure for O-alkylation of sugars. Compound 44a was obtained with 57% yield. 1H NMR (CDCl₃, 300 MHz) δ 7.2 -7.5 (m, 30H), 5.72 (d, $J = 3.4$ Hz, 1H, H-1´), 5.62 (d, $J = 3.8$ Hz, 1H, H-1´´), 4.8 – 5.0 (m, 8H), 4.67 (d, $J = 11.3$ Hz, 1H), 4.65 (d, $J = 12.0$ Hz, 1H), 4.53 (d, $J = 11.3$ Hz, 1H), 4.47 (d, $J = 12.0$ Hz, 1H), 4.32 (d, $J = 9.6$ Hz, 1H), 4.15 (d, $J = 10.0$ Hz, 1H), 4.04 (dd, $J = 10.3$, 8.9 Hz, 1H), 3.9 – 4.0 (m, 1H), 3.3 – 3.8 (m, 15H), 2.4 (m, 1H), 1.5 – 1.7 (m, 3H), 1.0 - 1.4 (m, 10H), 0.86 (t, $J = 7.2$ Hz, 3H); 13C NMR (CDCl₃, 75 MHz) δ 138.8, 138.7, 138.1 (2 carbons), 137.83, 137.77, 128.64 (3 carbons), 128.57 (3 carbons), 128.49 (4 carbons), 128.25 (3 carbons), 128.20 (4 carbons), 128.1 (3 carbons), 128. 0 (3
carbons), 127.9 (2 carbons), 127.8, 127.7, 127.6 (2 carbons), 127.5, 97.5, 96.0, 83.3, 82.1, 80.2, 79.5, 78.8, 77.7, 77.5, 76.1, 75.8, 75.7, 75.5, 75.2, 75.1, 73.5, 73.4, 71.1, 70.2, 68.5, 63.5, 60.6, 60.5, 59.3, 32.1, 31.9, 30.2, 29.7, 29.6, 26.1, 22.8, 14.2; ESI/APCI calcd for C_{68}H_{80}N_{12}O_{11}Na ([M+Na]^+) m/z 1263.5962; measured m/z 1263.5961.

6-O-(3-Azido-3-deoxy-2,4,6-tri-O-benzyl-\(\alpha\)-d-glucopyranosyl)-3',4'-O-dibenzyl-5-O-n-octyl-1,3,2',6'-tetraazidoneamine (44b). Please refer to the general procedure for \(\alpha\)-alkylation of sugars. Compound 44b was obtained with 52% yield. \(^1\)H NMR (CDCl\(_3\), 300 MHz) \(\delta\) 7.2 - 7.5 (m, 25H), 5.70 (d, \(J = 3.5\) Hz, 1H, H-1'), 5.58 (d, \(J = 3.8\) Hz, 1H, H-1''), 4.92 (d, \(J = 11.3\) Hz, 1H), 4.91 (s, 2H), 4.82 (d, \(J = 12.0\) Hz, 1H), 4.80 (d, \(J = 10.6\) Hz, 1H), 4.76 (d, \(J = 12.0\) Hz, 1H), 4.65 (d, \(J = 11.3\) Hz, 1H), 4.64 (d, \(J = 12.0\) Hz, 1H), 4.47 (d, \(J = 12.0\) Hz, 1H), 4.3 (m, 1H), 4.11 (d, \(J = 10.0\) Hz, 1H), 4.02 (dd, \(J = 10.3, 8.9\) Hz, 1H), 3.3 – 3.9 (m, 17H), 2.3 – 2.4 (m, 1H), 1.4 – 1.7 (m, 3H), 1.0 – 1.3 (m, 10H), 0.88 (t, \(J = 7.2\) Hz, 3H); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz) \(\delta\) 138.2, 138.0, 137.9, 137.8, 137.6, 128.8 (5 carbons), 128.7 (2 carbons), 128.43 (2 carbons), 128.40 (2 carbons), 128.3 (5 carbons), 128.2 (2 carbons), 128.04 (4 carbons), 128.00 (2 carbons), 127.9, 97.6, 95.2, 83.3, 80.3, 78.9, 77.5, 76.5 (2 carbons), 76.3, 75.8, 75.5, 75.3, 75.1, 73.8, 73.1, 71.2, 69.9, 68.3, 65.8, 63.6, 60.5, 59.3, 51.2, 32.1, 32.0, 30.3, 29.7, 29.6, 26.0, 22.9, 14.3; ESI/APCI calcd for C_{61}H_{73}N_{15}O_{10}Na ([M+Na]^+) m/z 1198.5557; measured m/z 1198.5527.

6-O-(\(\alpha\)-d-Glucopyranosyl)-5-O-n-octylamine (FG10). Please refer to the general procedure for the final synthesis of kanamycin B analogs. FG10 was obtained with 81% yield as a chloride salt. \(^1\)H NMR (D\(_2\)O, 300 MHz) (chloride salt) \(\delta\) 5.59 (d, \(J =
3.8 Hz, 1H, H-1´), 5.01 (d, J = 3.4 Hz, 1H, H-1´´), 3.0 - 4.0 (m, 19H), 2.4 (m, 1H), 1.9 (m, 1H), 1.4 – 1.5 (m, 3H), 1.1 - 1.2 (m, 10H), 0.72 (t, J = 6.5 Hz, 3H); \(^{13}\)C NMR (D\(_2\)O, 100 MHz) (chloride salt) \(\delta\) 102.1, 93.1, 81.7, 80.7, 73.7, 73.31, 73.30, 72.8, 72.2, 71.3, 69.9, 68.6, 68.4, 59.9, 53.1, 50.2, 48.7, 40.0, 31.2, 29.4, 29.0, 28.5, 28.2, 25.2, 22.2, 13.6; ESI/APCI calcd for C\(_{26}\)H\(_{54}\)N\(_{10}\)([M+H]\(^+\)) \(m/z\); measured \(m/z\).

6-O-(3-Amino-3-deoxy-\(\alpha\)-D-glucopyranosyl)-5-O-n-octlyneamine (FG11).

Please refer to the general procedure for the final synthesis of kanamycin B analogs.

FG11 was obtained with 28% yield as a chloride salt. \(^1\)H NMR (D\(_2\)O, 300 MHz) (chloride salt) \(\delta\) 5.61 (d, J = 3.5 Hz, 1H, H-1´), 5.08 (d, J = 3.5 Hz, 1H, H-1´´), 3.0 - 4.2 (m, 19H), 2.4 (m, 1H), 1.9 (m, 1H), 1.4 – 1.5 (m, 2H), 1.1 - 1.2 (m, 10H), 0.72 (t, J = 6.5 Hz, 3H); \(^{13}\)C NMR (D\(_2\)O, 100 MHz) (chloride salt) \(\delta\) 101.3, 93.0, 82.0, 81.1, 73.7, 73.2, 71.8, 71.1, 69.6, 68.7, 68.2, 64.9, 59.3, 54.9, 53.0, 49.0, 48.7, 39.9, 31.2, 29.4, 29.0, 28.6, 27.9, 25.3, 22.2, 13.6; ESI/APCI calcd for C\(_{26}\)H\(_{54}\)N\(_{10}\)([M+H]\(^+\)) \(m/z\) 596.3865; measured \(m/z\) 596.3865.

4´-O-benzyl-5,6-O-benzylidene-1,3,2´,6´-Tetraazidoneamine (45a). To a solution of \(14\) (3.72 g, 7.35 mmol) in CH\(_2\)Cl\(_2\) (25 mL) was added TBAHS (0.75 g, 2.21 mmol), followed by BnBr (0.97 mL, 8.09 mmol) and NaOH (25 mL, 1N aqueous solution). The mixture was refluxed at 60 °C overnight. When complete, CH\(_2\)Cl\(_2\) was removed from the reaction mixture using a rotavapor and the obtained solution was extracted with EtOAc. The organic layer was then washed with 1 N aqueous HCl, water and brine, and then dried over solid Na\(_2\)SO\(_4\). After removal of the solvent and purification with gradient column chromatography (hexane:EtOAc = 100:0 to 40:60), the product 45a
was obtained mixed with its regioisomer 45b in a 1/1 ratio (1.97 g, 3.31 mmol, 45%). 1H NMR (CDCl$_3$, 300 MHz) (mixture of 45a and 45b) δ 7.3 – 7.4 (m, 10H), 5.56 (d, $J = 3.4$ Hz, 1H), 5.52 (d, $J = 3.8$ Hz, 1H), 4.96 (d, $J = 11.3$ Hz, 1H), 4.85 (d, $J = 11.7$ Hz, 1H), 4.70 (d, $J = 11.7$ Hz, 2H), 4.0 - 4.1 (m, 4H), 3.7 – 3.9 (m, 2H), 3.3 – 3.7 (m, 13H), 3.23 (dd, $J = 10.7$, 3.8 Hz, 1H), 2.81 (d, $J = 3.8$ Hz, 1H), 2.50 (d, $J = 3.8$ Hz, 1H), 2.2 - 2.4 (m, 2H), 1.3 – 1.8 (m, 24H).

3'-O-benzyl-5,6-O-benzylidene-1,3,2’,6’-Tetraazidoneamine (45b). Please refer to the synthesis of compound 45a.

4'-O-benzyl-3'-O-n-octyl-1,3,2’,6’-Tetraazidoneamine (47a). To a solution of a mixture of 45a and 45b (1.22 g, 2.04 mmol) in anhydrous DMF (50 mL), n-octyl bromide (1.42 mL, 8.18 mmol), NaH (0.33 g, 8.18 mmol), and a catalytic amount of TBAI were added. The reaction was stirred at room temperature overnight. When complete, the reaction was quenched by addition of MeOH (5 mL) and was slowly poured into a mixture of ice and EtOAc. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with 1 N aqueous HCl, water, saturated aqueous NaHCO$_3$ and brine, and then dried over solid Na$_2$SO$_4$. After removal of the solvent, a brownish, oily crude product was obtained, to which 70 mL of a mixed solution of dioxane:H$_2$O = 1:1 was added, followed by 50 mL glacial acetic acid. The resulting mixture was refluxed at 60 °C overnight. When complete, the reaction mixture was quenched with saturated aqueous NaHCO$_3$ and extracted with EtOAc. The organic layer was washed with 1N aqueous HCl, water, saturated aqueous NaHCO$_3$, brine, and dried over solid Na$_2$SO$_4$. After removal of the solvent followed by purification with a gradient
column chromatography (hexane:EtOAc = 100:0 to 40:60), a mixture of 47a and 47b was obtained in a 10/7 ratio (0.92 g, 1.46 mmol, 72%). 1H NMR (CDCl$_3$, 300 MHz) (mixture of 47a and 47b) δ 7.3 – 7.4 (m, 10H), 5.12 (d, $J = 3.7$ Hz, 1H), 5.11 (d, $J = 3.4$ Hz, 1H), 4.89 (d, $J = 10.7$ Hz, 1H), 4.87 (d, $J = 10.3$ Hz, 1H), 4.83 (d, $J = 10.3$ Hz, 1H), 4.63 (d, $J = 1.0$ Hz, 1H), 4.0 - 4.2 (m, 4H), 3.7 – 3.9 (m, 5H), 3.3 – 3.6 (m, 16H), 3.2 – 3.3 (m, 4H), 2.8 (m, 1H), 2.3 (m, 2H), 1.4 – 1.7 (m, 6H), 1.2 (m, 20H), 0.87 (t, $J = 7.2$ Hz, 6H);

13C NMR (CDCl$_3$, 100 MHz) δ 137.8 (2 carbons), 128.8 (4 carbons), 128.32, 128.27, 128.16 (2 carbons), 128.09 (2 carbons), 99.7 (2 carbons), 84.3 (2 carbons), 81.2 (2 carbons), 80.9 (2 carbons), 79.1, 78.7 (2 carbons), 76.1, 75.8, 75.5, 74.2, 73.9, 71.7, 71.5, 64.4 (2 carbons), 59.9 (2 carbons), 59.0 (2 carbons), 51.1 (2 carbons), 32.2 (2 carbons), 32.0 (2 carbons), 30.6 (2 carbons), 29.7 (2 carbons), 29.4 (2 carbons), 26.3 (2 carbons), 22.8 (2 carbons), 14.3 (2 carbons); ESI/APCI calcd for C$_{27}$H$_{40}$N$_{12}$O$_6$Na ([M+Na]$^+$) m/z 651.3086; measured m/z 651.3105.

3´-O-benzyl-4´-O-n-octyl-1,3,2´,6´-Tetraazidoneamine (47b). Please refer to the synthesis of compound 47a.

6-O-(2,3,4,6-Tetra-O-benzyl-α-D-glucopyranosyl)-4´-O-benzyl-3´-O-n-octyl-1,3,2´,6´-tetraazidoneamine (48a). A solution of the mixture of 47a and 47b (0.20 g, 0.32 mmol), 42a (0.24 g, 0.38 mmol), and activated powder 4 Å molecular sieve was stirred at room temperature for 2 h in 12 mL of a mixed anhydrous solution Et$_2$O:CH$_2$Cl$_2$ = 3:1. The mixture was cooled to -70 °C and N-iodosuccinimide (0.09 g, 0.38 mmol) was quickly added. After the temperature has warmed up to -40 °C, trifluoromethanesulfonic acid (0.05 mL) was added. The solution was stirred at low temperature till the complete
consumption of the glycosyl donor. The reaction mixture was quenched by addition of solid NaHCO₃, Na₂S₂O₃ and Na₂SO₄. After being stirred for 15 minutes, the reaction mixture was filtered through celite. The residue was washed thoroughly with EtOAc. After removal of the solvents, the crude product was purified with gradient column chromatography (Hexane:EtOAc = 100:0 to 50:50) to afford a mixture of 48a and 48b, obtained together with some inseparable impurities that prevented a full characterization.

6-O-(2,3,4,6-Tetra-O-benzyl-α-D-glucopyranosyl)-3′-O-benzyl-4′-O-n-octyl-1,3,2′,6′-tetraazidoneamine (48b). Please refer to the synthesis of 48a.

6-O-(α-D-Glucopyranosyl)-3′-O-n-octylamine (FG12). Please refer to the general procedure for the final synthesis of kanamycin B analogs. An inseparable mixture of FG12 and FG13 was obtained in 35% yield as chloride salts. The spectral information of only one of them (FG12 or FG13) is reported as follows:

1H NMR (D₂O, 300 MHz) (chloride salt) δ 5.79 (d, J = 3.8 Hz, 1H), 4.95 (d, J = 3.1 Hz, 1H), 3.3 - 4.0 (m, 19H), 2.4 (m, 1H), 1.7 - 1.9 (m, 1H), 1.4 – 1.5 (m, 2H), 1.1 - 1.2 (m, 10H), 0.71 (t, J = 6.9 Hz, 3H);

13C NMR (D₂O, 100 MHz) (chloride salt) 101.8, 96.1, 84.0, 79.2, 77.6, 74.3, 73.0, 72.9 (2 carbons), 71.7, 69.8, 69.3 (2 carbons), 60.6, 52.9, 49.9, 48.4, 40.1, 31.3, 29.5, 28.7, 28.5, 25.3, 25.2, 22.2, 13.6; ESI/APCI calcd for C₂₆H₅₃N₄O₁₁ ([M+H]+) m/z 597.3705; measured m/z 597.3716.

6-O-(α-D-Glucopyranosyl)-4′-O-n-octylamine (FG13). Please refer to the synthesis of FG12.
1-Pentyl-1*H*-naphtho[2,3-d][1,2,3]triazole-4,9-dione (50). Please refer to the general procedure for cycloaddition of 1,4-naphthoquinone, Method C. Compound 50 was obtained in 40% yield.

1-Hexyl-1*H*-naphtho[2,3-d][1,2,3]triazole-4,9-dione (51). Please refer to the general procedure for cycloaddition of 1,4-naphthoquinone, Method C. Compound 51 was obtained in 49% yield. 1H NMR (CDCl$_3$, 300 MHz) δ 8.3 – 8.4 (m, 1H), 8.2 – 8.3 (m, 1H), 7.8 – 7.9 (m, 2H), 4.85 (t, $J = 7.2$ Hz, 2H), 2.0 (m, 2H), 1.2 - 1.4 (m, 6H), 0.88 (t, $J = 7.2$ Hz, 3H); 13C NMR (CD$_3$OD, 100 MHz) δ 177.1, 175.7, 145.8, 135.4, 134.5, 133.7, 133.5, 133.1, 128.1, 127.6, 50.9, 31.3, 30.2, 26.2, 22.6, 14.1; ESI/APCI calcd for C$_{16}$H$_{18}$N$_3$O$_2$ $^+$ ([M+H]$^+$) m/z 284.1394; measured m/z 284.1390.

1-Octyl-1*H*-naphtho[2,3-d][1,2,3]triazole-4,9-dione (52). Please refer to the general procedure for cycloaddition of 1,4-naphthoquinone, Method C. Compound 52 was obtained in 62% yield.

1-Decyl-1*H*-naphtho[2,3-d][1,2,3]triazole-4,9-dione (53). Please refer to the general procedure for cycloaddition of 1,4-naphthoquinone, Method C. Compound 50 was obtained in 54% yield.

1-Dodecyl-1*H*-naphtho[2,3-d][1,2,3]triazole-4,9-dione (54). Please refer to the general procedure for cycloaddition of 1,4-naphthoquinone, Method C. Compound 50 was obtained in 68% yield.

2-Pentylamino-1,4-naphthoquinone (60). Please refer to the general procedure for cycloaddition of 1,4-naphthoquinone, Method B. Compound 60 was obtained in 29% yield (estimated from the integral ratio of 1H NMR).
2-Hexylamino-1,4-naphthoquinone (61). Please refer to the general procedure for cycloaddition of 1,4-naphthoquinone, Method B. Compound 61 was obtained in 18% yield (estimated from the integral ratio of \(^1\)H NMR). \(^1\)H NMR (CDCl\(_3\), 300 MHz) \(\delta 8.0 – 8.1 \text{ (m, 2H)}, 7.7 \text{ (m, 1H)}, 7.6 \text{ (m, 1H)}, 5.87 \text{ (br s, 1H)}, 5.72 \text{ (s, 1H)}, 3.16 \text{ (q, } J = 7.2 \text{ Hz, 2H)}, 1.7 \text{ (m, 2H)}, 1.2 -1.5 \text{ (m, 6H)}, 0.90 \text{ (t, } J = 7.2 \text{ Hz, 3H}); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz) \(\delta 183.1, 182.1, 148.2, 134.9, 133.9, 132.1, 130.7, 126.45, 126.39, 100.9, 42.8, 31.6, 28.4, 26.9, 22.7, 14.2.\) ESI/APCI calcd for C\(_{16}\)H\(_{20}\)NO\(_2\)\(^{+}\) ([M+H]\(^{+}\)) \(m/z\) 258.1489; measured \(m/z\) 258.1492.

2-Octylamino-1,4-naphthoquinone (62). Please refer to the general procedure for cycloaddition of 1,4-naphthoquinone, Method B. Compound 62 was obtained in 11% yield (estimated from the integral ratio of \(^1\)H NMR).

2-Decylamino-1,4-naphthoquinone (63). Please refer to the general procedure for cycloaddition of 1,4-naphthoquinone, Method B. Compound 63 was obtained in 3% yield (estimated from the integral ratio of \(^1\)H NMR). \(^1\)H NMR (CDCl\(_3\), 300 MHz) \(\delta 8.0 – 8.1 \text{ (m, 2H)}, 7.7 \text{ (m, 1H)}, 7.6 \text{ (m, 1H)}, 5.88 \text{ (br s, 1H)}, 5.73 \text{ (s, 1H)}, 3.16 \text{ (q, } J = 7.2 \text{ Hz, 2H)}, 1.7 \text{ (m, 2H)}, 1.2 -1.4 \text{ (m, 14H)}, 0.88 \text{ (t, } J = 6.9 \text{ Hz, 3H}); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz) \(\delta 183.1, 182.2, 148.2, 135.0, 133.9, 132.1, 130.7, 126.5, 126.4, 100.9, 42.8, 32.1, 29.9, 29.7 \text{ (2 carbons), 29.5, 28.5, 27.2, 22.9, 14.3.\) ESI/APCI calcd for C\(_{20}\)H\(_{28}\)NO\(_2\)\(^{+}\) ([M+H]\(^{+}\)) \(m/z\) 314.2115; measured \(m/z\) 314.2112.

2-Dodecylamino-1,4-naphthoquinone (64). Please refer to the general procedure for cycloaddition of 1,4-naphthoquinone, Method B. Compound 64 was obtained in 4% yield (estimated from the integral ratio of \(^1\)H NMR).
3-Ethyl-1-pentyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (50a). Please refer to the general procedure for N-3 alkylation. Compound 50a was obtained in 80% yield. 1H NMR (CD$_3$OD, 300 MHz) δ 8.36 (dd, $J = 8.9$, 2.7 Hz, 2H), 8.04 (dd, $J = 9.3$, 2.4 Hz, 2H), 5.12 (q, $J = 7.2$ Hz, 2H), 5.06 (t, $J = 7.2$ Hz, 2H), 2.1 - 2.2 (m, 2H), 1.74 (t, $J = 7.2$ Hz, 3H), 1.4 - 1.5 (m, 4H), 0.95 (t, $J = 7.2$ Hz, 3H); 13C NMR (CD$_3$OD, 100 MHz) δ 171.2, 171.1, 134.4 (2 carbons), 134.31, 134.30, 131.2 (2 carbons), 126.3 (2 carbons), 52.8, 48.6, 26.9, 26.5, 20.3, 11.4, 11.3; ESI/APCI calcd for C$_{17}$H$_{20}$N$_3$O$_2$ $^+ ([M]^+) m/z$ 298.1550; measured m/z 298.1543.

3-Butyl-1-pentyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (50b). Please refer to the general procedure for N-3 alkylation. Compound 50b was obtained in 53% yield. 1H NMR (CD$_3$OD, 300 MHz) δ 8.35 (dd, $J = 9.3$, 2.4 Hz, 2H), 8.02 (dd, $J = 9.3$, 2.4 Hz, 2H), 5.07 (t, $J = 7.2$ Hz, 2H), 5.06 (t, $J = 7.2$ Hz, 2H), 2.1 (m, 4H), 1.4 - 1.6 (m, 6H), 1.03 (t, $J = 7.2$ Hz, 3H), 0.95 (t, $J = 7.2$ Hz, 3H); 13C NMR (CD$_3$OD, 100 MHz) δ 172.7 (2 carbons), 135.9 (4 carbons), 132.8 (2 carbons), 127.8 (2 carbons), 54.3, 54.1, 30.6, 28.4, 28.1, 21.8, 19.3, 12.9, 12.4; ESI/APCI calcd for C$_{19}$H$_{24}$N$_3$O$_2$ $^+ ([M]^+) m/z$ 326.1863; measured m/z 326.1856.

1,3-Dipentyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (50c). Please refer to the general procedure for N-3 alkylation. Compound 50c was obtained in 64% yield. 1H NMR (CD$_3$OD, 400 MHz) δ 8.38 (dd, $J = 9.0$, 2.5 Hz, 2H), 8.05 (dd, $J = 9.0$, 2.4 Hz, 2H), 5.08 (t, $J = 7.2$ Hz, 4 H), 2.1 (m, 4 H), 1.2 - 1.6 (m, 8H), 0.98 (t, $J = 7.1$ Hz, 6H); 13C NMR (CDCl$_3$, 100 MHz) δ 172.7 (2 carbons), 135.9 (4 carbons), 132.8 (2 carbons), 127.9 (2 carbons), 54.3 (2 carbons), 28.4 (2 carbons), 28.1
(2 carbons), 22.2 (2 carbons), 21.8 (2 carbons), 12.9 (2 carbons); ESI/APCI calcd for C_{20}H_{26}N_{3}O_{2}^{+} ([M]^{+}) m/z 340.2020; measured m/z 340.2028.

3-Octyl-1-pentyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (50e). Please refer to the general procedure for N-3 alkylation. Compound 50e was obtained in 74% yield. \(^1\)H NMR (CD\(_3\)OD, 300 MHz) \(\delta\) 8.37 (dd, \(J = 9.3, 2.4\) Hz, 2H), 8.04 (dd, \(J = 8.9, 2.4\) Hz, 2H), 5.07 (t, \(J = 7.2\) Hz, 4 H), 2.1 (m, 4 H), 1.3 - 1.5 (m, 14H), 0.96 (t, \(J = 7.2\) Hz, 3H), 0.89 (t, \(J = 6.9\) Hz, 3H); \(^{13}\)C NMR (CD\(_3\)OD, 100 MHz) \(\delta\) 172.7 (2 carbons), 136.0 (2 carbons), 135.9 (2 carbons), 132.8 (2 carbons), 127.9 (2 carbons), 54.3 (2 carbons), 31.7, 29.0, 28.7 (2 carbons), 28.4, 28.1, 26.0, 22.5, 21.8, 13.2, 12.9; ESI/APCI calcd for C_{23}H_{32}N_{3}O_{2}^{+} ([M]^{+}) m/z 382.2489; measured m/z 382.2497.

3-Decyl-1-pentyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (50f). Please refer to the general procedure for N-3 alkylation. Compound 50f was obtained in 58% yield. \(^1\)H NMR (CD\(_3\)OD, 400 MHz) \(\delta\) 8.4 (m, 2H), 8.1 (m, 2H), 5.10 (t, \(J = 7.2\) Hz, 4H), 2.1 (m, 4H), 1.2 – 1.6 (m, 18H), 0.8 – 1.0 (m, 6H); \(^{13}\)C NMR (CD\(_3\)OD, 100 MHz) \(\delta\) 172.7 (2 carbons), 136.0 (2 carbons), 135.9 (2 carbons), 132.7 (2 carbons), 127.9 (2 carbons), 54.3 (2 carbons), 31.8, 29.4, 29.2 (2 carbons), 28.7 (2 carbons), 28.5, 28.1, 26.0, 22.5, 21.8, 13.2, 12.9; ESI/APCI calcd for C_{25}H_{36}N_{3}O_{2}^{+} ([M]^{+}) m/z 410.2802; measured m/z 410.2813.

3-Ethyl-1-hexyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (51a). Please refer to the general procedure for N-3 alkylation. Compound 51a was obtained in 82% yield. \(^1\)H NMR (CD\(_3\)OD, 300 MHz) \(\delta\) 8.37 (dd, \(J = 8.9, 2.1\) Hz, 2H), 8.04 (dd, \(J = 8.9, 2.7\) Hz, 2H), 5.13 (q, \(J = 7.2\) Hz, 2H), 5.07 (t, \(J = 7.6\) Hz, 2H), 2.1
(m, 2H), 1.73 (t, J = 7.2 Hz, 3H), 1.3 - 1.5 (m, 6H), 0.93 (t, J = 7.2 Hz, 3H); 13C NMR (CD$_3$OD, 100 MHz) δ 172.73, 172.66, 135.9 (2 carbons), 135.8 (2 carbons), 132.8 (2 carbons), 127.9 (2 carbons), 54.3, 50.2, 31.0, 28.7, 25.7, 22.2, 13.1, 13.0; ESI/APCI calcd for C$_{18}$H$_{22}$N$_3$O$_2^+$ ([M]$^+$) m/z 312.1707; measured m/z 312.1710.

3-Butyl-1-hexyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (51b). Please refer to the general procedure for N-3 alkylation. Compound 51b was obtained in 95% yield. 1H NMR (CD$_3$OD, 300 MHz) δ 8.34 (dd, J = 8.9, 2.4 Hz, 2H), 8.01 (dd, J = 8.9, 2.8 Hz, 2H), 5.05 (t, J = 7.2 Hz, 2H), 5.04 (t, J = 7.2 Hz, 2H), 2.1 (m, 4H), 1.2 - 1.6 (m, 8H), 1.02 (t, J = 7.2 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H); 13C NMR (CD$_3$OD, 100 MHz) δ 172.8 (2 carbons), 135.9 (4 carbons), 132.8 (2 carbons), 127.8 (2 carbons), 54.3, 54.1, 30.9, 30.6, 28.6, 25.7, 22.2, 19.3, 13.1, 12.4; ESI/APCI calcd for C$_{20}$H$_{26}$N$_3$O$_2^+$ ([M]$^+$) m/z 340.2020; measured m/z 340.2025.

1-Hexyl-3-pentyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (51c). Please refer to the general procedure for N-3 alkylation. Compound 51c was obtained in 62% yield. 1H NMR (CD$_3$OD, 400 MHz) δ 8.38 (dd, J = 9.1, 2.4 Hz, 2H), 8.05 (dd, J = 9.1, 2.4 Hz, 2H), 5.08 (t, J = 7.3 Hz, 4H), 2.1 (m, 4H), 1.2 – 1.6 (m, 10 H), 0.9 (m, 6H); 13C NMR (CD$_3$OD, 100 MHz) δ 172.2 (2 carbons), 136.0 (4 carbons), 132.8 (2 carbons), 127.9 (2 carbons), 54.3 (2 carbons), 31.0, 28.7, 28.4, 28.1, 25.7, 22.2, 21.8, 13.1, 12.9; ESI/APCI calcd for C$_{21}$H$_{28}$N$_3$O$_2^+$ ([M]$^+$) m/z 354.2176; measured m/z 354.2178.

1,3-Dihexyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (51d). Please refer to the general procedure for N-3 alkylation. Compound 51d
was obtained in 90% yield. 1H NMR (CD$_3$OD, 300 MHz) δ 8.34 (dd, $J = 8.9, 2.7$ Hz, 2H), 8.01 (dd, $J = 9.3, 2.4$ Hz, 2H), 5.05 (t, $J = 7.2$ Hz, 4H), 2.1 (m, 4H), 1.3 - 1.6 (m, 12H), 0.92 (t, $J = 7.2$ Hz, 6H); 13C NMR (CD$_3$OD, 100 MHz) δ 172.8 (2 carbons), 135.9 (4 carbons), 132.8 (2 carbons), 127.8 (2 carbons), 54.3 (2 carbons), 30.9 (2 carbons), 28.6 (2 carbons), 25.7 (2 carbons), 22.2 (2 carbons), 13.0 (2 carbons); ESI/APCI calcd for C$_{22}$H$_{30}$N$_3$O$_2$ $^+$ ([M]$^+$) m/z 368.2333; measured m/z 368.2340.

1-Hexyl-3-octyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (51e). Please refer to the general procedure for N-3 alkylation. Compound 51e was obtained in 88% yield. 1H NMR (CD$_3$OD, 300 MHz) δ 8.35 (dd, $J = 9.3, 2.4$ Hz, 2H), 8.02 (dd, $J = 8.9, 2.4$ Hz, 2H), 5.05 (t, $J = 7.2$ Hz, 4H), 2.1 (m, 4H), 1.3 - 1.6 (m, 16H), 0.9 (m, 6H); 13C NMR (CD$_3$OD, 75 MHz) δ 172.6 (2 carbons), 135.8 (4 carbons), 132.7 (2 carbons), 127.7 (2 carbons), 54.2 (2 carbons), 31.6, 30.8, 28.8, 28.6, 28.53, 28.52, 25.9, 25.6, 22.4, 22.1, 13.1, 13.0; ESI/APCI calcd for C$_{24}$H$_{34}$N$_3$O$_2$ $^+$ ([M]$^+$) m/z 396.2646; measured m/z 396.2650.

3-Decyl-1-hexyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (51f). Please refer to the general procedure for N-3 alkylation. Compound 51f was obtained in 39% yield. 1H NMR (CD$_3$OD, 300 MHz) δ 8.37 (dd, $J = 8.9, 2.4$ Hz, 2H), 8.04 (dd, $J = 8.9, 2.0$ Hz, 2H), 5.08 (t, $J = 7.2$ Hz, 4H), 2.1 (m, 4H), 1.2 - 1.6 (m, 20H), 0.9 (m, 6H); 13C NMR (CD$_3$OD, 100 MHz) δ 172.7 (2 carbons), 136.1 (2 carbons), 135.9 (2 carbons), 132.7 (2 carbons), 127.9 (2 carbons), 54.4 (2 carbons), 31.8, 31.0, 29.4, 29.3, 29.2, 28.7 (3 carbons), 26.0, 25.7, 22.5, 22.3, 13.2, 13.1; ESI/APCI calcd for C$_{26}$H$_{38}$N$_3$O$_2$ $^+$ ([M]$^+$) m/z 424.2959; measured m/z 424.2962.
3-Ethyl-1-octyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (52a). Please refer to the general procedure for N-3 alkylation. Compound 52a was obtained with 51% yield.

3-Butyl-1-octyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (52b). Please refer to the general procedure for N-3 alkylation. Compound 52b was obtained in 99% yield. 1H NMR (CD$_3$OD, 300 MHz) δ 8.35 (dd, J = 8.9, 2.8 Hz, 2H), 8.02 (dd, J = 8.9, 2.4 Hz, 2H), 5.0 - 5.1 (m, 4H), 2.1 (m, 4H), 1.2 – 1.6 (m, 12H), 1.03 (t, J = 7.2 Hz, 3H), 0.90 (t, J = 6.5 Hz, 3H); 13C NMR (CD$_3$OD, 100 MHz) δ 172.8 (2 carbons), 135.9 (4 carbons), 132.8 (2 carbons), 127.8 (2 carbons), 54.3, 54.1, 31.7, 30.6, 28.9, 28.71, 28.65, 26.0, 22.5, 19.3, 13.2, 12.5; ESI/APCI calcd for C$_{22}$H$_{30}$N$_3$O$_2$ $^+$ ([M$^+$] $^+$) m/z 368.2333; measured m/z 368.2337.

1,3-Dioctyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (52c). Please refer to the general procedure for N-3 alkylation. Compound 52c was obtained in 29% yield. 1H NMR (CD$_3$OD, 300 MHz) δ 8.38 (dd, J = 8.9, 2.4 Hz, 2H), 8.05 (dd, J = 8.9, 2.7 Hz, 2H), 5.10 (t, J = 7.2 Hz, 4H), 2.1 (m, 4H), 1.2 – 1.6 (m, H), 0.89 (t, J = 6.8 Hz, 6H); 13C NMR (CD$_3$OD, 100 MHz) δ 172.6 (2 carbons), 136.1 (2 carbons), 135.9 (2 carbons), 132.7 (2 carbons), 127.9 (2 carbons), 54.4 (2 carbons), 31.7 (2 carbons), 30.0 (2 carbons), 28.9 (2 carbons), 28.7 (2 carbons), 26.0 (2 carbons), 22.5 (2 carbons), 13.2 (2 carbons); ESI/APCI calcd for C$_{26}$H$_{38}$N$_3$O$_2$ $^+$ ([M$^+$] $^+$) m/z 424.2959; measured m/z 424.2960.

3-Decyl-1-octyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (52d). Please refer to the general procedure for N-3 alkylation. Compound 52d
was obtained in 81% yield. 1H NMR (CD$_3$OD, 400 MHz) δ 8.40 (dd, $J = 9.2, 2.4$ Hz, 2H), 8.06 (dd, $J = 9.0, 2.5$ Hz, 2H), 5.10 (t, $J = 7.2$ Hz, 4H), 2.1 (m, 4H), 1.2 – 1.6 (m, 24H), 0.9 (m, 6H); 13C NMR (CD$_3$OD, 100 MHz) δ 172.7 (2 carbons), 136.0 (2 carbons), 135.9 (2 carbons), 132.8 (2 carbons), 127.9 (2 carbons), 54.4 (2 carbons), 31.8, 31.7, 29.4, 29.3, 29.2, 28.9, 28.7 (4 carbons), 26.0 (2 carbons), 22.52, 22.49, 13.2 (2 carbons); ESI/APCI calcd for C$_{22}$H$_{30}$N$_3$O$_2$ ($[M]^+$) m/z 452.3280; measured m/z 452.3272.

3-Ethyl-1-decyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (53a). Please refer to the general procedure for N-3 alkylation. Compound 53a was obtained in 99% yield. 1H NMR (CD$_3$OD, 300 MHz) δ 8.32 (dd, $J = 9.3, 2.4$ Hz, 2H), 8.00 (dd, $J = 8.9, 2.4$ Hz, 2H), 5.08 (q, $J = 7.2$ Hz, 2H), 5.01 (t, $J = 7.6$ Hz, 2H), 2.1 (m, 2H), 1.72 (t, $J = 7.2$ Hz, 3H), 1.2 - 1.5 (m, 14H), 0.87 (t, $J = 6.8$ Hz, 3H); 13C NMR (CD$_3$OD, 100 MHz) δ 172.9, 172.8, 135.9 (2 carbons), 132.8 (2 carbons), 127.8 (4 carbons), 54.3, 50.2, 31.8, 29.4, 29.2 (2 carbons), 28.7, 28.6, 26.0, 22.5, 13.3, 12.9; ESI/APCI calcd for C$_{18}$H$_{22}$N$_3$O$_2$ ($[M]^+$) m/z 368.2333; measured m/z 368.2342.

3-Butyl-1-decyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (53b). Please refer to the general procedure for N-3 alkylation. Compound 53b was obtained in 87% yield. 1H NMR (CD$_3$OD, 300 MHz) δ 8.35 (dd, $J = 8.9, 2.4$ Hz, 2H), 8.02 (dd, $J = 9.3, 2.4$ Hz, 2H), 5.07 (t, $J = 7.2$ Hz, 2H), 5.06 (t, $J = 7.2$ Hz, 2H), 2.1 (m, 4H), 1.2 - 1.6 (m, 16H), 1.03 (t, $J = 7.2$ Hz, 3H), 0.88 (t, $J = 6.9$ Hz, 3H); 13C NMR (CD$_3$OD, 100 MHz) δ 172.8 (2 carbons), 135.9 (4 carbons), 132.8 (2 carbons), 127.8 (2 carbons), 54.3, 54.1, 31.8, 30.6, 29.4, 29.22, 29.20, 28.73, 28.65, 26.0, 22.5, 19.3, 13.2, 12.4; ESI/APCI calcd for C$_{24}$H$_{34}$N$_3$O$_2$ ($[M]^+$) m/z 396.2646; measured m/z 396.2651.
1,3-Didecyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (53f). Please refer to the general procedure for N-3 alkylation. Compound 53f was obtained in 93% yield. 1H NMR (CD$_3$OD, 300 MHz) δ 8.35 (dd, J = 9.3, 2.4 Hz, 2H), 8.02 (dd, J = 9.3, 2.4 Hz, 2H), 5.06 (t, J = 7.2 Hz, 4H), 2.1 (m, 4H), 1.2 - 1.5 (m, 28H), 0.88 (t, J = 7.2 Hz, 6H); 13C NMR (CD$_3$OD, 100 MHz) δ 172.7 (2 carbons), 135.9 (4 carbons), 132.8 (2 carbons), 127.9 (2 carbons), 54.3 (2 carbons), 31.8 (2 carbons), 29.4 (2 carbons), 29.3 (2 carbons), 29.2 (2 carbons), 28.8 (2 carbons), 28.6 (2 carbons), 26.0 (2 carbons), 22.5 (2 carbons), 13.3 (2 carbons); ESI/APCI calcd for C$_{30}$H$_{46}$N$_3$O$_2$ $^+$ ([M]⁺) m/z 480.3585; measured m/z 480.3588.

1-Dodecyl-3-ethyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (54a). Please refer to the general procedure for N-3 alkylation. Compound 54a was obtained in 99% yield. 1H NMR (CD$_3$OD, 300 MHz) δ 8.35 (dd, J = 8.9, 2.4 Hz, 2H), 8.02 (dd, J = 8.6, 2.4 Hz, 2H), 5.11 (q, J = 7.2 Hz, 2H), 5.04 (t, J = 7.2 Hz, 2H), 2.1 (m, 2H), 1.73 (t, J = 7.2 Hz, 3H), 1.2 - 1.5 (m, 18H), 0.88 (t, J = 6.9 Hz, 3H); 13C NMR (CD$_3$OD, 100 MHz) δ 172.8, 172.7, 135.9 (4 carbons), 132.8 (2 carbons), 127.8 (2 carbons), 54.3, 50.2, 31.9, 29.5 (2 carbons), 29.4, 29.3, 29.2, 28.8, 28.7, 26.0, 22.5, 13.2, 12.9; ESI/APCI calcd for C$_{24}$H$_{34}$N$_3$O$_2$ $^+$ ([M]⁺) m/z 396.2646; measured m/z 396.2639.

3-Butyl-1-dodecyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (54b). Please refer to the general procedure for N-3 alkylation. Compound 54b was obtained in 93% yield. 1H NMR (CD$_3$OD, 300 MHz) δ 8.33 (dd, J = 9.3, 2.4 Hz, 2H), 8.00 (dd, J = 8.9, 2.4 Hz, 2H), 5.04 (t, J = 7.2 Hz, 2H), 5.03 (t, J = 7.2 Hz, 2H), 2.1 (m, 4H), 1.2 - 1.6 (m, 20H), 1.01 (t, J = 7.2 Hz, 3H), 0.87 (t, J = 6.8 Hz, 3H); 13C NMR
(CD$_3$OD, 100 MHz) δ 172.8 (2 carbons), 135.9 (2 carbons), 135.8 (2 carbons), 132.8 (2 carbons), 127.8 (2 carbons), 54.3, 54.1, 31.9, 30.5, 29.5 (2 carbons), 29.4, 29.3, 29.2, 28.7, 28.6, 26.0, 22.5, 19.3, 13.2, 12.5; ESI/APCI calcd for C$_{26}$H$_{38}$N$_3$O$_2^+ $ ([M]$^+$) m/z 424.2959; measured m/z 424.2958.

1-Dodecyl-3-pentyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (54c). Please refer to the general procedure for N-3 alkylation. Compound 54c was obtained in 99% yield. 1H NMR (CD$_3$OD, 300 MHz) δ 8.36 (dd, $J = 9.3, 2.4$ Hz, 2H), 8.02 (dd, $J = 8.9, 2.4$ Hz, 2H), 5.07 (t, $J = 7.2$ Hz, 4 H), 2.1 (m, 4 H), 1.2 - 1.6 (m, 22H), 0.95 (t, $J = 6.8$ Hz, 3H), 0.88 (t, $J = 6.8$ Hz, 3H); 13C NMR (CD$_3$OD, 100 MHz) δ 172.7 (2 carbons), 136.0 (2 carbons), 135.9 (2 carbons), 132.8 (2 carbons), 127.9 (2 carbons), 54.3 (2 carbons), 31.9, 29.5 (2 carbons), 29.4, 29.3 (2 carbons), 28.74, 28.69, 28.4, 28.1, 26.0, 22.5, 21.8, 13.2, 12.9; ESI/APCI calcd for C$_{27}$H$_{40}$N$_3$O$_2^+ $ ([M]$^+$) m/z 438.3128; measured m/z 438.3122.

1-Dodecyl-3-hexyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (54d). Please refer to the general procedure for N-3 alkylation. Compound 54d was obtained in 88% yield. 1H NMR (CD$_3$OD, 300 MHz) δ 8.35 (dd, $J = 9.3, 2.4$ Hz, 2H), 8.02 (dd, $J = 9.3, 2.4$ Hz, 2H), 5.06 (t, $J = 7.2$ Hz, 4 H), 2.1 (m, 4 H), 1.2 - 1.6 (m, 24H), 0.8 – 1.0 (m, 6H); 13C NMR (CD$_3$OD, 100 MHz) δ 172.7 (2 carbons), 136.0 (2 carbons), 135.9 (2 carbons), 132.8 (2 carbons), 127.9 (2 carbons), 54.4 (2 carbons), 31.9, 31.0, 29.5 (2 carbons), 29.4, 29.3 (2 carbons), 28.8, 28.7 (2 carbons), 26.0, 25.7, 22.5, 22.3, 13.2, 13.1; ESI/APCI Calcd for C$_{28}$H$_{42}$N$_3$O$_2^+ $ ([M]$^+$) m/z 452.3273; measured m/z 452.3273.
1-Dodecyl-3-octyl-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (54e). Please refer to the general procedure for N-3 alkylation. Compound 54e was obtained in 52% yield. 1H NMR (CD$_3$OD, 300 MHz) δ 8.37 (dd, $J = 9.3$, 2.4 Hz, 2H), 8.05 (dd, $J = 9.3$, 2.4 Hz, 2H), 5.09 (t, $J = 7.2$ Hz, 4 H), 2.1 (m, 4 H), 1.2 - 1.5 (m, 28H), 0.9 (m, 6H); 13C NMR (CD$_3$OD, 100 MHz) δ 172.6 (2 carbons), 136.1 (2 carbons), 135.9 (2 carbons), 132.7 (2 carbons), 127.9 (2 carbons), 54.4 (2 carbons), 31.9, 31.7, 29.5 (2 carbons), 29.4, 29.3 (2 carbons), 29.0, 28.8 (4 carbons), 26.0 (2 carbons), 22.52, 22.48, 13.2 (2 carbons); ESI/APCI calcd for C$_{30}$H$_{46}$N$_3$O$_2^+$ ([M$^+$]$^+$) m/z 480.3585; measured m/z 480.3580.

3-Decyl-1-dodecyl-4,9-dioxo-4,9-dihydro 1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (54f). Please refer to the general procedure for N-3 alkylation. Compound 54f was obtained in 99% yield. 1H NMR (CD$_3$OD, 300 MHz) δ 8.36 (dd, $J = 8.9$, 2.4 Hz, 2H), 8.03 (dd, $J = 8.9$, 2.4 Hz, 2H), 5.07 (t, $J = 7.2$ Hz, 4 H), 2.1 – 2.2 (m, 4 H), 1.2 - 1.5 (m, 32H), 0.88 (t, $J = 6.9$ Hz, 6H); 13C NMR (CD$_3$OD, 100 MHz) δ 172.7 (2 carbons), 136.0 (4 carbons), 132.8 (2 carbons), 127.9 (2 carbons), 54.4 (2 carbons), 31.9 (2 carbons), 29.4 (2 carbons), 29.3 (4 carbons), 28.8 (2 carbons), 28.7 (2 carbons), 26.0 (2 carbons), 22.5 (2 carbons), 13.2 (2 carbons); ESI/APCI calcd for C$_{32}$H$_{50}$N$_3$O$_2^+$ ([M$^+$]$^+$) m/z 508.3898; measured m/z 508.3896.

3-Methyl-1-hexyl-1H-naphtho[2,3-d][1,2,3]triazol-3-ium chloride (69). Compound 69 was synthesized according to the protocol described in reference 115. 1H NMR (CD$_3$OD, 300 MHz) δ 8.3 – 8.4 (m, 2H), 8.0 (m, 2H), 5.04 (t, $J = 7.2$ Hz, 2H), 4.68 (s, 3H), 2.1 (m, 2H), 1.3 - 1.6 (m, 6H), 0.93 (t, $J = 7.2$ Hz, 3H); 13C NMR (CD$_3$OD, 100
MHz) δ 172.7, 172.65, 136.2, 136.0 (2 carbons), 135.6, 132.9, 132.7, 127.9, 127.8, 54.3, 39.8, 31.0, 28.8, 25.7, 22.2, 13.1; ESI/APCI calcd for C_{17}H_{20}N_{3}O_{2}^{+} ([M]^+) m/z 298.1550; measured m/z 298.1560.
REFERENCES

2. "Emergence of infectious diseases in the 21st century”
 http://www.gideononline.com/2008/03/05/emergence-of-infectious-diseases-in-the-21st-century/

30. Neonakis, I.; Gikas, A.; Scoulica, E.; Manios, A.; Georgiladakis, A.; Tselentis, Y.

36. Griffey, R. H.; Hofstadler, S. A.; Sannes-Lowery, K. A.; Ecker, D. J.; Crooke, S.

100. Leach, B. E.; Teeters, C. M. J. Am. Chem. Soc. 1951, 73, 2794-2797.

Appendix A. 1H NMR and 13C NMR Spectra for Selected Compounds
1H NMR spectrum of compound 11a
Standard 13C Experiment

Current Data Parameters
NAME: 1990-1.10.112
EXPNO: 2
PROCNO: 0

F2 - Acquisition Parameters
DATE: 2003/06/03
TIME: 12:00
INSTRUM: BRUKER AVANCE 500 MHz
PULPROG: 32
T1 (msec): 1000
T2 (msec): 30
DELAY (sec): 4
SOLVENT: CDCl3
RES: 1172
ES: 2
SN: 35000:100 Hz
FD1 (Hz): 64600 Hz
AG: 0.056/100 Hz
RS: 40000 Hz
CN: 20:1000:4000:100 Hz
DE: 27.14 Hz
TE: 200.135 Hz
D9: 0.383000000
e.000000000 sec
Q5: 20.00 Hz
QD5: en
PS: 300.00 Hz
PS1: 0.000000000 Hz
PS2: 0.70 Hz
OE: 27.14 Hz
NPLS: 100.000000000 Hz
MAGIC: 0

F2 - Processing parameters
ET: 18084
DF: 100.000000000 Hz
MV: 0
NS: 0
LB: 2.00 Hz
SN: 0
PC: 1.00

FID NMR split parameters
CN: 20.00 Hz
CP: F1: 200.004 Hz
CF: 2320.0 Hz
CP: -7.788 Hz
CP: -7.435 Hz
END: 12400 Hz
HET: 1035.84687 Hz

13C NMR spectrum of compound 11a.
^{1}H NMR spectrum of compound 11c
Standard 13C Experiment

Current date parameters:
- WAVE: 2008-1-9-2-2623
- EXPMOD: 1
- PROMOD: 1

F2 - Acquisition parameters:
- Data: 500000
- Time: 10.24
- INVERTSE: 90deg
- MULNUCL: NO
- MULT: 1000
- TO: 10000
- SOLVENT: CD2Cl2
- NS: 847
- NS: 2
- SW1: 2500000 MHz
- FIDRES: 0.76862 MHz
- AS: 0.0001028 sec
- AG: 47000
- NR: 20.00 usec
- SC: 20.00 usec
- FE: 320.68 sec
- DR: 6.000002500 sec
- DLS: 30.09 usec
- CHIRP: 0.01128
- FP: 102.00 usec
- DI: 1.000001001 sec
- PS: 0.75 usec
- P2: 35.14 usec
- SFC: 10.0021178 kHz
- NUCLEUS: 13C
- DT1: 0.000001000 sec

F2 - Preprocessing parameters:
- SI: 1000
- SF: 100 64k2400 kHz
- MOD: 0
- SSB: 0
- LB: 2.00 MHz
- GB: 0
- PC: 1.00

10 NMR plot parameters:
- CR: 10.00 usec
- F1F: 180.200 ppm
- F1: 170.200 ppm
- F2: 1.00 ppm
- P: 1.00 ppm
- P1: 0.1965 ppm
- HDCH: 0.0124 ppm

13C NMR spectrum of compound IIc
13C NMR spectrum of compound 19a
13C NMR spectrum of compound 19e
1H NMR spectrum of FG02
1H NMR spectrum of compound 20
1H NMR spectrum of compound 21
Standard 13C Experiment

13C NMR spectrum of compound FG03
1H NMR spectrum of compound 25
13C NMR spectrum of compound 25
Standard 13C Experiment

NMR spectrum of compound 23
1H NMR spectrum of compound 28a
1H NMR spectrum of compound 29a
1H NMR spectrum of compound FG06
1H NMR spectrum of compound 31
^{1}H NMR spectrum of compound 32
"^1\text{H} NMR spectrum of compound 33"
Standard 13C Experiment

\[^{13}C \text{NMR spectrum of compound 33} \]
1H NMR spectrum of compound 34
Standard 13C Experiment

13C NMR spectrum of compound 34
Standard 13C Experiment

Current Edit Parameters

NMR: FG07

13C NMR spectrum of compound FG07
13C NMR spectrum of compound 36.
13C NMR spectrum of compound 37
13C NMR spectrum of compound 39

Standard Experiment
1H NMR spectrum of compound 40
Standard 13C
Experiment

Current Data Parameters
MODE: NMR
EMPRO 1
F2/D2

F2 - Acquisition Parameters
Date: 5/13/93
Type: 1.44
INST# 4899
PROCID 0
SOLVENT CDCl3
NS 25000
DS 0
Scale 75000.000 Hz
F1RES 0.700039 Hz
A3 0.0000100 sec
PG 45000
DF 20600 us
DE 27.14 us
DI 300.0 nsec
DE3 0.0000000 sec
DS 0.0000000 sec
CPMG 96.11 us
PS1 110.00 us
DS1 0.0000000 sec
F1 8.75 us
CC 27.14 us
SF1M 192.6917 Hz
NUCLEUS 2D
DS1 0.0000000 sec

F2 - Processing Parameters
SI 18284
SP 150.00000 MHz
WOW 0M
SOS 0
SSB 2.00 Hz
SB 0
PC 1.00

3D NMR plot parameters
CX 20.00 cm
F1P 100000 ppm
F1P 100000 ppm
F2P -10000 ppm
FP2N -10000 ppm
P1PPM 50000 ppm
MEZM 0.60037 Hz/cm

13C NMR spectrum of compound 40
1H NMR spectrum of compound FG09
Standard 13C Experiment

13C NMR spectrum of compound FG09
Standard 13C Experiment

13C NMR spectrum of compound 44b
13C NMR spectrum of compound FG11
\[\text{JEOL} \]

1H NMR spectrum of compound 47a+47b
Standard 13C Experiment

13C NMR spectrum of compound 47a+47b
Standard 13C Experiment

Current Data Parameters
NAME: FG12 FG13
EXPNO: 1
PRIDNO: 1

F2 - Acquisition Parameters
Data 21.28
SPECTRUM averaged
POPMOD 5 sec Multinuc
HAWSAVER 100 sec
TD 30720
SOLVENT 0.0
NS 20480
SE 0
SW 25000.00 Hz
FNUES 0.705939 Hz
AG 0.0554100 sec
DG 60000
DW 20.000 usec
DE 37.14 usec
TE 300.0 usec
DS 0.00200000 sec
DS1 0.00200000 sec
DS2 0.00200000 sec
PS1 20.000 usec
PSL 0.00000000 sec
PS1 0.00000000 sec
PS1 100.00 usec
F1 0.00000000 sec
F1 0.00000000 sec
DE 37.14 usec
SE 2.0 Hz
SF2 100.031179 Hz
NCLEAVG 3C
D11 0.00000000 sec

F2: Processing parameters
S1 15384
SF 0.00000000 sec
MOH CH
SSB 0
LB 0.00 Hz
GS 2
PE 1.40

1D NMR plot parameters
CX 20.1000 cm
FP 207.700 ppm
F1 2000.00 Hz
F2 20.1000 ppm
F3 -20.1000 ppm
F4 20.1000 ppm
FPHCN 12.4307 ppm/cm
NPHCN 1243.000 ppm/cm

13C NMR spectrum of compound FG12+FG13
1H NMR spectrum of compound 51
Standard 13C Experiment

13C NMR spectrum of compound 51:
13C NMR spectrum of compound 61
13C NMR spectrum of compound 63
Standard 13C
Experiment

Current data parameters:
NAME: 13C_01
EXPNO: 1
PREPNO: 1

F3 - Acquisition parameters:
DATE: 2000100
TIME: 16:59
INSTRUM: mC-4005
POD/CD: 5 mm Multinuclear
POLARIS: CPGC
TF: 280.00
SOLVENT: CDCl3
MS: 20000
DS: 0

SW: 20000.0000 Hz
PHASE: 0.787090 Hz
AG: 0.00000000 sec
RH: 40000
DW: 20.00 usec
DE: 27.14 usec
TI: 300.0 μsec
T2: 0.00000000 sec
T2*: 0.00000000 sec
T1: 0.00000000 sec

FD: 100.00 usec
DR: 0.00000000 sec
DM: 10.00 usec
d: 7.50 usec
DC: 37.50 usec
SEGI: 100.0341 Hz
NUCLEUS: 13C
DI: 0.00000000 sec

F2 - Processing parameters:
SI: DSC
SF: 100.000000 Hz
WM: EM
DI: 0
LB: 0.00 Hz
DR: 0
PC: 1.40

3D NMR plot parameters:
CS: 20.00 cm
F0: 297.20 ppm
F1: 206.68 Hz
F2: -21.00 ppm
F3: -21.00 Hz
PHCH: 12.447000 ppm/Hz
HzOH: 1248.959800 Hz/Hz

13C NMR spectrum of compound 50a
Standard Proton Experiment

\[\text{1H NMR spectrum of compound 50c} \]

Current file parameters:
- NMR: HF-2020
- RECOMM: 1
- PROCESSING parameters:
 - SI: 15360
 - SF: 40300000 Hz
 - SCAN: 0
 - CS: 0 Hz
 - CS: 0 Hz
 - PC: 0 Hz
 - PC: 0 Hz

Spectroscopic parameters:
- CS: 10.00 ppm
- CS: 0.133 ppm
- CS: 485.44 Hz
- CS: -1.977 ppm
- CS: -1.914 ppm
- CS: 0.9222 ppm
- CS: 245 2600 Hz
13C NMR spectrum of compound 50c
1H NMR spectrum of compound 50e
Standard 13C Experiment

Current Data Parameters
NAME: W-3-207
EXPOS: 1
PROTON 1

F2 - Acquisition Parameters
Data: 500000
T1SE: 14.42
DEPT2: 225
PRED: 500 Hz Multinucl
MULTID: 0:00:30
SD: 30768
SOLVENT: CDCl3
NS: 16000
DS: 1E6
SWE: 20000.000 Hz
FITCPU: 0.762935 Hz
ACQ: 0.851410 sec
IR: 42500
SN: 20.000 ussec
DR: 27.14 ussec
TE: 300.0 K
D12: 0.000000000 ussec
DLS: 20.00 dB
DPDRG: waitin
PS1: 100.000 ussec
SI: 0.00000001 sec
PI: 6.75 ussec
DE: 27.14 ussec
SFO1: 100.6321179 MHz
NUCLUS: 130
D11: 0.0000000 sec

F2 - Processing parameters
SI: 16384
SF: 100.6321450 MHz
NOW: EN
ESS: 0
LB: 3.00 Hz
GB: 0
FC: 1.49

3D NMR plot parameters
CX: 20.00 cc
F1P: 2.557 206 ppm
F1: 2555.888 Hz
F2P: -71.10 Hz
F2: -21.10 Hz
PHCH: 12.4283 ppm/cc
PHCM: 13.4995 Hz/cc

13C NMR spectrum of compound 50e
Standard 13C Experiment

Current Data Parameters

HFCD
HSQC
EXPIRE
PREMD 1

F1 - Acquisition Parameters

CDDE
50000
TeM 10.501
T1PREP 5 min
PHASE 1
MULTID 30
DCE 1024
SNVVDRI
WAVSN
MS 40711

PE 2
SNV 700000

F2 - Processing parameters

DG 0.542905
AC 0.0015+150 mHz
DC 5000
DH 26000 mHz
DCE 0.002 mHz

G1 27.14 kHz
G2 0.001 kHz

GAST 11.0210 kHz
G12 0.0001 kHz
G123 100.021 kHz

NUCCLUS 13C

DI 1.0001 kHz

F3 - Processing parameters

DG 1398
DF 0.542905 kHz
DC 0
SNV 0
LS 0.01 Hz
GB 0
PE 1.49

3D NMR Plot parameters
CA 20.39 cm
FF 295.003 ppm
F1 25452.13 Hz
FP 41.191 ppm
F2 -11291.51 Hz
PMOD 1255860 ppm
HDEQ 12542419 ppm

13C NMR spectrum of compound 51a
^{1}H NMR spectrum of compound 51b
13C NMR spectrum of compound 51e
13C NMR spectrum of compound $52b$
1H NMR spectrum of compound 52e
Standard 13C Experiment

13C NMR spectrum of compound 52e
Standard Proton Experiment

Current Data Parameters

\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

전자공학의 실험

\[\text{\texttt{F2 Acq Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F1 Acq Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 Process Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]

\[\text{\texttt{F2 NMR Plot Parameters}} \]
\[\text{\texttt{HIN}} \]
\[\text{\texttt{EXPDC}} \]
\[\text{\texttt{Pseudo}} \]
Standard 13C Experiment

NMR Data Parameters
- **Name**: 54a
- **Solvent**: CDCl₃
- **Spectrum**: 13C
- **Fields**: 100 MHz
- **T1**: 3.09 s
- **T2**: 22.1 s
- **Field**: 5000 G
- **Sample**: 230 µL
- **Temperature**: 298 K
- **Spin Rate**: 10 kHz
- **Power**: 100 W
- **Detector**: 100 µA

13C NMR Spectrum of Compound 54a

234
Standard 13C Experiment

13C NMR spectrum of compound 54b
\[1^H \text{NMR spectrum of compound S4c} \]
Standard 13C Experiment

13C NMR spectrum of compound 54c
1H NMR spectrum of compound 54f
Standard 13C Experiment

Current Data Parameters
NAME: HF-4159
EXPERIMENT 1

F1 - Acquisition Parameters
GAIN: 500000
T1: 10.94
INTEGRAL exp45
PHASE 5.94 Hectlic
RELPROD 0.4000
T1 30759
RELVCT 0.209
NR 5000
DG 500000
SM 0.2650 MHz
F1FRES 5.750 MHz
AG 0.0050-100 sec
TG 40500
BW 20.0000 uscc
DC 27.18 uscc
TC 300.0 kHz
T2 0.150000 sec
T3 0.2500 uscc
DR 0.25 kHz
CHNRS 0.000 SUV
TM 106.1 kHz
DI 0.000001 MHz
DF 6.73 kHz
DE 27.18 kHz
FTFS1 106.613172 MHz
NUCLEUS 13C
DT 0.300000 sec

F2 - Processing parameters
ST 0.000 sec
SF 100.0 kHz
KON 0.0000
SNB
LR 2.0 Hz
SR 10
PC 1.49

12 refill parameters
CF 26.00 Hz
FIP 790.000 ppm
F1 2019.00 Hz
F2P -0.000 ppm
FT 0.000 Hz
MULP 10.2000 ppm/sec
VOC 1021.0000 Hz/msec

13C NMR spectrum of compound 54f
1H NMR spectrum of compound 69
Standard 13C Experiment

13C NMR spectrum of compound 69
Appendix B. Copyright Permissions
Full BioMed Central Open Access license agreement

(Identical to the 'Creative Commons Attribution License')

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS BIOMED CENTRAL OPEN ACCESS LICENSE ("LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Work in its entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole. A work that constitutes a Collective Work will not be considered a Derivative Work (as defined below) for the purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Work may be recast, transformed, or adapted, except that a work that constitutes a Collective Work will not be considered a Derivative Work for the purpose of this License. For the avoidance of doubt, where the Work is a musical composition or sound recording, the synchronization of the Work in timed-relation with a moving image ("synching") will be considered a Derivative Work for the purpose of this License.

c. "Licensor" means the individual or entity that offers the Work under the terms of this License.

d. "Original Author" means the individual or entity who created the Work.

e. "Work" means the copyrightable work of authorship offered under the terms of this License.

f. "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this License with respect to the Work, or who
has received express permission from the Licensor to exercise rights under this License despite a previous violation.

2. Fair Use Rights

Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first sale or other limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws.

3. License Grant

Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work as incorporated in the Collective Works;
b. to create and reproduce Derivative Works;
c. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital audio transmission the Work including as incorporated in Collective Works;
d. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital audio transmission Derivative Works;
e. For the avoidance of doubt, where the Work is a musical composition:
 i. **Performance Royalties Under Blanket Licenses.** Licensor waives the exclusive right to collect, whether individually or via a performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the public performance or public digital performance (e.g. webcast) of the Work.
 ii. **Mechanical Rights and Statutory Royalties.** Licensor waives the exclusive right to collect, whether individually or via a music rights agency or designated agent (e.g. Harry Fox Agency), royalties for any phonorecord You create from the Work ("cover version") and distribute, subject to the compulsory license created by 17 USC Section 115 of the US Copyright Act (or the equivalent in other jurisdictions).
 f. **Webcasting Rights and Statutory Royalties.** For the avoidance of doubt, where the Work is a sound recording, Licensor waives the exclusive right to collect, whether individually or via a performance-rights society (e.g. SoundExchange), royalties for the public digital performance (e.g. webcast) of the Work, subject to the compulsory license created by 17 USC Section 114 of the US Copyright Act (or the equivalent in other jurisdictions).

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right to make such modifications as are
technically necessary to exercise the rights in other media and formats. All rights not expressly granted by Licensor are hereby reserved.

4. Restrictions

The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the terms of this License, and You must include a copy of, or the Uniform Resource Identifier for, this License with every copy or phonorecord of the Work You distribute, publicly display, publicly perform, or publicly digitally perform. You may not offer or impose any terms on the Work that alter or restrict the terms of this License or the recipients' exercise of the rights granted hereunder. You may not sublicense the Work. You must keep intact all notices that refer to this License and to the disclaimer of warranties. You may not distribute, publicly display, publicly perform, or publicly digitally perform the Work with any technological measures that control access or use of the Work in a manner inconsistent with the terms of this License Agreement. The above applies to the Work as incorporated in a Collective Work, but this does not require the Collective Work apart from the Work itself to be made subject to the terms of this License. If You create a Collective Work, upon notice from any Licensor You must, to the extent practicable, remove from the Collective Work any reference to such Licensor or the Original Author, as requested. If You create a Derivative Work, upon notice from any Licensor You must, to the extent practicable, remove from the Derivative Work any reference to such Licensor or the Original Author, as requested.

b. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work or any Derivative Works or Collective Works, You must keep intact all copyright notices for the Work and give the Original Author credit reasonable to the medium or means You are utilizing by conveying the name (or pseudonym if applicable) of the Original Author if supplied; the title of the Work if supplied; to the extent reasonably practicable, the Uniform Resource Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to the copyright notice or licensing information for the Work; and in the case of a Derivative Work, a credit identifying the use of the Work in the Derivative Work (e.g., "French translation of the Work by Original Author," or "Screenplay based on original Work by Original Author")). Such credit may be implemented in any reasonable manner; provided, however, that in the case of a Derivative Work or Collective Work, at a minimum such credit will appear where any other comparable authorship credit appears and in a manner at least as prominent as such other comparable authorship credit.
5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this License. Individuals or entities who have received Derivative Works or Collective Works from You under this License, however, will not have their licenses terminated provided such individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different license terms or to stop distributing the Work at any time; provided, however that any such election will not serve to withdraw this License (or any other license that has been, or is required to be, granted under the terms of this License), and this License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You distribute or publicly digitally perform the Work or a Collective Work, the Licensor offers to the recipient a license to the Work on the same terms and conditions as the license granted to You under this License.
b. Each time You distribute or publicly digitally perform a Derivative Work, Licensor offers to the recipient a license to the original Work on the same terms and conditions as the license granted to You under this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability of the remainder of the terms of this License, and without further action by the parties to this agreement, such provision shall be reformed to the minimum extent necessary to make such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be in writing and signed by the party to be charged with such waiver or consent.

e. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no understandings, agreements or representations with respect to the Work not specified here. Licensor shall not be bound by any additional provisions that may appear in any communication from You. This License may not be modified without the mutual written agreement of the Licensor and You.
Permission Letter

June 20, 2012

Marina Fosso Yatchang
Utah State University
Department of Chemistry and Biochemistry
0300 Old Main Hill
Logan, UT 84321-0300

Dear Dr. Mattis:

I am in the process of preparing my dissertation in the Department of Chemistry and Biochemistry at Utah State University. I hope to complete in the summer of 2012.

I am requesting your permission to include the following paper we co-authored in my doctoral dissertation:

Virginia B Mattis, Marina Y Fosso, Cheng-Wei Chang and Christian L Lorson
“Subcutaneous administration of TCO07 reduces disease severity in an animal model of SMA”

Please indicate your approval by signing in the space provided, attaching any other form or instruction necessary to confirm permission.

Thank you for your cooperation,

Marina Fosso Yatchang

I hereby give permission to Marina Fosso Yatchang to reprint the following publication in part or in full in her doctoral dissertation:

Virginia B Mattis, Marina Y Fosso, Cheng-Wei Chang and Christian L Lorson
“Subcutaneous administration of TCO07 reduces disease severity in an animal model of SMA”

Signed Virginia B Mattis
Date 6/20/12
Permission Letter

June 20, 2012

Marina Fosso Yatchang
Utah State University
Department of Chemistry and Biochemistry
0300 Old Main Hill
Logan, UT 84321-0300

Dear Dr. Lorson:

I am in the process of preparing my dissertation in the Department of Chemistry and Biochemistry at Utah State University. I hope to complete in the summer of 2012.

I am requesting your permission to include the following paper we co-authored in my doctoral dissertation:

Virginia B Mattis, Marina Y Fosso, Cheng-Wei Chang and Christian L Lorson
“Subcutaneous administration of TC007 reduces disease severity in an animal model of SMA”
BMC Neurosc. 2009, 10:142.

Please indicate your approval by signing in the space provided, attaching any other form or instruction necessary to confirm permission.

Thank you for your cooperation,

Marina Fosso Yatchang

I hereby give permission to Marina Fosso Yatchang to reprint the following publication in part or in full in her doctoral dissertation:

Virginia B Mattis, Marina Y Fosso, Cheng-Wei Chang and Christian L Lorson
“Subcutaneous administration of TC007 reduces disease severity in an animal model of SMA”
BMC Neurosc. 2009, 10:142.

Signed

Date June 25, 2012
Title: Antibacterial to antifungal conversion of neamine aminoglycosides through alkyl modification. Strategy for reviving old drugs into agrofungicides

Author: Cheng-Wei T Chang, Marina Fosso, Yukie Kawasaki, Sanjib Shrestha, Mekki F Bensaci, Jinhua Wang, Conrad K Evans, Jon Y Takemoto

Publication: The Journal of Antibiotics
Publisher: Nature Publishing Group
Date: Oct 6, 2010
Copyright © 2010, Rights Managed by Nature Publishing Group

Author Request
If you are the author of this content (or his/her designated agent) please read the following. If you are not the author of this content, please click the Back button and select an alternative Requestor Type to obtain a quick price or to place an order.

Ownership of copyright in the article remains with the Authors, and provided that, when reproducing the Contribution or extracts from it, the Authors acknowledge first and reference publication in the Journal, the Authors retain the following non-exclusive rights:

a) To reproduce the Contribution in whole or in part in any printed volume (book or thesis) of which they are the author(s).

b) They and any academic institution where they work at the time may reproduce the Contribution for the purpose of course teaching.

c) To reuse figures or tables created by them and contained in the Contribution in other works created by them.
d) To post a copy of the Contribution as accepted for publication after peer review (in Word or Text format) on the Author's own web site, or the Author's institutional repository, or the Author's funding body's archive, six months after publication of the printed or online edition of the Journal, provided that they also link to the Journal article on NPG's web site (eg through the DOI).

NPG encourages the self-archiving of the accepted version of your manuscript in your funding agency's or institution's repository, six months after publication. This policy complements the recently announced policies of the US National Institutes of Health, Wellcome Trust and other research funding bodies around the world. NPG recognises the efforts of funding bodies to increase access to the research they fund, and we strongly encourage authors to participate in such efforts.

Authors wishing to use the published version of their article for promotional use or on a web site must request in the normal way.

If you require further assistance please read NPG's online author reuse guidelines.

For full paper portion: Authors of original research papers published by NPG are encouraged to submit the author's version of the accepted, peer-reviewed manuscript to their relevant funding body's archive, for release six months after publication. In addition, authors are encouraged to archive their version of the manuscript in their institution's repositories (as well as their personal Web sites), also six months after original publication.

v2.0
Permission Letter

June 20, 2012

Marina Fosso Yatchang
Utah State University
Department of Chemistry and Biochemistry
0300 Old Main Hill
Logan, UT 84321-0300

Dear Ms. Kawasaki:

I am in the process of preparing my dissertation in the Department of Chemistry and Biochemistry at Utah State University. I hope to complete in the summer of 2012.

I am requesting your permission to include the following paper we co-authored in my doctoral dissertation:

Please indicate your approval by signing in the space provided, attaching any other form or instruction necessary to confirm permission.

Thank you for your cooperation,

Marina Fosso Yatchang

I hereby give permission to Marina Fosso Yatchang to reprint the following publication in part or in full in her doctoral dissertation:

Signed

Date 6/20/12
Permission Letter

June 20, 2012

Marina Fosso Yatchang
Utah State University
Department of Chemistry and Biochemistry
0300 Old Main Hill
Logan, UT 84321-0300

Dear Mr. Shrestha:

I am in the process of preparing my dissertation in the Department of Chemistry and Biochemistry at Utah State University. I hope to complete in the summer of 2012.

I am requesting your permission to include the following paper we co-authored in my doctoral dissertation:

Please indicate your approval by signing in the space provided, attaching any other form or instruction necessary to confirm permission.

Thank you for your cooperation,

Marina Fosso Yatchang

I hereby give permission to Marina Fosso Yatchang to reprint the following publication in part or in full in her doctoral dissertation:

Signed

Date 06/20/12
Permission Letter

June 20, 2012

Marina Fosso Yatchang
Utah State University
Department of Chemistry and Biochemistry
0500 Old Main Hill
Logan, UT 84321-0300

Dear Dr. Bensaci:

I am in the process of preparing my dissertation in the Department of Chemistry and Biochemistry at Utah State University. I hope to complete in the summer of 2012.

I am requesting your permission to include the following paper we co-authored in my doctoral dissertation:

Please indicate your approval by signing in the space provided, attaching any other form or instruction necessary to confirm permission.

Thank you for your cooperation,

Marina Fosso Yatchang

I hereby give permission to Marina Fosso Yatchang to reprint the following publication in part or in full in her doctoral dissertation:

Signed

Date 6/21/2012
Permission Letter

June 20, 2012

Marina Fosso Yatchang
Utah State University
Department of Chemistry and Biochemistry
0300 Old Main Hill
Logan, UT 84321-0300

Dear Dr. Wang:

I am in the process of preparing my dissertation in the Department of Chemistry and Biochemistry at Utah State University. I hope to complete it in the summer of 2012.

I am requesting your permission to include the following paper we co-authored in my doctoral dissertation:

Please indicate your approval by signing in the space provided, attaching any other form or instruction necessary to confirm permission.

Thank you for your cooperation,

Marina Fosso Yatchang

I hereby give permission to Marina Fosso Yatchang to reprint the following publication in part or in full in her doctoral dissertation:

Signed __________ Date __/__/2012
Permission Letter

June 20, 2012

Marina Fosso Yatchang
Utah State University
Department of Chemistry and Biochemistry
0300 Old Main Hill
Logan, UT 84321-0300

Dear Dr. Evans:

I am in the process of preparing my dissertation in the Department of Chemistry and Biochemistry at Utah State University. I hope to complete in the summer of 2012.

I am requesting your permission to include the following paper we co-authored in my doctoral dissertation:

Please indicate your approval by signing in the space provided, attaching any other form or instruction necessary to confirm permission.

Thank you for your cooperation,

Marina Fosso Yatchang

I hereby give permission to Marina Fosso Yatchang to reprint the following publication in part or in full in her doctoral dissertation:

Signed
Date 6/23/2012
CURRICULUM VITAE

Marina FOSSO YATCHANG
Department of Chemistry and Biochemistry
Utah State University
0300 Old Main Hill
Logan, UT 84322-0300
marina.fosso@aggiemail.usu.edu
(435) 512-6778

CAREER OBJECTIVE
To obtain a research position in a competitive institution that will allow me to apply my extensive knowledge in multi-step synthesis of bioactive molecules. Research interests include: organic synthesis, drug discovery, library synthesis, and methodology development.

EDUCATION
Ph.D., Chemistry
Utah State University (USU) Logan, Utah
Dissertation: Synthesis and Biological Activity of Aminoglycosides and 1,4-Naphthoquinone Derivatives”
Advisor: Dr. Tom C.-W. Chang

B.S., Chemistry (First Class Honors)
University of Buea (UB) Buea, Cameroon

RESEARCH EXPERIENCE
Research Intern
Phoenix Pharmalabs, Inc Logan, UT
October 2011-August 2012
- Synthesized four new opioids as potential non-addictive treatments of pain
- Isolated enantiomers from racemic mixtures by column chromatography and diastereoisomeric crystallization

Graduate Research Assistant
Utah State University Logan, UT
December 2007-May 2012
- Performed the synthesis of a carbohydrate, which was investigated as a potential therapeutic of the infantile genetic disease spinal muscular atrophy
- Explored methods for chemical derivation of the natural product kanamycin B for the development of antifungal agents, with complete loss of antibacterial activity. Results from this work provided general criteria for the design of good agro fungicide candidates
• Developed a methodology for the facile synthesis of libraries of novel antibacterial and anticancer 1,4-naphthoquinone derivatives
• Purified and characterized organic compounds by TLC, column chromatography, recrystallization, NMR (1H, 13C, COSY, HETCOR) spectroscopy, UV-visible, IR, and mass spectrometry

TEACHING EXPERIENCE

Teaching Assistant August 2007-December 2011
Utah State University Logan, UT
• Supervised and instructed 24 students in each of three sections of General and Organic chemistry laboratories for seven semesters. Classes taught include:
 ▪ Chemistry Principles Lab I (CHEM 1215)
 ▪ Chemistry Principles Lab II (CHEM 1225)
 ▪ Organic Chemistry Lab I (CHEM 2315)
 ▪ Organic Chemistry Lab II (CHEM 2325)
• Emphasized keeping complete and accurate scientific notes
• Substituted for major professor to teach General Chemistry II (CHEM 1120) Principles of Organic Chemistry (CHEM 2300)

AWARDS, FELLOWSHIP AND HONORS

• Outstanding Graduate Student in Chemistry, USU 2012
• Dr. Dinesh and Kalpana Patel Doctoral Graduate Fellowship, USU 2011-2012
• Center for Women and Gender Graduate Student Research Grant, USU 2011
• Graduate Student Senate Travel Award, USU 2010
• Teaching Instructor Certificate, USU 2007
• Top Graduating Student in Chemistry, UB 2005
• The Thomas and Janice Huang’s Scholarship (Outstanding Student), UB 2004
• Minister of Higher Education Scientific Women Award, UB 2003-2005
• Dean’s List Awards, UB 2003-2005

PUBLICATIONS

• **Fosso, M. Y.;** Nziko, V. P. N.; Chang, C.-W. T. “Chemical Synthesis of N-Aryl Glycosides” *J. Carbohydr. Chem.* Just accepted

• Mattis, V. B.; Fosso, M. Y.; Chang, C.-W.; Lorson, C. L. “Subcutaneous administration of TC007 reduces disease severity in an animal model of SMA.” *BMC Neurosci.* **2009**, *10*, 142

PRESENTATIONS

• **Marina Fosso**, Yukie Kawasaki, Sanjib Shrestha, Jon Takemoto and Tom Chang. Synthesis and structural optimization of antifungal kanamycin B analogs. 240th ACS National Meeting & Exposition, August 22-26 2010, Boston, MA (poster)

• **Marina Fosso**, Tom Chang, Jon Takemoto, Mekki Bensaci and Yukie Kawasaki, Synthesis of new kanamycin B analogs with surprising antifungal activity Joint 63rd Northwest/ 21st Rocky Mountain (NORM/RMRM), June 17 2008, Park City, UT (poster)

PROFESSIONAL AFFILIATIONS

Memberships

• American Chemical Society 2010-present
• Golden Key International Honor Society 2009-present

Leadership/Service

• Senior graduate student 2008-2011
 ➢ Supervised seven new graduate/undergraduate researchers, training them to perform standard operating procedures and chemical experiments
 ➢ Mentored two high school students during their summer internship in the Chemistry and Biochemistry department at USU, providing them with work directions
 ➢ Managed the laboratory in the absence of the major professor
• Vice-president AFSA (African Students Association), 2009-2010
 ➢ Assisted in the organization of the club’s events to showcase the African culture, attracting more than 300 students
2008-2009

Volunteer

- Helped packaging Christmas gifts for kids in the hospitals

SKILLS

Languages: English (fluent), French (native)

Computer skills: Microsoft (Word, Excel, PowerPoint), Chemdraw, Scifinder, Chemsketch, Discovery Studio, PyMol

REFERENCES

Dr. Cheng-Wei Tom Chang
Associate Professor
Utah State University
Department of Chemistry and Biochemistry
0300 Old Main Hill
Logan, UT 84322-0300
(435) 797 3545
tom.chang@usu.edu
Ph.D. Advisor

Dr. Alvan C. Hengge
Professor and Department Head
Utah State University
Department of Chemistry and Biochemistry
0300 Old Main Hill
Logan, UT 84322-0300
(435) 797 3442
alvan.hengge@usu.edu
Ph.D. Supervisory Committee Member

Dr. Bradley S. Davidson
Associate Professor
Utah State University
Department of Chemistry and Biochemistry
0300 Old Main Hill
Logan, UT 84322-0300
(435) 797 1638
brad.davidson@usu.edu
Ph.D. Supervisory Committee Member

Dr. John A. Lawson
CEO
Phoenix Pharmalabs, Inc.
525 West 465 North, Suite 150
Logan, UT 84332-5604
(435) 213-9361
jalawson3@comcast.net
Internship Supervisor