SSC14-XII-1

Success by 1000 Improvements: Flight Qualification of the ST-16 Star Tracker

Tom Dzamba, John Enright
Department of Aerospace Engineering, Ryerson University
350 Victoria St, Toronto, Ontario, M5B 2K3; 416-979-5000(x4973, 4174)
tdzamba@ryerson.ca, jenright@ryerson.ca

Doug Sinclair, Kofi Amankwah
Sinclair Interplanetary
dns@sinclairinterplanetary.com, kaa@sinclairinterplanetary.com

Ronny Votel
Skybox Imaging Inc.
1061 Terra Bella Ave., Mountain View, CA 94043; 650-316-6640
ronny@skyboximaging.com

Ilija Jovanovic, Geoffrey McVittie
Department of Aerospace Engineering, Ryerson University
350 Victoria St, Toronto, Ontario, M5B 2K3; 416-979-5000(x4973)
ilija.jovanovic@ryerson.ca, gmcvitti@ryerson.ca

ABSTRACT
The first launch of a pair of 90 gram Sinclair Interplanetary ST-16 star trackers was in November, 2013 on-board the Skybox Imaging SkySat-1 satellite. The sensor performance — as captured by the sensors’ availability, accuracy, and bad-match rate — fell significantly below expectations. This paper explores the flight qualification campaign undertaken by the sensor developers to bring the sensors back to their intended level of performance. No single fix was sufficient and many small incremental improvements were necessary for success. We discuss the fault diagnosis procedures employed by the team and highlight some of the key improvements to star detection, star measurement, rate estimation, and catalog generation algorithms. Presently the ST-16 sensors on SkySat-1 are reporting availability of around 98% and cross-axis accuracies of roughly 10 arcseconds over an entire orbit in a nominal Earth-observing attitude.

INTRODUCTION
The Skybox Imaging SkySat-1 satellite launched on November 21, 2013 carrying a pair of Sinclair Interplanetary ST-16 Star Trackers. Amongst more prominent objectives, one of SkySat-1’s goals was to validate the performance of the ST-16. While the sensors were able to achieve a stellar lock, the availability and accuracy of the ST-16s was far worse than expected: the sensors frequently lost their lock, they saw fewer stars than expected, and the attitude fixes were far noisier and less consistent than observed during ground testing.

Concerned by these results, engineers at Skybox Imaging (SB), Sinclair Interplanetary (SI) and Ryerson University (RU) embarked on an aggressive and comprehensive flight qualification program to understand the causes of these problems and to re-attain our expected performance targets. Two months later (February, 2014) we made the last of a sequence of software, catalog and parameter modifications that have met these goals. In this paper we detail the series of individual improvements that helped make success possible. We concentrate on technical improvements, but also discuss the collaborative framework between vendors, customer, and researchers that made success possible.

The remainder of this section introduces SkySat-1, the ST-16 star tracker, and describes our approach to diagnosing performance problems with ST-16. The second section describes the logistics of collecting data, developing
and uploading new sensor software, and the benefits of manufacturer-user relationships. The remaining sections of the paper go onto to describe the various problems we observed, and how we fixed them.

Skybox Imaging and SkySat-1

Skybox Imaging, a venture-backed information and analytics company, recently deployed their first high-resolution imaging satellite, SkySat-1. SkySat-1 was launched on November 21, 2013, out of Yasny, Russia into a 580 km Sun-synchronous orbit. The satellite has been collecting sub-meter resolution images and video, demonstrating a new high-end platform for monitoring global activity on a daily basis. Skybox will launch and operate several additional satellites in the near future, creating a massive and unprecedented source of data for mining and analytics.

For the imaging products to be useful, the geographic location of each satellite image must be known to high accuracy. The demand for high-quality geolocation knowledge can only be met with precise onboard attitude sensors, namely, star trackers. Historically, volume, mass, and power requirements limited star trackers to large spacecraft. The mechanical and software complexity of early star trackers made them among the most expensive sensors, and arguably the most difficult to calibrate and operate.

Through the utilization of modern, commercial, high-performance electronics, the ST-16 star tracker has achieved levels of performance that have previously been exclusive to its larger predecessors. As a small satellite heavily constrained by mass and volume, SkySat-1 has taken full advantage of the ST-16 capabilities in a miniaturized package. The star trackers have played a major role in making SkySat-1 a world-class earth observation satellite.

The ST-16 Star Tracker

The ST-16 star tracker is a relatively new nanosatellite-class star tracker that became available in 2011. It was developed through a collaboration between Sinclair Interplanetary, the University of Toronto’s Space Flight Laboratory, and the Space Avionics and Instrumentation Laboratory at Ryerson University. It is distinguished from other devices by its powerful internal computer, small size and weight, and low power. Although it is able to fit into a nanosatellite, it is also applicable to larger spacecraft (microsatellites). Some key specifications are listed in Table 1, and image of the sensor is shown in Figure 1. For more information, please see1,2,3.

Table 1: Key Parameters of the ST-16 Star Tracker

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>&lt; 7 arc-sec RMS cross-boresight</td>
</tr>
<tr>
<td></td>
<td>&lt; 70 arc-sec RMS around boresight</td>
</tr>
<tr>
<td>Availability</td>
<td>&gt; 99.9%</td>
</tr>
<tr>
<td>Size</td>
<td>59 x 56 x 31.5 mm</td>
</tr>
<tr>
<td>Mass</td>
<td>( \approx 90 ) g</td>
</tr>
<tr>
<td>Field of View</td>
<td>7.5 deg (half axis)</td>
</tr>
<tr>
<td>Exposure Time</td>
<td>100 ms</td>
</tr>
<tr>
<td>Catalog</td>
<td>3746 stars</td>
</tr>
</tbody>
</table>

Figure 1: The Sinclair Interplanetary ST-16 Star Tracker.

The ST-16 star tracker has had initial market success with over 40 flights units delivered to customers. The two units onboard SkySat-1, designated in this paper as Sensor-A and Sensor-B, were among the first off the production line and together represent the maiden voyage of the ST-16 into space.

Diagnosing Performance Problems: Our Approach

Shortly following launch, it was evident that something was wrong with both ST-16s onboard SkySat-1. The accuracy and availability of both units was significantly below specification, see Table 2 vs Table 1. Using an initial batch of collected telemetry and full frame images, we immediately began to look for the source of problem. Following a brief, and unsuccessful, period of looking for a single dominant fault, we realized that the poor performance of the star trackers was due to a combination of several smaller faults. Everything was working, but nothing was working well. At this point, we took a step back, and examined the problem from a system-level perspective. This allowed us to establish direct links between top-level star tracker performance metrics and the func-
Table 3: Typical Operational Chain of a Star Tracker

<table>
<thead>
<tr>
<th>Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Imaging</td>
<td>Optically focus the light onto the detector and digitize the image.</td>
</tr>
<tr>
<td>2 Star Detection</td>
<td>Image processing to identify star candidates and isolate their corresponding intensity patterns.</td>
</tr>
<tr>
<td>3 Star Vector Computation</td>
<td>Centroid each star image and calculate the corresponding star vector using a camera model.</td>
</tr>
<tr>
<td>4 Matching</td>
<td>Identify the observed stars from the onboard star catalog</td>
</tr>
<tr>
<td>5 Attitude Solution</td>
<td>Estimate the attitude of the ST from the identified star vectors.</td>
</tr>
</tbody>
</table>

The operational chain of a star tracker processes. Tracing these links helped us identify where the various problems were, so we could then begin to fix them. This subsection describes this top-down approach and how it enabled us to locate the individual processes limiting the performance of SkySat-1’s star trackers.

The operational chain of a star tracker can be described by five basic operations: imaging, star detection, measuring star positions, matching, and finally the attitude solution. A short description of each operation is given in Table 3. The top-level performance criteria of a star tracker are:

- **Accuracy**, which describes the uncertainty in the orientation measurement.
- **Availability**, which describes the fraction of celestial sphere over which an attitude solution is possible.
- **Bad matches**, which represent successful matches of observed stars to an erroneous star scene in the catalog.

These top level metrics are useful for describing the general performance of a star tracker. However, in a case where one, or all, of these metrics is low, they do not illuminate the source of the problem. Breaking down these top-level metrics leads a more descriptive set of lower-level, algorithm metrics which align roughly with the basic operations of a star tracker. These are listed in Table 4.

Identifying these lower-level performance metrics and their contributing functions and process enabled us to trace the the performance of subsystems back to the top-level performance metrics. This illuminated which metrics needs the most revision, and what mechanisms we should utilize make those revisions.

**DATA COLLECTION, SOFTWARE UPDATES, AND KEY ASPECTS OF WORKING AS A TEAM**

The debugging and development process for the star trackers runs very differently when the sensor is on orbit compared to when it is in the lab. Spacecraft activities are scheduled several days in advance, and so data collection and software updates must be coordinated with the operations team and must respect constraints imposed by other activities.

The very high value of SkySat-1 as an operational orbital asset produced conflicting pressures. On one hand, there is a deeply conservative desire to not endanger the satellite with hasty or untried software loads. On the other hand, there is a desire to rapidly commission the spacecraft to begin producing a valuable payload data product.

**Data Collection**

Skybox began collecting star tracker data immediately after launch. As early as 24 hours after launch the initial star tracker performance was examined and we knew that we had a problem.

Three different types of star tracker telemetry were collected. Initially, when we knew very little about what might be going wrong, we downloaded a number of full-frame still images from the detector. These images are approximately 10 MB, and so each downlink is a significant burden on the ground segment. Analysis of these images was key to our understanding of changes in the point spread function of the optics, as well as true characterization of the environmental noise.

Next we switched to collection of full telemetry packets from the star tracker. These packets are approximately 2 kB each, and so 5000 can be downloaded for the same cost as a single image. The telemetry packets contain a list of the star centroids detected, along with their matched catalog ID. The on-orbit recalibration process requires a large number of full telemetry packets as input to the optimizer.

Finally we moved to collection of primary telemetry only. These packets are very small, and contain only the quaternion, angular rate, and validity flags. Primary telemetry can be collected at full rate over the course of an entire orbit. By comparing the primary telemetry streams from both star trackers the star tracker error can be determined.

**Sensor Software Updates**

Following the discovery of a specific problem, the engineering team would then work to find a solution. Depending on the type of the problem, testing the solution would
Table 2: Measured performance of SkySat-1 star trackers

<table>
<thead>
<tr>
<th>Operating Scenario</th>
<th>Time Period</th>
<th>Availability (%)</th>
<th>Accuracy (arc seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensor-A</td>
<td>Sensor-B</td>
<td>Roll Error (1 σ)</td>
</tr>
<tr>
<td>Tumbling</td>
<td>Launch</td>
<td>34</td>
<td>31</td>
</tr>
<tr>
<td>Tumbling</td>
<td>Init. Recal.</td>
<td>80</td>
<td>61</td>
</tr>
<tr>
<td>Pointing</td>
<td>Init. Recal.</td>
<td>89</td>
<td>85</td>
</tr>
<tr>
<td>Pointing</td>
<td>Final</td>
<td>99</td>
<td>98</td>
</tr>
</tbody>
</table>

Table 4: Algorithm-level performance metrics of Star Trackers

<table>
<thead>
<tr>
<th>Metric</th>
<th>Criteria</th>
<th>Contributing Effects and Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star Detection Reliability</td>
<td>Detection performance</td>
<td>Focus, Chromatic Aberration, Detection Routines, Artifacts from Baffle</td>
</tr>
<tr>
<td>Star Measurement Accuracy</td>
<td>Accuracy of star vectors formulated from the image.</td>
<td>Centroiding, Camera Model, ERS compensation, Rate Estimation</td>
</tr>
<tr>
<td>Matching Robustness</td>
<td>Ability to reject false detections.</td>
<td>Matching</td>
</tr>
<tr>
<td>Catalog Quality</td>
<td>Accuracy of cataloged positions, and ensuring we have the right cataloged star population</td>
<td>Star Positions (proper motion, binary stars), Chromatic Aberration, Stellar Aberration</td>
</tr>
</tbody>
</table>

either involve only simulated data, or additionally, post-processing existing on-orbit data (telemetry and images). To minimize risk to the spacecraft, changes to the ST-16 flight software followed a specific quality assurance path before being uploaded to SkySat-1. This path is summarized by the following 6 steps:

1. Develop fix as standalone tool, typically in MATLAB, and test using a limited set of either simulated, or actual, on-orbit data.

2. Implement the fix into a offline PC-based version of the sensor software, and assess performance improvements by reprocessing collected on-orbit data. Reprocessing of telemetry utilizes only a partial implementation of the sensor software (beginning with star centroids and brightnesses). Reprocessing of images utilizes the entire end-to-end sensor software.

3. Assess performance improvements in all scenarios (different orientations, rates, etc.) by reprocessing a large suite of synthetic images using the PC-based sensor software.

4. Verify performance improvements with hardware-in-the-loop (HITL) tests that utilize an ST-16 engineering model (EM) with a small subset of the synthetic images from step three loaded into memory.

5. Upload sensor software to SkySat-1.

Over the course of this work we updated almost every byte of software and data on the star trackers. There are four different classes of configuration change, ranging from least to most extensive.

The star tracker contains dozens of non-volatile parameters which control its processing. These are ‘knobs’ that were introduced to allow for on-orbit tuning. Parameter modifications are trivial to revert, and changes were made on an almost daily basis with minimal oversight burden.

Each star tracker has a unique calibration structure which contains the geometric model of its camera. Several new calibration structures were generated by the Ryerson team based on modelling of the on-orbit telemetry. The upload of new calibration structures was straightforward.

Several new star catalogs were generated as we came to understand the deficiencies in our original data. The star tracker stores a star table (70 kB), and then a massive explicit enumeration of all of the potential triangles (40 MB). Fortunately in the months prior to launch we had written the software to allow the star tracker to build its own triangle table on-orbit. We were able to upload a new star table, and then send a command to begin the 3-minute process of triangle table generation.

Finally, we performed uploads of new executable code for the star trackers. Unlike the other data uploads, new software revisions required an extensive QA process at Skybox before they could be uploaded. This was generally incompatible with the team’s work tempo, and in the end
only two code updates were performed.

After each configuration change was made a standard star tracker test was run. Known as the ‘4 orbit test’, this collected a particular set of data with the spacecraft in a particular set of attitudes. This allowed for apples-to-apples comparisons to determine whether the configuration change was helpful.

**Collaborative Relationship**

Restoring the star trackers to full function was do-or-die for both Skybox Imaging and Sinclair Interplanetary. Skybox had invested in the spacecraft, and Sinclair in the star tracker product, and neither could afford to fail. While stressful, this unity of purpose was in no small part responsible for timely success. Skybox operations was extremely accommodating in collecting and delivering large quantities of data. Sinclair and Ryerson focused exclusively on this problem for a two month period. In a more relaxed and less motivated environment the necessary advances might not have been made.

**IMAGING AND STAR DETECTION**

One of the first insights into the poor performance of both sensors was the poor reliability of star detection. Both star trackers were detecting significantly fewer stars than expected in each scene. On top of this, Sensor-B was detecting even fewer stars than Sensor-A. Detection performance is directly related to the signal-to-noise ratio (SNR) of star’s intensity distribution on the image detector. There are two main drivers that impact the SNR of an imaged star: focus of the sensor optics, and detection logic used to separate signal from background image noise. Given that detection performance directly impacts matching performance, and attitude accuracy, diagnosing poor detection performance was a priority early in the qualification campaign. This section describes our analysis of sensor focus and the performance of the ST-16’s star detection routines.

**Focus Evaluation**

The full frame images showed some stars that appeared to be larger, and as a result, dimmer in each individual pixel, than those which were observed during ground testing. In light of the knowledge that both ST-16s were detecting fewer stars than expected, one of the potential causes we examined was a change in focus. A minor change in focus is expected due to the change in imaging conditions (air vs. no air) between the lab (where sensor focus is set), and the ultimate operating environment, space. However, this minor change would not account for the observed changes in star size as seen in the on-orbit images.

A typical method to quantify the focus on a set of optics is to examine the encircled energy from a star source. This is done during the initial focusing and calibration of each sensor. The star source in the lab has a color temperature of 2800K, and hence it only represents a small fraction of the stars within the ST-16’s catalog. In addition, the shape and size of a star image vary throughout the sensor field of view (FOV) due to lens aberrations. When comparing these lab results with an on-orbit image that contains stars with vastly different star colors, a specific assessment of sensor focus is difficult. We found that we just didn’t have enough images of a star similar to our lab source to conclude a change in focus.

However, the few on-orbit images we did have allowed us to make relative comparisons of star size between images. By examining the appearance of similar stars, in various parts of the sensor FOV, we were able to conclude that changes in the apparent star size were not due to a bulk change in focus, but rather a varying change in focus dependent on the color temperature of the star we were examining. In more simple terms, we were observing the chromatic aberration of the ST-16’s optics.

Due to the fact that we have no control over the physical focus of the ST-16 remotely, we could not change how the stars appeared in the image. However, knowing how these stars looked allowed us to make logical modifications to the ST-16’s detection routines which ultimately lead to significant improvements in the detection reliability.

**Tuning Detection Parameters**

Following directly from the assessment of focus using full image, we revisited the star detection routines used by the ST-16. In the downloaded images from both sensors we noticed that there were many stars that were easily discernible by eye, but the detection routines failed to detect them. The source of this problem was not singular nor immediately obvious. Stepping through the detection routine, we found that various control parameters we had set to reduce false detections were much too conservative. Using downloaded images, combined with knowledge of which stars must be in the same scene from various catalogs, we iteratively tuned detection parameters to maximize detection performance.

Before we can describe our tuning approach, we must introduce the star detection logic of the ST-16. This routine can be summarized by describing a moving window, and three threshold parameters:
• Moving Window. In order to deal with spatial gradients in the background illumination of a star scene, the ST-16 detection scheme utilizes a moving average filter to estimate the local background level for each pixel. Typical processing utilizes a window 128 pixels in width, and a single pixel in height. The average value of this window is used to define the local background level for the current pixel.

• Lit Pixel. This threshold defines the minimum intensity, relative to the local background, of an image pixel that is considered to be lit by star light, as opposed to just sensor noise. Pixels above this threshold are labeled lit pixels. The launch configuration utilized a lit pixel threshold of 90 detector counts, out of a possible 4095.

• Blob Size. This defines the minimum number of contiguous lit pixels that each candidate star must possess before it can be considered as a valid detection. Configuration at launch required at least 6 contiguous pixels for each valid star detection.

• Integrated Intensity. This value describes the minimum integrated intensity (summed detector response) of all contiguous lit pixels that compose a candidate star. Candidate stars above this threshold are considered valid detections. Configuration at launch utilized an integrated intensity threshold of 1000 detector counts.

Stars that satisfy these criteria are considered candidate star detections and are passed to the next portion of the processing chain. The ST-16 employs various mechanisms in the matching phase to discard any false stars from this step.

Our approach to tuning detection parameters was to reprocess downloaded images with varying parameter values and examine the resultant star detections and subsequent star matches. Our goals were to maximize star detections, while minimizing false detections. To aid in process, we assembled custom mini-catalogs for each star scene we had an image for. These mini-catalogs catalogs included additional dim stars on top of the existing stars listed within the onboard ST-16 catalog. By surveying various lit pixel, blob size, and integrated intensity parameters combinations, we created a map of expected star detections given a set parameter settings. Using this map, we were able to suggest updated detection parameters for use with both sensors. After implementing these changes, we saw the availability of both units increase to above 98% (see Table 2).

Using the parameter settings at launch, our analysis of the downloaded images showed the detection performance of Sensor-A exceeds that of Sensor-B. While we were never able to conclude a reason for this discrepancy, we were able to remedy this difference by lowering the detection threshold on Sensor-B. Theoretically this does make this unit more susceptible to false detections, but from our analysis of the various on-orbit images, we didn’t see any increases in the false detection rate.

Baffles and Stray Light

Even prior to launch, we anticipated that some refinement of the ST-16’s stray-light handling logic would be necessary. This subset of the star detection algorithms is responsible for improving the performance of the sensor when bright objects fall within the FOV. Possible sources of non-stellar light include the moon, the earth, planets, other satellites, and the bright edges of the baffle vanes. These sorts of scenarios are difficult to replicate in ground tests and simulations, so rather then rely on ground tests alone, we developed a flexible processing framework that could be tuned after launch.

Instead of a single block of stray-light-control logic, we formulated a number of simple heuristics designed to minimize the impact of stray light on the processing chain:

1. Adaptive Threshold Logic. This algorithm increases the sensor’s tolerance to bright backgrounds and large extended sources. In normal processing, pixels bright enough to warrant further attention are flagged on the first pass through the image. This routine excluded affected areas of the detector from further attention based on a simple image contrast calculation.

2. Region-of-Interest (ROI) Calibration. When baffle vanes extend into the field of view of the sensor, the areas of the detector behind the baffle vanes will not be in view of the stars. The useful region of the detector is static and can be measured during calibration. Because bright reflections from vane edges can create illumination gradients near the edge of the ROI, our routines require that any candidate

---

Table 5: Tuned Detection Parameters for Sensors A and B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value at Launch</th>
<th>Final Value A</th>
<th>Final Value B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lit Pixel</td>
<td>90</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>Blob Size</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Integrated Int.</td>
<td>1000</td>
<td>800</td>
<td>500</td>
</tr>
</tbody>
</table>

---
stars must be separated from the boundary by some
dark pixels.

3. Large, Bright Object Rejection. Bright areas of
the image that had good contrast against the image
background could be rejected based on the area of
the object.

These first three routines attempt to improve processing
effectiveness by reducing the likelihood that parts of the
image would be mistakenly detected as stars. Imple-
mented before launch, we were aware that the routines
would required some tuning once on-orbit. During the
initial qualification we discovered persistent performance
problems caused by falsely detected stars. Analysis of the
sensor telemetry led to the following additional improve-
ments.

1. Star Cluster Rejection. Even with the above strate-
gies, diffuse stray light would sometimes be inter-
preted as a cluster of stars inside the FOV. Figure 2
shows the telemetry from an exposure taken with
Sensor-B soon after launch. The telemetry shows
three ‘real’ stars, along with a dense line of false
detections caused by a bright reflection off a baffle
vane edge. These sorts of clusters can also some-
times be found next to bright objects like the moon.
Although the star matching algorithms are reason-
ably tolerant of false stars, clouds of false detections
greatly increases the chance of a false match.

2. Tight Matching Tolerances. With improvements in
the accuracy of the catalog and centroid determi-
nation, the star matching routines could be much
stricter about the expected geometry during the star
matching process.

3. Strict solution acceptance criteria. One of archi-
tectural principles in the ST-16 software was state-
less operation: each measurement did not rely on
prior measurements. The sensor performance en-
countered post launch required us to make some
small adaptions to the operating concept to help re-
duce the number of false matches. From the flight
data we could see that if the sensor could match
four stars, the matching solution was almost al-
ways correct. Although most three-star matching
solutions were correct, there were an unacceptably
large number of incorrect matches when only three
stars were identified. To help balance the need
for high availability, even when only three stars
were detected, and a very low tolerance for false
matches, we introduced some very limited reading-
to-reading persistent state: any match with four or

more stars would be considered ‘good’ and a three-
star match would be considered good if the attitude
estimate was not too different from an immediately
prior good reading.

**COMPUTING STAR VECTORS**

Despite the fact that most scenes had sufficient star detec-
tions, most of which were subsequently identified during
matching, the attitude accuracy was significantly worse
than expected. In addition to generally poor accuracy,
many of the returned attitude solutions were bad-matches
to incorrect star scenes. There we many separate fac-
tors contributing to these observed drops in performance.
The first issue we discovered was that our measured arc
lengths between stars were different from known values.
We traced this symptom to three causes: inaccurate cen-
troiding, improperly set camera model parameters, and
a noisy rate estimator. This section describes how these
three causes introduced error into our arc length measure-
ments, and the corresponding fixes we made to restore the
performance.

**Centroiding Algorithm Improvements**

The lowest-level processing that can affect the measured
arc lengths between stars is the determination of the lo-
cation of the star on the image detector. This routine is
commonly referred to as centroiding, because the typical
way to compute this is the first-moment of illumination
of the observed intensity pattern\(^4\). During star detection,
routines onboard the ST-16 identify and group pixels that
belong to the same star image into a *blob*. In an attempt
to minimize the contribution image noise, the centroid was
calculated using only pixels within the blob. After care-
ful examination of full frame images, we discovered that this decision was negatively impacting our centroid accuracy. When viewing dim stars in various unfavorable imaging conditions (high rate, or around bright bodies), we found that many times, only an asymmetric portion of the actual star image was identified by the blob. When centroided, this asymmetric selection resulted in a erroneous centroid measurement — biased towards the group of selected pixels. To correct this behavior, we developed a window-based centroiding routine that utilizes a circular window to select which pixels are to be used in the centroid estimate.

In ideal lab conditions, the mean centroid accuracy of the ST-16 was measured to be approximately 0.2 pixels or 0.44μm (1-σ). These conditions result in the best possible signal-to-noise ratio (SNR) of the imaged star. The lab star source is tuned to be as bright as possible without saturating the ST-16’s image detector. This enables the best separation of the star’s intensity pattern from the background image noise. As the brightness of the star decreases, the SNR of the star image drops, and it becomes progressively more difficult to accurately separate the blob from the image background. In ideal imaging conditions (no rate, and no image background gradients), this results in an approximately symmetric loss of pixels about the true centroid. In non ideal imaging conditions (especially during high rate), a low SNR enables noise contributions to break up the blob. Current detection logic utilizes 4-connectivity to identify pixels within the blob. When the blob is thin, and long, as it would appear at high rate, noise contributions can pull pixels critical to establishing a connection between parts of the blob below the detection threshold.

After experimenting with various changes to the ST-16 detection logic, we determined that the approach most resilient to unfavorable imaging conditions was a window-based approach. Following star star detection, an initial centroid estimate is computed using the existing technique. We then revise this estimate by computing the star centroid using all pixels (regardless of whether they are part of the blob) within a circular-shaped window centered on the initial centroid estimate. The ideal radius of this window was empirically determined to be 7 pixels by analyzing full frame on-orbit images.

**On-Orbit Recalibration**

Before the matching process can begin, each detected star must be converted into a star vector through the use of a camera model. The camera model used onboard the ST-16 describes the optical characteristics of the sensor with 11 parameters, see Table 6. These parameters are determined in the lab through an offline calibration process that utilizes a single star source, and a 3-axis motorized gimbal. Shortly following launch, the ST-16 was re-calibrated on-orbit using collected telemetry. This type of re-calibration is typical for star trackers, primarily due to changes in focus as a result of vacuum and having pristine access to real star sources. The role of the ground calibration is simply to enable successful matching of an initial batch of on-orbit telemetry, which is then used for re-calibration. Following an initial re-calibration process, subsequent analysis highlighted two potential pitfalls our re-calibration approach:

- Our camera model contained some parameters that had minimal impact on the calibration residual, and
- Chromatic aberration from the ST-16’s optics caused a star-color-based dependence on focal length.

This subsection discusses our analysis of these pitfalls, and describes our approach to implementing solutions.

**Camera Calibration**

The initial re-calibration of the ST-16s allowed significant improvements in sensor availability and a reduction in false matches. However the overall performance of the sensors — particularly Sensor-A — still fell below expectations. A detailed examination of the effect of the calibration procedure offered some insights into further improvements.

Although the lab calibrations and on-orbit calibrations are parameterized in a similar way, the cost function for the two optimizations are quite different. The lab-calibration uses the residual error between the star vector estimate derived from the sensor, and the true star vector obtained from the test platform kinematics. On-orbit, because we do not have any source of attitude truth, we must adopt a different scheme. The cost-function for the on-orbit calibrations considers the arc-length between pairs of stars. As long as we have a good match for these stars, the true values of these arc-lengths can be calculated from the star catalog and is independent of attitude.

In our lab-calibrations we used an 11-element parameter set that included the scale parameter, $g_y$. This scale parameter represents a slight variation in the pixel pitch between the $x$- and $y$-directions. The original calibration results yielded very similar results (see Table 7), and we assumed that the difference in values was attributable to the inherent calibration and sensor variability. When we re-calibrated Sensor-A on-orbit, the optimization found a
Table 6: Summary of Camera Calibration Parameters

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Number of Parameters</th>
<th>Lab Calibration</th>
<th>Onorbit Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal Distance</td>
<td>$f$</td>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>X/Y Pixel Scale</td>
<td>$g_y$</td>
<td>1</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Optical Centre</td>
<td>$m_0, n_0$</td>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Radial Distortion</td>
<td>$b_1, b_2$</td>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Axial tilt</td>
<td>$a_1, a_2$</td>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Detector Rotation</td>
<td>$\alpha_1, \alpha_2, \alpha_3$</td>
<td>3</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

set of camera parameters that optimized the cost-function value. However, when we looked at the arc-length estimates for a number of star pairs (see Table 8, third column), there was a consistent under-estimation of many of these distances — with the parameters that the optimization could vary, this error could not be corrected. Similar tests with the re-calibrated Sensor-B revealed no evidence of the same trend. The calibrated values for $g_y$ represented a $0.5 - 0.8$ pixel offset across the whole detector. Although we could envision a rationale for $g_y$ to differ from unity, there was little justification for individual detectors having different values. When we repeated the on-orbit calibration using same $g_y$ (from the Sensor-B calibration) in both sensors, the consistent arc-length bias disappeared (arc-length variability remain unchanged). As a consequence, we have removed $g_y$ from the laboratory calibration optimization and simply use a constant value.

The results from this series of tests highlighted a number of potential problems with the laboratory calibration procedures. The original $g_y$ used on Sensor-A allowed the on-orbit re-calibration to get stuck in a local minimum. In contrast to the weakly-separable nature of some of the other parameters — e.g., $(m_0, n_0)$ and $(a_1, a_2)$ — a more complex interaction between $g_y$ and several other parameters permitted distinct, steep minima in the optimization. Early sensitivity studies showed that calibrations were extremely sensitive to both $f$ and $g_y$, but while $f$ had a single optimum value, the non-unique nature of the $g_y$ optimization was overlooked. Night-sky qualification testing of other EM units was generally successful and the noise levels in the night sky tests were generally low. Consequently there was little impetus to closely evaluate the statistics of the arc-length measurement performance for systematic biases. Reviewing many of the calibrations for the EM units used in qualification revealed that not only were incorrect values of $g_y$ often found by the laboratory calibration optimization, but that the arc-length biases are clearly present in the night-sky tests.

**Chromatic Effects**

Following from the initial focus assessment from on-orbit images, we believed that our lens possessed significant chromatic aberrations. Satisfied that we had mitigated the effect of these aberrations on star detection by tuning detection parameters, we investigated the impact they had on discrepancies observed in the measured arc lengths, namely through a change in focal length. Our investigation consisted of separating the collected on-orbit telemetry into two groups based on star color, and then performing separate limited re-calibrations with each subset. To simplify the analysis, these re-calibrations consisted of only letting the focal length vary, while keeping the remaining camera model parameters constant. Group A consisted of hot stars which includes spectral classes: O, B, A, and F. While group B consisted on cold stars which includes spectral classes: G, K, M, and C. The result of this investigation showed that the separate re-calibrations lead to different determined focal lengths. To illustrate this, Figure 3 shows the residual of the re-calibration (defined as the RMS of the arc length error) as a function of focal length, for both spectral groups. The optimal focal lengths determined by the re-calibration procedure for each group lie at the vertex of each parabola.

Figure 3 highlights the dependence of optimal focal length (as defined by the on-orbit re-calibration) on star color. Initially, we considered a solution for this dependence that involved implementing a variable focal length, based on matched star color, to revise the computed star vector. However, implementing this solution would require substantial modifications to ST-16 processing routines. Due to time constraints, we chose to utilize the existing re-calibrations, not based on spectral class. These corresponding focal lengths are also shown in Figure 3.

Table 7: Comparison of Pixel Scale Values

<table>
<thead>
<tr>
<th>Sensor</th>
<th>$g_y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.99975</td>
</tr>
<tr>
<td>B</td>
<td>0.99960</td>
</tr>
</tbody>
</table>

Dzamba  9  28th Annual AIAA/USU Conference on Small Satellites
The effectiveness of the ERS correction depends on the accuracy of the velocity estimates. The difference between the estimated and the true angular velocity is the angular velocity error: \( \delta \omega = \omega - \omega \). Figure 4 shows how \( \delta \omega \) affects the ESOQ2 attitude solution. This plot was generated using a number of simulated scenes across the sky and shows the magnitude of the optimal rotation between the two sets of vectors \( \bar{b} = F(\mathbf{m}, \mathbf{n}, \bar{\omega}) \) and \( \mathbf{b} = F(\mathbf{m}, \mathbf{n}, \omega) \). The exact distribution of stars in each scene and the true value of the angular velocity will cause some spread in the results, but there is an apparently linear relationship between the rate error and the additional attitude error. The attitude solution is much more sensitive to \( x \)-axis (cross-boresight) error components than \( z \)-axis (about-boresight) components, but since the largest errors in the velocity estimates are about the boresight axis, the \( \delta \omega_z \) contributions are usually dominant.

In normal operations the velocity estimates on the ST-16 are derived from pairs of star centroids identified in sequential images. These pairs of images are \( \delta t = 0.1 \) s apart. As is typical with finite-difference type rate estimates, short sampling intervals effectively amplify any

---

Table 8: Sensor-A Recalibration Effect

<table>
<thead>
<tr>
<th>Pair</th>
<th>Arc-length (deg.)</th>
<th>Mean Arc Error (asec)</th>
<th>Std. Dev. Arc Error (asec)</th>
<th>Mean Arc Error (asec, ( g_y )-fixed)</th>
<th>Std. Dev. Arc Error (asec, ( g_y )-fixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.87</td>
<td>−6.53</td>
<td>11.14</td>
<td>−0.21</td>
<td>10.60</td>
</tr>
<tr>
<td>2</td>
<td>3.38</td>
<td>−6.79</td>
<td>10.52</td>
<td>3.77</td>
<td>10.20</td>
</tr>
<tr>
<td>3</td>
<td>3.43</td>
<td>−8.16</td>
<td>9.48</td>
<td>1.99</td>
<td>9.34</td>
</tr>
<tr>
<td>4</td>
<td>0.79</td>
<td>−5.23</td>
<td>9.84</td>
<td>−1.67</td>
<td>9.82</td>
</tr>
<tr>
<td>5</td>
<td>3.89</td>
<td>−17.41</td>
<td>11.18</td>
<td>−3.31</td>
<td>11.28</td>
</tr>
<tr>
<td>6</td>
<td>3.79</td>
<td>−18.07</td>
<td>9.25</td>
<td>−5.30</td>
<td>9.33</td>
</tr>
<tr>
<td>7</td>
<td>2.03</td>
<td>−6.50</td>
<td>12.71</td>
<td>−0.09</td>
<td>12.05</td>
</tr>
<tr>
<td>8</td>
<td>5.35</td>
<td>−46.03</td>
<td>7.44</td>
<td>−6.60</td>
<td>7.71</td>
</tr>
<tr>
<td>9</td>
<td>4.77</td>
<td>−38.70</td>
<td>11.03</td>
<td>−6.44</td>
<td>10.30</td>
</tr>
<tr>
<td>10</td>
<td>3.88</td>
<td>−34.88</td>
<td>9.74</td>
<td>−5.65</td>
<td>9.61</td>
</tr>
</tbody>
</table>

---

Figure 3: The effect of star temperature on focal length.

A second generation star tracker, titled the ST-16RT, is already in final stages of development. Leveraging the lessons learned from this analysis of chromatic aberrations, the ST-16RT utilizes a custom lens design with significantly better chromatic performance.

**Need for Better Rate Estimates**

The detector integrated with the ST-16 uses an electronic rolling shutter (ERS) to control pixel exposure. The primary effect of the ERS is to introduce a time offset between the exposure of different rows on the detector. If uncorrected, this offset skews the observed inter-star geometry and adds error to the attitude estimates. Our algorithm for ERS compensation is described at length in Enright and Dzamba. The effect of the rolling shutter is relatively simple to correct if the angular velocity is known. Thus with a calibrated star tracker we can calculate star vectors from the detector centroid position, \((m_i, n_i)\), and angular velocity, \(\omega\):

\[
\mathbf{b}_i = F(m_i, n_i, \omega)
\]  

(1)

The ST-16 has no internal rate sensor, so our ERS compensation algorithms estimate the angular velocity of the sensor using paired centroids in two successive images:

\[
\bar{\omega} = G(m_A, n_A, m_B, n_B)
\]  

(2)

This velocity estimate, \(\bar{\omega}\), is used in (1) to remove the effect of the rolling shutter.
angular errors in the measurements. A one-dimensional approximation to the sensor motion provides some insight into the relationship between angular orientation errors, $\sigma_\theta$, and the angular velocity error, $\sigma_\omega$:

$$\sigma_\omega \approx \sqrt{2\sigma_\theta \delta t} \quad (3)$$

Here the errors assumed to be zero mean and characterized by their standard deviations.

From this analysis, it is clear that centroid errors can have a compounded effect on the attitude accuracy of the ST-16. Not only do noisy centroid measurements lead to noisy star vector measurements, but these centroid errors also lead to inaccurate rate estimates and additional geometric warping from the ERS effects. Once the star vector errors exceed a certain level, scene-matching becomes more difficult and availability will also suffer.

Initial night-sky testing with the ST-16 did not reveal significant problems with the ERS performance (consider the first row of Table 9). About the $x$- and $y$-axes the ERS rate error approximately 2 arcseconds of attitude error; about the $z$-axis the contribution was about 5 arcseconds. These error levels represented sizable but manageable fractions of the error budget on these axes. After launch, the rate errors were significantly higher than the ground tests (the ground tests reported in this table were not made with the same flight unit, but with an engineering model calibrated to about the same level of performance). In this regime, the error contributions were about 7 arcseconds and 25 arcseconds, respectively.

![Figure 4: Attitude sensitivity to angular velocity error.](image)

Table 9: Rate Estimator Performance

<table>
<thead>
<tr>
<th></th>
<th>$\delta t$ (s)</th>
<th>$\sigma_x$</th>
<th>$\sigma_y$</th>
<th>$\sigma_z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Reading</td>
<td>0.1</td>
<td>3.89</td>
<td>4.03</td>
<td>39.6</td>
</tr>
<tr>
<td>(night-sky)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Reading</td>
<td>0.1</td>
<td>17</td>
<td>13</td>
<td>175</td>
</tr>
<tr>
<td>(on-orbit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading-to-</td>
<td>0.5</td>
<td>3.40</td>
<td>2.60</td>
<td>35.0</td>
</tr>
<tr>
<td>Reading (</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>calculated)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sparse Dataset</td>
<td>40</td>
<td>0.042</td>
<td>0.032</td>
<td>0.438</td>
</tr>
<tr>
<td>(calculated)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sparse Dataset</td>
<td>40</td>
<td>0.211</td>
<td>0.168</td>
<td>0.614</td>
</tr>
<tr>
<td>(on-orbit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Although poor centroid accuracy may have been the root cause of the poor rate estimates, the problem was made worse by the short time between observations. As part of the flight qualification campaign, we introduced additional logic into the flight software in the ST-16. Instead of relying solely on the rate estimates derived from a single sensor reading, the sensor would also calculate an estimate based on the reading-to-reading change in orientation. Provided that the two estimates were close, the sensor would prefer to use estimate derived from reading-to-reading motion. In normal 2 Hz operation, the longer interval between measurements should give a five-fold reduction in noise. Note that this remains a finite difference rate estimate, we have merely increased $\delta t$.

The advantage of longer baselines can be extended even further; the last few rows of Table 9 show the calculated response and observed noise when we reprocess a sparsely sampled telemetry set with this reading-to-reading algorithm. Data from several orbits are shown in Figure 5. This figure contrasts the single-reading estimates (top) with those derived from the sparse attitude measurements (bottom). Sudden jumps in the $\omega$ components indicate invalid reading-to-reading measurements and the use of the single-reading value. Although the noise observed in our orbital data during this last test is good, it is not as low as we would expect from (3). A closer look (Figure 6) at $\tilde{\omega}_z$ reveals that much of the variability that contributes to this discrepancy is actually a periodic variation (once per orbit). This variability in $\tilde{\omega}_z$ is less pronounced than that observed in the other axes, so the predictions are a better match to the observations.

MATCHING AND THE ATTITUDE SOLUTION

Following the star vector calculations, a star matching algorithm is executed to find matches between these star vectors and the star vectors calculated from the onboard
A successful match allows for the final step of calculating the attitude of the star tracker. From the full images and telemetry received from the star trackers, it was known that scenes with sufficient numbers of stars were not being properly matched. Since the issues of star detection and star vector calculation were addressed, the remaining issue must be in the star matching process. This section describes improvements to the onboard star catalog to improve the performance of the star matching process.

Catalog Re-population

The original onboard star catalog was constructed using stars listed in the Sky2000 stellar database. Stars were chosen based on their visual magnitude which represents a response more sensitive to the green region of the emission profile. The spectral response of the ST-16 detector however, covered the entire visual spectrum and portions of the infrared. Consequently, the use of visual magnitude underestimated the expected photon response of the detector.

To solve the poor matching issue a new catalog was developed using a combination of the Hipparcos/ Tycho-2 (HT2) and the Next Generation Spectral Library (NGSL) astronomical databases. The HT2 database contains information including right ascension (RA) and declination (DE), broadband magnitudes, and proper motion for all stars of visual magnitude less than 8. The NGSL database provides synthetic full spectrum (i.e. visible and near infrared) emission profiles for a subset of stars from the HT2 database.

Using the quantum efficiency (QE) response of the ST-16 detector, the expected photon flux for the ST-16 can be determined from integrating the NGSL emission profiles with the QE response. A custom metric for the broadband magnitude response was then developed through a transformation of the photon flux. A mapping between the known Johnson UBVRI magnitudes and the custom metric was derived for the NGSL database stars. This relationship was then applied to the HT2 database to estimate the expected photon flux for each star.

Utilizing the initial on-orbit star observations, the quality of the custom magnitude metric was assessed. Through analysis of the empirical detections, the threshold for star inclusion became a linear weighting of the custom magnitude metric and the infrared magnitude from the Johnson UBVRI system. Stars were included in the catalog if the expected photon flux met the probability of detection.

Additionally, stars were added to the catalog based on the star density of the observation area. To accomplish this task, the celestial sky was evenly divided into a set of overlapping observation areas. Stars were added until each area contained at least ten stars. As consequence of this approach, moderately bright stars in a high density area might not be included, while dim stars in low density area would be included.

Handling of Troublesome Stars

With an improved star catalog, particular stars, while sufficiently bright to be detected, were still not matched. They were rejected due to errors between actual and expected positions; and these errors were caused by a failure to correct for proper motion or the presence of a binary star system or both.
The star catalog was first corrected for proper motion to the current year. Secondly, the positions of star clusters were corrected by one of the following methods:

1. Apparent Binaries. Two distinct stars appear joined due to the optics of the star tracker and thus prevent a quality estimate of the component star positions. Since the centroid of the conjoined star cannot be effectively estimated, the apparent binaries are not included in the star catalog. During the matching process, their detection would be treated as an outlier.

2. Equally bright binaries. A binary star system is composed of two or more stars that are less than 2 magnitudes difference between the stars of the group. Since the stars are sufficiently close, the pair is treated as a single entry in the star catalog. The position on the binary system is approximated to be the magnitude weighted average of the component star positions.

3. Differently bright binaries. A single star in the group is significantly brighter, more than 2 magnitudes difference, to the next star in the group. The binary group is again treated as a single entry in the star catalog, with the position of the binary system taken as the position of the brightest star in the group.

CONCLUSIONS

In the preceding sections we have outlined the improvements to sensor processing on the ST-16 that were necessary to bring the sensor performance back up to their intended specifications. These changes include improvements in the logic for star detection, star measurement, rate estimation, and catalog management. Together the algorithmic improvements yielded higher availability, better accuracy, and much-lower bad-match rate. Although new launches may require a short qualification period to tune calibration and operating parameters, we expect that the core software is stable.

The root causes of some of our post-launch difficulties rest with how we allocated qualification resources between simulation, laboratory, and night-sky tests. Our general approach sought to resolve most of the difficult performance questions in laboratory or simulation studies whereas the night-sky tests provided qualitative confirmation that ‘things were working correctly’. For example, methodical laboratory tests were used to help set ideal detection thresholds; night sky tests were used to verify that the sensors could detect stars with the chosen settings but the whole parameter optimization was not actually validated. Overall, the night-sky testing conditions were almost too benign and many anomalies in the test telemetry were blamed on test conditions (e.g., clouds, vibration, etc.) without sufficient analysis. Our testing approach was not unreasonable, but would have benefited from more scrutiny for confirmation bias.

In addition to the many performance issues that have been fixed, there are a number of improvements under development that lay outside the scope of the flight qualification campaign. First we foresee considerable utility in modifying the camera re-calibration code so that it can run online, on the sensor. This would drastically reduce the need for our involvement in qualification activities after each sensor launch. Second, investigations into the rolling shutter compensation underlined the criticality of the rate estimates. Recursive filtering could be used to provide better estimates of angular velocity beyond our simple finite difference implementation. Finally, the chromatic aberrations in the ST-16 lens affect the system level performance more than we initially estimated. A follow-on to the ST-16, the ST-16RT, uses a custom lens design with better chromatic performance.

Overall we pleased with the improvements we were able to make in the ST-16. Good communication and operational integration between all three teams provided the support necessary to successfully diagnose and remedy many of the performance problems. The ST-16 is a successful sensor and we foresee few problems with future launches.

References


