Thruster Subsystem Design for the Ballistic Reinforced Communication Satellite (BRICSat-P)

Presented By: Joseph Lukas

Team Members: George Teel, Samudra Haque, Alexey Shashurin, Professor Michael Keidar
USNA Mission

- BRICSat-P 2015 launch
- 500 km: Attitude control, orbit change, & deorbit
- Subsystem fits in 6 cm x 10 cm x 10 cm area
Success Criteria

- Initial and repeatable firing
- BRICSat rotation of 6 rpm
- Stable spin and de-spin
Propulsion Requirements

• Electric propulsion that is...
 – Low-cost
 – Reliable and simple
 – No pressurized tanks
 – Power efficient
 – Scalable and modular
 – Safe for the satellite
Propulsion Requirements

• Electric propulsion that is...
 – Low-cost
 – Reliable and simple
 – No pressurized tanks
 – Power efficient
 – Scalable and modular
 – Safe for the satellite

Solid Propellant
Micro-Cathode Arc Thruster (μCAT)

- Generation III
Thruster Head Components
How It Works
Arc Discharge – 20 Hz
Magnetic Field

• Without and with a magnetic field
Ion Current

Ratio of Arc Current over Ion Current vs magnetic field

- Magnetic Field Strength (T)
- Ratio of arc current over ion current (%)
Impulse Bit and Velocity

- Impulse Bit vs. Magnetic field strength

- Magnetic field 0T
- Magnetic field 0.17T
- Magnetic field 0.3T

Z, distance from thruster cathode surface (mm)
Development

- Left to Right:
 - μCAT Concept, Generation I, Generation III
Subsystem Properties

- **Impulse bit:**
 - 1 mN-s/pulse

- **Operating Frequency:**
 - 1 - 50 Hz

- **Specific Impulse (Isp):**
 - 2000 - 3000 s

- **Avg. power/pulse:**
 - < 0.1 Watts

- **Thrusters + PPU mass:**
 - < 150g
Contamination

- Fast Ion
- Slow Ion
- Fast Neutral
- Slow Neutral
Contamination

- Experimental setup and results
Current Developments

- Single bus operation
- Component miniaturization
- Mass reduction
- Array/cluster operation
- EMI and RFI investigation
Conclusions

• Scalable electric propulsion

• Mission customizable

• No contamination

• Compact propulsion option for CubeSats

• Researching further optimizations
Questions?

Presented By:
Joseph Lukas

Team Members:
George Teel
Samudra Haque
Michael Keidar