Introduction

Light Detection and Ranging (lidar) is a ground-based remote sensing technique that has been used to study the middle and upper atmosphere for over four decades [1, 2]. Atmospheric lidars system transmit laser beams into the atmosphere and then use optical and electronic detector systems to measure backscatter resulting from the interaction between the transmitted photons and atmospheric particles. Two of the most widely used lidar techniques for the study the upper atmosphere are Rayleigh-scatter and sodium lidar.

1. Lidar Systems’ Specifications

The original RS lidar system ran at a midlatitude site (42° N, 112° W), on the campus of Utah State University (USU), from 1993-2004 [4]. During this time, it gathered temperature data in the 45-90 km altitude range. It has since had an instrumentation upgrade (see Fig. 1) and has been used to collect temperature data from the 70-115 km range since summer 2014.

The Na lidar system ran on the campus of Colorado State University (41° N, 105° W) from 1990-2010 [5]. Since 2010, it has been operating at the same USU site as the RS lidar under the configuration [6] also shown in Figure 1.

2. Lidar Temperature Retrievals

To better compare the two lidar datasets, the temperatures from each lidar, at a given altitude, were plotted in a time series in Figure 3. They show that at and below 90 km, the RS temperatures were generally colder than the Na temperatures. At 95 km and above, the RS temperatures are on average warmer than the Na temperatures.

3. Temperature Comparison

To better compare the two lidar datasets, the temperatures from each lidar, at a given altitude, were plotted in a time series in Figure 3. They show that at and below 90 km, the RS temperatures were generally colder than the Na temperatures. At 95 km and above, the RS temperatures are on average warmer than the Na temperatures.

4. Discussion

In Figure 2, we see that over the full measurement year (June 2014–June 2015), the best agreement between the two techniques happens between about 83-90 km. This can also be seen in range since seasonal variation is shown in Figure 3 (a) and in Figure 5 (bottom) where the correlation between the two datasets is greatest than 0.9 in this altitude range.

The best agreement across the full range of altitudes is seen on the nights of the fall and spring equinoxes (Fig. 2 (b) & (e)). A night close to the fall equinox (25 Sept 2014) was chosen to examine the hourly temperature perturbations from both lidars. The perturbation plots (Fig. 4) show good agreement from hour-to-hour and the same 8-hr wave can be seen in both datasets.

The RS lidar temperature is shown to be colder than those of the Na lidar at 85 and 90 km (Fig. 3 (a) & (b)). A similar observation was made in Argall and Sico, (2007). They compared RS and Na lidar climatologies from several different sites over an altitude range of about 80-95 km and found that on average, the RS temperatures were 7 K cooler. While our data show the RS temperatures being colder, our difference is not as strong—having an average of only about 2 K. At 95 km and above, our data shows that the RS temperatures are on average increasing warmer as one goes up in altitude, reaching an average maximum temperature difference of about 16 K at 105 km (Fig. 3 (c)-(e)).

Conclusions and Future Work

We have presented a comparison of simultaneous temperatures acquired by Rayleigh-scatter and sodium resonance lidars collocated at USU. Several conclusions can be reached from this work:

- The two temperature datasets show the best agreement between about 83 and 90 km.
- The best agreement, spanning all altitudes, is seen near the fall and spring equinoxes (Fig. 2 (b) & (d)).
- Below 90 km, RS lidar temperatures are on average slightly cooler than Na lidar temperatures. At 95 km and above the RS temperatures are significantly warmer than the Na temperatures.
- On an hourly scale, temperature perturbations calculated independently for each lidar’s dataset, show good agreement between the two techniques.
- The two sets of temperatures show better correlation as a function of altitude, with the best agreement between about 83-90 km.
- Occasionally, in summer months, the RS lidar observed a lower-in-altitude mesopause, which the Na lidar did not capture (Fig. 2 (g)). These comparisons need to be continued with additional simultaneous observations.

The apparent warmer RS temperatures above 95 km needs to be further investigated.