A Compact Ion and Neutral Mass Spectrometer for CubeSat/SmallSat Platforms

GSPC RMS Team: Marcello Rodriguez, Nick Paschalidis, Sarah Jones, Ed Stifter, Dennis Chomay, Paulo Urbe, Tim Cameron, Bobby Nanan

Summary
The Heliospheric Division of GSPC has developed a compact ion and neutral mass spectrometer (INMS) for in situ measurements of ions and neutral H, He, N, O, N2, O2 with M/ΔM of approximately 12 at an incoming energy range of 0-50eV. The INMS is based on front end optics, post acceleration, gated time of flight, ESA and CEM or MCP detectors. The compact sensor has a dual symmetric configuration with the ion and neutral sensor heads on opposite sides and with full electronics in the middle. The neutral front end optics includes thermionic emission ionisation and ion blocking grids, and the ion front end optics includes appropriated potential compensation grids. The electronics include front end, fast gating, HWP, x, orcer, TOF triggering and full digital CADC digital electronics. The data package includes 400 mass bins each for ions and neutrals and key housekeeping data for instrument health and calibration. The data sampling can be commanded as fast as 10 msec per frame (corresponding to ~80 spatial separation) in burst mode, and has significant onboard storage capability and data compression scheme. Experimental data from instrument testing with both ions and neutrals will be presented. INMS was recently launched on The ExoCube 3U Cubesat mission (SMAP) launch on January 31, 2015. A second upgraded INMS is scheduled to be delivered August 2015 to Dellingr 6U CubeSat mission to be launched in 2016. This miniaturized instrument fits a 1.5U volume, weighs only 569 g and requires nominal power of 1.6W.

Compact CubeSat – INMS Measurements
Measurements of atmospheric neutral and ion composition and density are needed not only for studies of the dynamic ionosphere-thermosphere-magnetosphere system but simply to define the steady state background atmospheric conditions. Remote sensing measurements of atomic oxygen density at altitudes between 80-95 km have shown that the density can vary by over an order of magnitude. This causes deviations from the densities estimated by MSIS (a well known empirical model of Earth’s atmosphere) by up to a factor of ten. CubeSat’s provide a small platform for an ion/nutral mass spectrometer capable of obtaining the in situ measurements that are critical to understanding this complicated system.

Instrument Specifications
• Separate apertures for ions and neutrals ±5degx = ±10deg around im
• Thermionic ionization of neutrals
• Mass resolution M/ΔM =12 Mass dynamic range 1-40 amu
• Mass counting rate: 1 Meg-eps
• Adjustable gate pulse width serves as crude mass filter to select full mass scale or exclude heavy elements with short pulses.
• Spectra sampling 100 ms to 10 sec programmable with 10 ms steps
• Onboard memory and processing capability
• Data product: Raw TOF spectra up to 400 bins for mass window of interest, and species countours
• Electrical interface: <5% 3.3V DC and SPI serial communication
• Volume 8 cm x 13 cm (full size 1.5U), mass 560 g
• Peak power at full filament 1.6W, ions only 0.6W

Optimizing Science Performance for the Exosphere
The first ever empirical estimation of global atomic hydrogen density in the thermosphere and exosphere from 50 km to 120 km was just published. The ExoCube INMS mission provides in situ measurements of stratospheric minor gases measured by our instrument.

ExoCube and Dellingr Missions

The ExoCube mission (PI John Noto, Scientific Solutions)
• Designed to acquire global knowledge of in-situ densities of [He], [Ne], [O] and [N2] in the upper ionosphere and lower exosphere in combination with colocated scatter radar ground stations distributed in the north polar region.
• California Polytechnic State (Cayuga) University built 3U CubeSat bus
• El-Aria X-SMAP Data 6U launch January 31, 2015
• 6-12 month operation
• 460673m Otk altitude, 98 degree inclination

The Dellingr mission (NASA Goddard Space Flight Center)
• Goddard’s internal development to design, build and fly a 4U CubeSat carrying 2 GSPC science instruments (Science Magnetometer and Ion Neutral Mass Spectrometer)
• 3-axis stabilised GNC system
• ISU Launch possibility 2016
• Thermally tested, high capability e/s bus

ExoCube Mission Operations
• ExoCube launched with SMAP on January 31, 2015. Functionality testing shows that the instrument is in good health.
• First flight spectra of INMS instrument on ExoCube. Ion data taken May 20, 2015.
• Neutral data of background outgassing taken July 15, 2015

Principles of Operation
• Neutral particles are first ionized with a compact thermionic filament. Ions are blocked from the neutral aperture by a retarding potential grid
• The ions are directly focused into the gate from pre acceleration.
• Pre acceleration by voltage V gives all ions same energy E = qV much greater than initial energy dispersions ΔE.
• Ions are ordered in velocity according to their mass on the basis of the simple formula E = mV/n of
• Measuring the velocity of each ion - with time of flight over a distance d gives the mass of the ion according to d = E / qV (a T0F).
• Accelerated ions are focused through an electric gate into an electrostatic analyzer (ESA)
• Ions are normally blocked by the gate and can pass through only during a short pulse duration δt, marking a start in the time of flight measurement at the pulse edge
• Ions are detected at the output of the ESA by a CEM detector marking the steps for the time of flight measurements.
• The ESA is tuned to the proper energy pass band set by the pre acceleration voltage blocking out of band particles, as well as attenuating any O/He.
• The mass resolution is limited by uncertainties in energy dispersion, time resolution and time of flight path.

Optimizing Science Performance for the Exosphere
The first ever empirical estimation of global atomic hydrogen density in the thermosphere and exosphere from 50 km to 120 km was just published. The ExoCube INMS mission provides in situ measurements of stratospheric minor gases measured by our instrument.

ExoCube and Dellingr Missions

The ExoCube mission (PI John Noto, Scientific Solutions)
• Designed to acquire global knowledge of in-situ densities of [He], [Ne], [O] and [N2] in the upper ionosphere and lower exosphere in combination with colocated scatter radar ground stations distributed in the north polar region.
• California Polytechnic State (Cayuga) University built 3U CubeSat bus
• El-Aria X-SMAP Data 6U launch January 31, 2015
• 6-12 month operation
• 460673m Otk altitude, 98 degree inclination

The Dellingr mission (NASA Goddard Space Flight Center)
• Goddard’s internal development to design, build and fly a 4U CubeSat carrying 2 GSPC science instruments (Science Magnetometer and Ion Neutral Mass Spectrometer)
• 3-axis stabilised GNC system
• ISU Launch possibility 2016
• Thermally tested, high capability e/s bus

ExoCube Mission Operations
• ExoCube launched with SMAP on January 31, 2015. Functionality testing shows that the instrument is in good health.
• First flight spectra of INMS instrument on ExoCube. Ion data taken May 20, 2015.
• Neutral data of background outgassing taken July 15, 2015

Principles of Operation
• Neutral particles are first ionized with a compact thermionic filament. Ions are blocked from the neutral aperture by a retarding potential grid
• The ions are directly focused into the gate from pre acceleration.
• Pre acceleration by voltage V gives all ions same energy E = qV much greater than initial energy dispersions ΔE.
• Ions are ordered in velocity according to their mass on the basis of the simple formula E = mV/n of
• Measuring the velocity of each ion - with time of flight over a distance d gives the mass of the ion according to d = E / qV (a T0F).
• Accelerated ions are focused through an electric gate into an electrostatic analyzer (ESA)
• Ions are normally blocked by the gate and can pass through only during a short pulse duration δt, marking a start in the time of flight measurement at the pulse edge
• Ions are detected at the output of the ESA by a CEM detector marking the steps for the time of flight measurements.
• The ESA is tuned to the proper energy pass band set by the pre acceleration voltage blocking out of band particles, as well as attenuating any O/He.
• The mass resolution is limited by uncertainties in energy dispersion, time resolution and time of flight path.