Design and validation of an articulated solar panel for CubeSats

Patrick Höhn
Dwarf Planet Project

Abstract
- CubeSats mission more and more demanding.
- Current design mostly limited to surface mounted solar cells.
- Additional potential by deployable solar panels like in large satellites.
- Further enhancements possible by proposed articulated solar panel.
- Successfully validated prototypes to vibrational loads during launch phase.

Motivation
- Increasing power demands on small satellites.
- Currently increase of solar cell area by deployable solar panels with fixed angle.
- Proposed further improvements by adjusting solar panels for an optimized sun-incident angle.

Subsystems
- Release mechanism:
 - Required for releasing panel from locked configuration during launch.
 - Simple, light, small and reliable mechanism required.
- Articulation mechanism:
 - Proposed to increase efficiency of solar cells.
 - Rotation of deployable solar panel in plane at one degree of freedom.
 - Simple, light and reliable mechanism required.
- Type of solar cells:
 - Comparison of solar cells regarding cost, availability and achievable efficiency.
- Control mechanism:
 - To adjust the attitude of the solar panels to achieve optimal sun-incident angle.
 - Electronic controller embedded in on-board data handling system preferably.

Environmental Challenges
- Launch Environment:
 - Large vibrational load during rocket launch.
 - Risk of physical destruction by moving of mechanical parts (e.g., screw connections).
- Orbital Environment:
 - Cycle changes of temperature during one orbit.
 - Induced stress on mechanical components by difference in thermal expansion.
- Vacuum environment:
 - Outgassing of mechanical components.
 - Particle radiation.
- Degradation of applied materials.

Problem Statement
- Additional available energy: 12 Wh at AM0 by articulated solar panels.
- Output voltage between 10 and 20 volts.
- Embodied torque coil including interface.
- Temperature sensor at back side of panel.
- Possibility to print antenna circuit on or within the array substrate without degradation of array performance.
- Electrical interface for antenna, torque coil, power and temperature sensor.
- More.

Conceptual Design
- Hinge design with stepper motor enhanced by planetary gears for larger available torque and higher precision of sun-incident angle.
- Attachment of solar panel by nut which can be heat winding.
- Ultra, Triple-junction solar cells for highest efficiency.
- Electronic controller for calibration and control signal to stepper motor.
- CAD drawing of proposed mechanisms:
 - Constructed first prototype with mock-up solar panel.
 - First mode found in modal analysis at approximately 240 Hz.
 - First mode found in model analysis at approximately 240 Hz.
 - Second step: classical analysis with constant excitation.
 - Resulting deflections:
 - Resulting stress in whole panel.

Estimated Solar Cell Area: 0.05 m²
- Improvements by articulated Solar Panel.
- Fixed mounting, panel can be removed at higher efficiency.
- Additional rotations around z-axis: average of 800 W / m² per year.
- Additional rotations around y-axis: average of 800 W / m² per year.
- Additional rotations around x-axis: average of 800 W / m² per year.

Refined Specification
- First two calculated fundamental modes:
 - 239.5 Hz
 - 1107.4 Hz
 - 1041.9 Hz
 - 648.8 Hz
 - 848.5 Hz

Evaluation and Testing of the proposed Solution
- Classical numerical vibration analysis:
 - First step: sine survey (modal analysis), required to find oscillatory modes of analyzed system.
 - Frequency:
 - Mode number
 - Frequency
 - Mode 1: 240 Hz
 - Mode 2: 496 Hz
 - Mode 3: 50 Hz
 - Mode 4: 60 Hz
 - Mode 5: 80 Hz
 - Mode 6: 100 Hz

Conclusion and Future Work
- Large improvements by adding one degree of articulated degree of freedom.
- Validated feasibility of proposed design.
- Consistent results from numerical and experimental vibrational analysis.
- Further tests for outgoing, particle radiation.

Acknowledgments
- SpaceMaster Consortium for funding the work at Utah State University.
- Utah State University and Space Dynamics Lab for opportunity to design and validate design.
- Dr. Rose Pilliner and team at Space Dynamics Lab for sharing their practical experience and continued support throughout the whole project.
- Dwarf Planet Project for the funding the opportunity to attend the conference.

References