Globalstar Communication Link for CubeSats: TSAT, GEARRS1, and GEARRS2

Professors Dr. Hank D. Voss, Dr. Art White, Dr. Stefan Brandle
Taylor University, Physics/Engineering & Computer Science, Upland, IN 46989

Mr. Jeff F. Dailey, Chief Engineer, 260.241.0409, jfdailey@nearspacelaunch.com,
Dr. Hank D. Voss, President and Chief Scientist, 765.618.3813, hnvoss@taylor.edu
NearSpace Launch Inc., 8702 E. 825 S. Upland, IN 46989
Three Cubesats launched within 15 months 2014-2015 using the Globalstar constellation of satellites for communication

- EyeStar: Anywhere-Anytime, 24 hr / 7 days/week coverage
- Agile 1-3 month Delivery (F-Bus Series)
- No Ground Station resources required
- Fully Operational G* and NSL ground segment for data and display
- Globalstar Capacity for TT&C for 1000’s of satellites
 (9 to 700 Bytes/sec but data is transferred continuously)
- Critical Piece for Mission Success
Acknowledgements

• **Air Force Research Labs (Small Satellite Portfolio):** Systems engineering support, Funding, and Analysis
• **DOD Space Test Program:** Launch opportunity
• **NRO Office of Space Launch:** Launch opportunity
• **NASA INSGC and ElaNa 5 Program:** Launch opportunity
• **Students: Data Analysis and ASEE Publications**
 Joel Kiers, Stephen Papierski, Blake Wheeler, Andy Krock, Aaron Voss
• **Globalstar Management, Engineering, Marketing, and Legal**
• **Taylor University and NSL general staff**
 Dr. Bill Chapman, Nate White, Matt Orvis and Others
<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
</table>
| 2014 | TSAT 2U EyeStar Simplex
Space X Launch
ElaNa 5
325 km
40 day life |
| 2015 | GEARRS1 3U EyeStar Simplex
EyeStar Duplex
SMS Commanding
Orbital Launch, ISS
410 km, Bat. Life
DOD STP
Deployment Delay
Partial Mission Success |
| 2015 | GEARRS2 3U 2015 EyeStar Simplex
EyeStar Duplex
SMS Commanding
Atlas Launch,
350x700 km, 1.5 yr.
DOD STP & NRO |
| 2016 | SHARC 5U EyeStar Simplex
EyeStar Duplex Commanding
3A Stable
ISS Launch, ~420 km
DOD STP |

Other EyeStar Units
Delivered, L2016+
10+ Universities
NASA, AF, NSF,
Industry, Others,
25 units NSL Inventory
TSAT Results
TSAT Overview

TSAT details in Small Sat AIAA paper proceedings SSC14-WK-6, 2014, Also NSL at Booth - Hardware

TSAT was a 2U Cubesat launched April 18 on Space X to 325 km orbit
• **GlobalStar Constellation ($2B)**
 - 32 plus LEO Satellites (1400 km)
 - Provides global data and voice services for
 - ~ 300,000 customers

• **Used primarily for infrastructure/wildlife monitoring**
 - Oil Rigs and Gas pipe-lines
 - Shipping Containers and Endangered animals

• **EyeStar** developed by NSL for satellites & **EyePod** for high-altitude ballooning
 - NSL developed relationship with GlobalStar and now Value Added Reseller (VAR) and
 - NSL has flown six EyeStar units (100%) & > 350 balloon launches with 99+% data/recovery
 - Data links via the GlobalStar and NSL network (Simplex and Duplex)
 - Code division multiple access (CDMA)
 - Payload commanding
 - Data downlinks
 - Recovery tracking (with GPS)

NSL EyeStar Simplex and Duplex now with flight Heritage
Globalstar with EyeStar Radio Simulations
("Bent Pipe" distributed data downlink)

- Commercial Research Grade link and FCC license, Not ITAR
- Low latency near real time global data and command
- 1.61625 GHz Simplex TSAT transmitter/patch (170 deg. FOV)
- 1.6 GHz & 2.4 GHz band Duplex CDMA transmit/receive patch
- No conventional Ground Station cost & time required
May 2014, Beacon Cycle: 32 beacons (Five second interval), 15 minute off dwell
Contour Maps of Simplex Coverage

Figure 7: Comparison of Globalstar projected coverage and normalized TSAT results
TSAT 110 km Reentry Data (T=20deg/min)

ELEO Electron Density

Figure 19: Mission medians of electron density for various orbit altitudes (10 km bins). The higher density in the F-region transitions to the
TSAT Globalstar ELaNa-5 Extremely Low-Earth Orbit (ELEO) Satellite

Hank D. Voss
Taylor University and NearSpace Launch, Inc.
Physics & Engineering Department, 236 Reade Ave, Upland, IN 46989, 765-618-3813
hnvoss@taylor.edu

Jeff F. Dailey
NearSpace Launch Inc.
8702 E 825 S, Upland, IN 46989, 260-241-0409
jfdaily@nearspacelaunch.com

Joseph C. Crowley, Bob Bennett
Globalstar, Inc.
461 S. Milpitas Blvd, Milpitas, CA 94404, 408-933-4433
Joseph.Crowley@globalstar.com

Arthur J. White
Taylor University
Computer Science Department, Upland, IN 46989, 765-998-5165
arwhite@taylor.edu

ABSTRACT
Global Star Experiment And Risk Reduction Satellite (GEARRS)
Globalstar Experiment and Risk Reduction Satellite (GEARRS)

• **GEARRS 1:** launched from Nanoracks/ISS March, 2015:
 – First Duplex Tested with SMS Commanding, 2 Simplex units
 – Results presented at Ca Poly Workshop April, 2015

• **GEARRS 2:** Launched from P-POD Atlas Rocket May, 2015:
 – Elliptic orbit about 350 by 700 km
 – Currently in Operation for extended mission: Heritage, Flight Qualifications (Li-Poly Batteries, FP, EPS, Solar Arrays, Mag.), Rad testing, Particle data, Link testing, and De-spin effects
G* Experiment-GEARRS #2

- 45 Day Turn-around by NSL
 - **FastBus**: (Structure, EPS, G* links, mag., solar, EMI enclosure, Thermal short, Asm. bench)
- GEARRS 2 photo showing Simplex and Duplex patch antennas and the plasma probe on the end cap.
- GEARRS #2 is currently operating and validating the end-to-end space and ground segment
- GEARRS #2 validating duplex coverage maps, costs, commanding rates/latency, file transfer rates and size, & much more.
GEARRS2 Globalstar Coverage

Location of GEARRS2 for All Received Message Packets (2015/05/20 to 2015/07/31)

© 2015 NearSpace Launch, Inc.

Points plotted: 58436 of 58436 using all available TLEs
New G* Ground Station in Africa!
Spring 2015
TSAT and GEARRS2 (Preliminary)
Globalstar Simplex Unit Comparison

Normalized Scales
Duplex Connects and Signal Strength (RSSI)

GEARRS Spinning at 2 PPM and 1 RPM Pitch
SMS Duplex Commanding (Preliminary) with Validation (~300 messages)

GEARRS Spinning at 2 PPM and 1 RPM Pitch

Close Agreement to Terrestrial Map
GEARRS 2 Spin Motion at Release time

First packet Received - South Pacific - <10 sec after RF turn-on

GEARRS 1 Stabilized well from ISS but GEARRS 2 in its elliptic orbit, higher altitude, and higher initial spin will take some time to slow down.

GEARRS Permanent Magnetic Stabilization with Magnetic Damping

<table>
<thead>
<tr>
<th>Axis</th>
<th>Frequency Hz</th>
<th>Rate rpm</th>
<th>Period sec</th>
<th>Phase Shift degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0.0308</td>
<td>1.848</td>
<td>32.46753247</td>
<td>-71.61972439</td>
</tr>
<tr>
<td>y</td>
<td>0.0209</td>
<td>1.254</td>
<td>47.84688995</td>
<td>-229.1831181</td>
</tr>
<tr>
<td>z</td>
<td>0.0309</td>
<td>1.854</td>
<td>32.36245955</td>
<td>48.70141259</td>
</tr>
</tbody>
</table>

Roll - ~2 rpm 90° phase Shift
Pitch - ~1 rpm Coning
Data throughput is significantly reduced with GEARRS2 spin motion yet significant file connections are made for Gateway Connects, Duplex Connects, Signal Strength monitor (RSSI), and SMS Commanding.

Because GEARRS 2 is spinning at 2 RPM roll and 1 RPM in pitch it does not have time to achieve long connections for large data file transfers.

To verify this effect, we rotated and pitched the GEARRS Engineering Model (EM) to test connectivity at various tumbling rates.

Duplex
1 and 2 axis
Rotation Testing Device
Duplex Modem % Successful Call Placement as a Function of Orientation and Motion (Preliminary)

Some Conclusions:
• Spin: Simplex not affected at 2 RPM
• 3-Axis Stabilized (low spin) for Duplex
• Need ~1 min. lock for File Transfer
Simplex is not affected much by GEARRS2 tumbling. 85% efficiency for most cases, whether looking up or down.

GEARRS 2 data in Sun sync lock with sequences of 75 packets.
Near real time data:

Packet jitter about +/-1 sec. from CubeSat to Gateway UT Timestamp as recorded on NSL server
1. **EyeStar Radios:** Globalstar Simplex and Duplex
 1. 3 launches in 15 months (Space X-ELaNa 5, Orbital-ISS, Atlas),
 2. Reliability: 5 for 5 simplex, 2 for 2 duplex all worked well
 3. Delivery: 10 universities, NASA, NSF, AF, Industry

2. **F-Bus Series (F1-F6): Fast, Fighter, Functional**
 1. 2-3 Month Delivery of Satellite Bus
 2. Robust Structure, EPS, Solar, Li-Poly Battery, Comm.,
 3A-Mag, EMI shield, Isothermal, Optical bench plate
 4. Flight Heritage: GEARRS 1, GEARRS2

3. **Operational Data Ground Segment**
 1. Anywhere Anytime, 24/7 coverage, near real time
 2. Fully functional with University, Government, and Industry Use
 3. Graphics display software and command software
 4. Multi-Sat. Standardized time-ordered Data base

4. **Other Services:**
 1. Sensors, High Altitude Balloons, EyePod Globalstar Radios, (Over 370 Launches with 99% success)
Globalstar Usage Plan

• Single Point Contact for Globalstar Simplex
 • NSL is POC as Value Added Reseller, VAR, product for Satellite and High-Altitude Balloons. Do not want to disrupt G* primary market.
 • Maintain Globalstar Interest with increased Satellite market usage while reducing G* overhead from interruptions, training calls, nonstandard protocols, problem solving, and putting out fires.
 • Cost $900 EM unit to $4,000 Flight FM Simplex unit and includes: Beacon Flight Processor with IO, Flight Assembly, Antenna/Cable, FCC EMI Testing and Certification, Ground Segment Software, Optimization, FCC License, and Support.

• Ensures satellite success using just beacon for basic health, summary sensor data, and GPS. Use S-band for Gbyte data.

• Ideal for MultiSatellites (1000s): Unified/Time-Ordered Cubesat Database (Selected collaborations)
EyeStar Simplex Transmitter with Flight Beacon Processor, Plug and Play, ICD

STX-2, 8x3.5x0.6 cm (200mW ERP), and STX-3, 4x2.5 cm, 9 Bytes/s

2x2cm Patch

SD Card

Globalstar STX3

Micro

Payload Comm.

8 Ext. Analogs

4 Ext. Digital

Input Voltage

Comm. Temp. C

Switching Regulator

Power Input 6 – 18 Vdc
SAT Duplex Transceiver Product

- Up to 7000 baud data rate
- Data and Command Control
- TCP-IP software with ARM processor
- Handshaking protocol
- Active patch antenna (6 cm)
- 1 Watt ERP
- 3.3 & 5 V, 5W input power
- Size 6.1 X 11.9 X 11.9 cm
- CAD, ICD, Support, FCC License
Satellite-Globalstar-Server Data Network Operational

- Globalstar Satellite Constellation and Global Gateway Network
 - Near Space Launch (NSL) Primary Interface
 - FCC, Legal, POC, Rates, VAR, Tech Support
 - Cloud Servers
 - NSL Primary Server, Console
 - NSL Time Ordered Common Data Base

- Servers
 - NASA Centers
 - Constellation Servers
 - AFRL Servers
 - University Servers
 - International Servers
 - Industry Servers
 - Other
Questions
Meet us at Booth 104
Simplex Data Rates

Standardized Simplex Monthly Data Charges

January 29, 2015

<table>
<thead>
<tr>
<th>Verified Data Bytes Received (KBytes)</th>
<th>Research & Retail Rate Cents/Byte</th>
<th>Academic Rate (less 15%) Cents/Byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-360</td>
<td>1.00</td>
<td>0.85</td>
</tr>
<tr>
<td>361-1,800</td>
<td>0.75</td>
<td>0.64</td>
</tr>
<tr>
<td>1,800-3,600</td>
<td>0.50</td>
<td>0.43</td>
</tr>
<tr>
<td>3,600-18,000</td>
<td>0.40</td>
<td>0.34</td>
</tr>
<tr>
<td>18,000-65,318</td>
<td>0.30</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Note Savings in No Ground Station Operation and Hardware Costs.
NSL Space Flight Upgrades of Globalstar Modems

- FCC Cubesat-to-Satellite commercial license
- EMI PCB FCC certification of modem Product
- Firmware modem changes for spaceflight
- ARMProcessor board and Linux software for data interface
- TCP-IP processor software to modem
- Thermal, vacuum, and EMI modem shield
- Radio astronomy frequency avoidance
- GSE bypass of Globalstar network for testing
- Burn-in and Testing, Conformal Coating
- Globalstar VAR POC for clean interface with G*
- Network Tuning and optimization
- Certified for Spaceflight
- Ground Segment Data and Command Software
- Future plan for Open Source interface
- ICD, RF Spectrum EMI, Antenna/Cable placement, Much Documentation,...