Big Software for SmallSats: Adapting cFS to CubeSat Missions

Alan Cudmore, Gary Crum, Salman Sheikh, James Marshall
NASA Goddard Space Flight Center
[alan.p.cudmore, gary.a.crum, salman.i.sheikh, james.marshall-1]@nasa.gov
Outline

• Motivation
• What is cFS?
• Experience: CSP / CeREs
• Experience: Dellingr
• Performance
• Future Work
• References

• NOTE: All images courtesy of NASA
Motivation

• Expanding requirements
 – Science
 – Risk tolerance
 – This stresses software (and teams!)

• Budgets are not expanding

• “Small” Satellite does not mean “small” software

• Solution: a trusted framework with reusable components
cFS: core Flight Software

- NASA recognized a need to move away from “Clone and Own”
- Developed to tackle the very issues that SmallSats now face
- Framework and core services (cFE)
- Common set of applications and libraries
- (McComas, 2012) (Fesq, Dvorak, 2012)

“At Goddard the main driver for changing the development process is cost, [...] An obvious way to reduce cost and schedule is to increase the amount of software reuse.”

(Wilmot, 2006)

The cFS follows a product line approach with the goal to support systematic reuse.

(Ganesan, Lindvall, Ackermann, McComas, Bartholomew, 2009)
Framework and Core Services (cFE)

- Layered architecture
- Supports Publish / Subscribe Applications
- Events
- Tables
- Time

![Diagram of cFE architecture with icons for CF, CS, DS, FM, HS, HK, LC, MD, MM, SBN, SC, SCH, Exec, Event, Bus, Table, Time, OSAL, and Operating System (Linux, RTEMS, VxWorks, FreeRTOS).]
Libraries and Applications

• Currently 12 Applications are available (http://cfs.gsfc.nasa.gov/)

• Optional, depends on mission needs.

• Easy to create
 – Sample application demonstrates messaging, events, and application loop
Heritage

- cFE:
 - Lunar Reconnaissance Orbiter
 - Living With a Star / Radiation Belt Storm Probes

- cFS
 - Global Precipitation Measurement
 - Magnetospheric MultiScale
 - Lunar Atmosphere and Dust Environment Explorer
CHREC Space Processor

- Space Test Program, Houston 5 / ISS SpaceCube Experiment Mini
- CHREC Space Processor Experiment
- NSF Center for High-Performance Reconfigurable Computing
- Presented here last year (Rudolph et al, 2014)
- Two CSPv1 in tandem
 - Xilinx Zynq 7020
 - Arm Dual Core Cortex A9 and Artix-7 FPGA
- Runs cFS!
- Launch 2016
cFS on the CHREC Space Processor

- Work spread over 3 employees
- Created 11 custom applications / libraries
- Code is in well defined applications
- Vary in level of reusability
- This is in addition to existing cFS functionality

<table>
<thead>
<tr>
<th>Mission Specific</th>
<th>Reusable</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSP Health</td>
<td>Image Processing</td>
</tr>
<tr>
<td>FTDP</td>
<td>Telemetry Out</td>
</tr>
<tr>
<td>FTDP</td>
<td>Camera Control</td>
</tr>
<tr>
<td>FTDP</td>
<td>Self Timer</td>
</tr>
<tr>
<td>FTDP</td>
<td>Command Injest</td>
</tr>
<tr>
<td>FTDP</td>
<td>Comm Library</td>
</tr>
<tr>
<td>FTDP</td>
<td>File Transfer</td>
</tr>
<tr>
<td>FTDP</td>
<td>FTDP Send</td>
</tr>
<tr>
<td>FTDP</td>
<td>FTDP Receive</td>
</tr>
</tbody>
</table>
CeREs

• Compact Radiation Belt Explorer
• MERiT: Miniaturized Electron and pRoton Telescope
• Flight computer is a CSP
• cFS used for flight software
• (Kanekal, 2014)
Dellingr

- **Hardware:**
 - ARM7 processor (40 Mhz 2Mb RAM)
 - Reaction Wheels
 - Magnetorquers
 - Sensors (FSS)

- **Science**
 - INMS
 - Magnetometer
 - Thermal Louvre
Dellingr and cFS

- Work spread over three employees
- Ported OSAL to FreeRTOS
- Integrate with GomSpace software
- Custom
 - Hardware Library
 - Hardware telemetry
 - Radio
 - ACS
 - Science instruments
- Generated using David A. Wheeler's 'SLOCCount'

Custom Code for Dellingr Approx. 10k SLOC

- ACS
- HW Lib
- Radio
- INMS
- GPS
- SHK
- RW
- MAG
- Camera
Performance

- cFS imposes some performance costs
- Compared build with just FreeRTOS vs cFS
- Code available: https://github.com/jcmarsh/cpek

<table>
<thead>
<tr>
<th></th>
<th>FreeRTOS</th>
<th>CFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dhrystone (per second)</td>
<td>11300.7</td>
<td>10576.4</td>
</tr>
<tr>
<td>Whetstone (kWIPs)</td>
<td>865.7</td>
<td>852.1</td>
</tr>
<tr>
<td>Hardware ping (per second)</td>
<td>757</td>
<td>621</td>
</tr>
</tbody>
</table>
Application Communication Costs

- cFS supports publish / subscribe message passing through the software bus.
- Adds functionality to FreeRTOS queues, increases overhead.
- Chart shows round trip messages passed between two applications.
Future Work

- 42 Simulator integration: http://fortytwospacecraftsimulation.sourceforge.net/
- cFS SDK
- Man Rated
Summary

• cFS is a mature framework
 – Strong heritage
 – Reduces personnel requirements
 – Available on a variety of platforms
 – Well suited to CubeSat missions
• Open Source (http://cfs.gsfc.nasa.gov/)
• Already being used on NASA CubeSats
References

