A National Profile of Child Development Laboratory Schools

Owen Arthur Anderson
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

Part of the Social and Behavioral Sciences Commons

Recommended Citation
https://digitalcommons.usu.edu/etd/2355

This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.
A NATIONAL PROFILE OF CHILD DEVELOPMENT

LABORATORY SCHOOLS

by

Owen Arthur Anderson

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Family and Human Development
ACKNOWLEDGEMENTS

The completion of this thesis would not have occurred without the support and encouragement of many people. Thanks to Dr. Joan Kleinke and Dr. Tom Lee for their helpful suggestions and infinite patience.

My sincerest appreciation goes to Dr. Shelley Lindauer who has invested so much time and guidance in me and in this project. My professional development to this point is a direct result of her influence.

Special thanks to Joseph D. and Edesa Anderson for providing an environment of love and concern. Special thanks to Austin and Tanner for sacrificing their time so I might pursue this degree. Finally, special gratitude is expressed to Diana. She has taught me what love is and what is involved in a quality relationship.

Owen A. Anderson
TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. ii
LIST OF TABLES.. v
ABSTRACT... vi

Chapter

I. INTRODUCTION AND STATEMENT OF THE PROBLEM....... 1
II. REVIEW OF THE LITERATURE................................. 3
 Laboratory Nursery Schools in the United States........ 3
 Variables of Quality Child................................. 8
 Global Variables.. 10
 Individual Variables.. 11
 Child Care and Family Environments..................... 13
 Accreditation Criteria and Procedures................. 15
 Developmentally Appropriate Practice.................. 18
 Summary... 21
 Purpose of the Study.. 22

III. METHODOLOGY.. 24
 Participants.. 24
 Procedures.. 30

IV. RESULTS.. 34
 Educational Philosophy....................................... 34
 Parent and Student Involvement........................... 40
 Mission of Laboratory.. 45
 Child and Facility Characteristics.................... 47

V. DISCUSSION... 55
 Educational Philosophy....................................... 55
 Parent and Student Involvement........................... 57
 Mission of Laboratory.. 59
 Child and Facility Characteristics.................... 60
 Child Characteristics.. 60
 Facility Characteristics..................................... 61
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Characteristics of Two- and Four-Year Institutions</td>
<td>26</td>
</tr>
<tr>
<td>2. Laboratory Characteristics at Two- and Four-Year Institutions</td>
<td>27</td>
</tr>
<tr>
<td>3. Laboratory Administrator Characteristics at Two- and Four-Year Institutions</td>
<td>29</td>
</tr>
<tr>
<td>4. Educational Philosophy of Laboratory Programs at Two- and Four-Year Schools</td>
<td>36</td>
</tr>
<tr>
<td>5. Methods Utilized to Make Students Aware of the Laboratory Philosophy</td>
<td>38</td>
</tr>
<tr>
<td>6. Methods Utilized to Make Parents Aware of the Laboratory Philosophy</td>
<td>39</td>
</tr>
<tr>
<td>7. Ways to Involve Parents in the Laboratory Program</td>
<td>41</td>
</tr>
<tr>
<td>8. Classes that Include Laboratory Observation as Part of the Required Coursework</td>
<td>44</td>
</tr>
<tr>
<td>9. Missions of Child Laboratory Programs</td>
<td>46</td>
</tr>
<tr>
<td>10. Age of Children (by Months) that Attend the Laboratory: Full and Half Day Classes</td>
<td>49</td>
</tr>
<tr>
<td>11. The Hours Per Day Children Attend the Laboratory Program: Two- and Four-Year Institutions</td>
<td>51</td>
</tr>
</tbody>
</table>
ABSTRACT

A National Profile of Child Development Laboratory Schools

by

Owen Arthur Anderson, Master of Science
Utah State University, 1991

Major Professor: Dr. Shelley Lindauer
Department: Family and Human Development

The purpose of this study was twofold. First, it sought to provide a profile of child development laboratory schools across the nation. Second, because laboratory schools are believed to be model programs that provide appropriate learning environments for children, their parents, and for the professional training of teachers, it was of particular interest to examine whether laboratory schools were training Early Childhood Education students in ways consistent with the current research and policies in the field. Specifically, the practices of laboratory schools at two- and four-year institutions were compared.

Results of the study indicated that laboratory schools utilized philosophies that guide the curriculum within their programs. A variety of methods such as coursework, written materials, and conferences, were
employed to inform students and parents of the program's philosophy. Observations were routinely conducted in laboratories with students and parents typically observing the program from an observation booth and/or the classroom. With regard to the mission of laboratory programs, two-year schools ranked service significantly higher, while four-year programs tended to do more research and training of graduate students.

The ages of children in laboratories at two- and four-year schools were similar, but four-year schools had more classes with fewer children per class. Two-year schools had more full-day programs and longer hours, while four-year schools had more half-day programs operating fewer hours. Two-year schools also had more students and parents assisting in the classroom; however, two- and four-year programs both had acceptable ratios of adults to children. The Child Development Laboratory programs appear to be the model setting for the professional training of teachers and also a location which can help parents to become better consumers of alternative child care.

(94 pages)
Child Development Laboratories have been a part of colleges and universities since the early 1920's. The Child Development Laboratory has traditionally been defined as a center for children under five years of age, which is a component of a college or university department, and is operated for the specific purpose of teaching and conducting research (Zwicke, 1983). More specifically, the laboratory is a place where children develop social, emotional, cognitive and physical skills through involvement in activities and interaction with peers and teachers. It is also a place where student teachers can implement curriculum and learn appropriate guidance techniques as they observe and/or interact with children in a classroom setting.

Since the establishment of the first nursery school in 1915, numerous Child Development Laboratories across the nation have been organized with the purpose of providing community services. However, the lack of a professional organization for administrators of Child Development Laboratories had left some directors feeling isolated and unfamiliar with other laboratory programs. Perhaps due to the absence of a national network by which laboratory administrators and teachers could communicate, virtually no work has been done describing the national
trends and practices of Child Development Laboratories.

In 1983 the National Organization of Child Development Laboratory Schools (NOCDLS) was conceived with the express purpose of:

supporting child development laboratory schools in their endeavors to provide a pragmatic approach for integrating early childhood theory and practice and to form a national supportive system/network among individuals associated with these schools. (NOCDLS By-Laws, 1983)

To assist in achieving this aim, the Steering Committee of NOCDLS became interested in developing a national profile of laboratory schools so that current information about theory and practice would be available to administrators and staff involved with laboratory schools. It was proposed that this be undertaken by surveying administrators of Child Development Laboratory schools across the nation. The responses of directors were sought because these individuals serve as the leaders and primary facilitators of laboratory programs. They are, moreover, well informed of the needs of the individual organizations. The purpose of the present investigation was to provide a descriptive analysis of these survey responses in order to establish a national profile of Child Development Laboratory practices and programs. More specifically, this study compared how laboratory schools at two- and four-year colleges and universities integrated children, their parents, and student teachers into their programs.
CHAPTER II
LITERATURE REVIEW

Laboratory Nursery Schools in the United States

The growth of nursery schools in the United States was greatly influenced by early educational innovators in Europe, as well as the growth of the science of child psychology in the United States (Braun & Edwards, 1972). Several of the earliest nursery schools in this country came into existence during the early 1900's. Interestingly, the pioneers behind each of these unique programs came from a variety of educational backgrounds, few knowing one another. While their interests in preschool children were quite independent of the others, each design led to the establishment of nursery schools.

The beginning of the Child Development Laboratory school movement can be traced to a cooperative nursery school organized by a group of faculty wives at the University of Chicago in 1915. The aim of the seven mothers originally involved was to offer children opportunities for wholesome play, to give mothers relief time from child care, and to experiment with social cooperation among mothers (Whipple, 1929).

Concurrently, during a six-year period, three separate nursery schools commenced operation in New York
City. First, in 1915, the Child Education Foundation was arranged to apply Montessori's teachings with the purpose of educating parents, prospective teachers and children. Eva McLin was the center's first director (Braun & Edwards, 1972). Soon thereafter, in 1919, a nursery school was established by Harriet Johnson. It was sponsored by the Bureau of Educational Experiments (Bank Street) for the purpose of determining educational programs and procedures by studying the growth of children (Johnson, 1928). The third important program was initiated by Patty Smith Hill at Columbia's Teachers College in 1921, specifically for the training of students (Whipple, 1929).

At the same time nursery schools were being established along the east coast, Bird Baldwin, in 1921, organized a preschool laboratory at the Iowa Child Welfare Research Station. Its stated purpose was to observe young children under "favorable environmental conditions" on a daily basis (Whipple, 1929, p. 32).

Prior to the start of nursery schools in the United States, Margaret McMillian, in 1911, had organized the first nursery school in the slums in London. The approach of this early program encompassed both encouragement of play and the provision of learning experience, as well as a focus on basic custodial care. Baths were provided to the children, as were clean clothes and nourishing meals
(Braun & Edwards, 1972). In 1921, Dr. Abigail Eliot and Dr. Edna Noble White visited England to study the nursery program, returning to America with new ideas in education. Based on her observations in 1922, Dr. Eliot began the Ruggles Street Nursery School and Training Center in Boston. The Center's purpose was three-fold:

- to give the best possible opportunity for development to children between the ages of two and four,
- to train parents through observation and conference with experienced teachers,
- and to train young women in the science and art of nursery school education" (Whipple, 1929, p. 201).

Following a similar path, Dr. White also established a nursery program in 1922 at the Merrill-Palmer Institute in Detroit. Despite the early childhood programs that commenced before 1922, Abigail Eliot is generally credited with bringing the nursery school movement to the United States (Braun & Edwards, 1972).

During the decade of the 1920's, the number of nursery schools reported to the United States Office of Education increased from 3 to 262 (Davis & Hansen, 1932). Much like kindergartens became popular during the late 1800's, nursery schools became accepted during the 1920's, especially at institutions of higher learning. Between 1924 and 1930 nursery schools became established at Land Grant Universities such as Iowa State, Ohio State, Cornell, Georgia, Purdue, Kansas, Nebraska, Oklahoma A & M, Cincinnati, and Oregon State (Osborn, 1975). By 1930, laboratory nurseries or child study centers as they were
originally called, were firmly established at colleges and universities. These laboratory nurseries fulfilled many roles:

- to provide opportunities for controlled research,
- to establish experimental laboratories for the study of educational method,
- to furnish facilities for training preschool teachers,
- to provide for the cultural and general training of college women,
- to train teachers of home economics,
- to demonstrate the best methods of child care (Whipple, 1929, p.43).

Child development research was the motivating rationale behind many of the newly opening preschool laboratories. University-based research in early childhood education was greatly inspired by the efforts of Lawrence Frank. His task was to allocate the million dollars a year that had been designated to benefit children through the Laura Spelman Rockefeller Memorial (Braun & Edwards, 1972). Frank pulled together applicable research from child care centers to increase awareness of the importance of early childhood development on the overall growth of children.

As the number of early childhood programs increased, a need for exchange of ideas and experiences between various groups was felt by some of the leaders in the nursery school field. In 1925, an early childhood advocate by the name of Patty Hill brought a group of 25 individuals together to explore the possibility of establishing a nursery school organization (Davis, 1964).
As a result, the National Committee on Nursery Schools was organized in 1926. It was charged with the responsibility of recommending an organization best suited for nursery school supporters. After serious debate at its 1929 conference, the decision was made not to join other organizations, but rather to form the National Association for Nursery Education, which was later changed to the National Association for the Education of Young Children (NAEYC) (Hewes, 1973).

Although today the name has changed, the basic objectives have been maintained, with emphasis on young children in families and communities, and the publication and dissemination of printed materials (Hewes, 1973). Since the 1920's, NAEYC has become a firmly established association with a goal of improving the quality of life for young children and families.

Of late, social change has caused NAEYC to issue definitive statements regarding the importance of quality in child care, such as Developmentally Appropriate Practice (Bredekamp, 1986), and Accreditation Criteria and Procedures (NAEYC, 1984). One of the major social changes over the past 20 years is that of women's increased participation in the labor force. Their has been an increase in the number of single-parent families and two-parent families that require two incomes (Hofferth & Phillips, 1987). Together, these factors indicate an
increase in the number of children with employed mothers. Finding quality alternative child care is becoming a burdensome task for employed parents. Concurrent with the growing need for care is a renewed interest by child care professionals to identify variables found in high quality programs.

Variables of Quality Child Care

Recently, considerable professional and commercial attention has been focused on the concerns of quality in child care centers (Caldwell, 1973; Kantrowitz and Wingert, 1989; Kontos & Stevens, 1985; Wallis, 1987;). National magazines have devoted much attention to the topic of finding quality child-care services (Newsweek, Kantrowitz and Wingert, 1989; Time Magazine, Wallis, 1987). The Newsweek cover story detailed child care advocates struggling to achieve developmentally appropriate curriculum and the challenges they face in dealing with existing programs and philosophies. The article emphasized that young children learn best through hands-on teaching methods and active exploration of their environments, rather than sitting at tables all day with workbooks in their hands. Today, early childhood professionals play a crucial role in enhancing the development of young children, which is fostered by implementing developmentally appropriate practice.
A factor affecting the availability and quality of child care is the increasing demand by dual income and single parent families. Rapid growth over the past two decades in families' reliance on child care has placed severe strains on available child care resources. In 1970, only 3 of 10 preschool-aged children had mothers in the work force. Today 5 of 10 children have mothers who work; and if the current trend continues, 7 of 10 children under five will have mothers in the work force by the year 2000 (Children's Defense Fund, 1989).

During the 1960's and 1970's there was much debate regarding whether alternative child care had positive or negative effects upon a young child's development (Belsky & Steinberg, 1978; Blehar, 1974). This was accompanied by escalating controversy regarding which alternative care settings were preferable to others (Lazar & Darlington, 1982; Miller & Dyer, 1975; Weikart, Epstein, Schweinhart, and Bond, 1978).

Increasingly, research has demonstrated that the effects of alternative child care on the developing child is closely related to the quality of care which they receive. In an effort to classify indicators of a quality child care, Phillips and Howes (1987) reviewed a wide body of literature and identified three procedures to be utilized in assessing quality. Researchers used global assessments to view the overall program. They identify
specific dimensions relating to quality such as staff qualifications, stability, and children's daily experiences. Finally, they correlated quality child care and the family environment.

Global Variables

By combining quality indicators, programs are measured as either high or low in quality. Howes and Olenick (1986) grouped the variables adult-child ratio, professional training of caregivers, and staff turnover, and found that children in high quality centers were more compliant than children in low quality centers. Vandell and Powers (1983) selected teacher-child ratio, staff training, and space within centers as quality indicators. They found that children in high quality centers were more likely to be engaged in positive social interaction and behaviors than were children from low quality centers.

Rating scales were also used as global measures when evaluating quality programs. The Early Childhood Environment Rating Scale (Harms & Clifford, 1980) is a measure that combines seven areas of quality: (a) personal care, (b) creative activities, (c) language/reasoning activities, (d) furnishing/display, (e) fine/gross motor activities, (f) social development, and (g) adult facilities/opportunities. By summing the seven scores an overall quality assessment are attained. This approach has been utilized by Phillips, Scarr, and McCartney (1987)
in identifying high quality programs. Employing this assessment, children enrolled in centers with higher sum scores showed more positive social behavior and task orientation. Global assessments have been repeatedly demonstrated to be a useful tool in identifying high quality programs for young children.

Individual Variables

Some variables are thought to have a more powerful impact on children's development than others. Of late, the greatest attention has focused on three variables: adult-child ratio, group size, and the professional training and experience of caregivers. These variables were emphasized by the National Day Care Study as having a notable impact on children's development (Ruopp, Travers, Glantz, & Coelen, 1979).

Research has shown that the adult-child ratio affects children's verbal interaction (Field, 1980; Howes & Rubenstein, 1985), and engagement in play (Bruner, 1980; Howes & Rubenstein, 1985), as well as nurturant, nonrestrictive caregiver behavior (Howes, 1983; Howes & Rubenstein, 1985; Smith & Connolly, 1981). Secondly, group size has been found to influence positive outcomes for children. Smaller groups of children have been shown to be more talkative (Howes & Rubenstein, 1985), and demonstrate more pretend play and more elaborate play (Bruner, 1980). In contrast, larger groups of children
have exhibited less social interaction and cooperativeness with strangers, especially unfamiliar peers (Clarke-Stewart & Gruber, 1984).

The third component of quality care delineated by Ruopp and colleagues (1979) was the skill and experience that a caregiver brings to the program. Child care providers with child-related training were found to be more responsive to children's needs (Howes, 1983) and to be engaged in more teaching, helping, dramatic play, and activities that involved interaction with children (Stallings & Porter, 1980). In addition, trained caregivers demonstrated lower levels of detachment, were less punitive (Arnett, 1987) and showed less negative affect (Howes, 1983).

Clarke-Stewart (1987) found a positive relationship between caregivers with high levels of education and higher levels of children's social competence. She also reported a relationship between teachers with higher levels of child development training and higher levels of cognitive competence in children. Higher levels of caregiver education was also found to be significantly related to children's intellectual and language development (Goelman & Pence, 1987). In sum, research supports caregivers' social, cognitive and language interactions with child, in addition to ratio and group size, as affecting the experience of the child receiving
alternative care.

Child Care and Family Environments

Research on alternative child care has typically been conducted independently from the child's home environment. Yet family variables such as values, finances and family structure has likely influenced the selection process in child care arrangements (Phillips & Howes, 1987). The third area referred to as influencing quality child care combined home and alternative care environments.

Howes and Olenick (1986) found that children enrolled in low quality care centers had family structures that were more complex and stressful than children enrolled in high quality centers. Similarly, a study by Goelman and Pence (1987) reported that family variables surpassed center quality variables in predicting language outcomes of children. For example, maternal educational level was a significant predictor of children's performance on receptive language tests.

Some researchers have studied maternal attitudes about separation from their children. Everson, Sarnat, and Ambron (1984) investigated the influence of mothers' positive or negative disposition to use child care on children's adjustment. They found that mothers who relied on child care, but were uncomfortable with it, had children who were more easily upset with a frustrating task, showed greater distress at maternal separation, and
were less compliant with their mothers' request while playing.

In summary, it is possible that family factors affect parental choices, which likewise affects the experience a child has while in alternative care. With the complex variation in family variables, relating home and child care environments is a difficult process that needs to be considered in future studies.

In review, the three areas—global assessments, individual factors, and the joint effects of child care and home environment, discussed by Phillips and Howes (1987)—suggest the methods for defining quality in child care settings. By employing these categories, researchers are now examining a wider range of care settings, using multiple methods or rating scales, and including the home environment to assess the overall quality of alternative care.

Research on child care has increased to the point that a wide range of findings have been collected. With the accumulation of data about quality variables, a criteria can be established to define high quality early childhood programs. Collectively, these variables should meet the needs of and promote the physical, social, emotional and cognitive development of the children and adults who are involved in the programs.
Accreditation Criteria and Procedures

Concurrent with the increasing research and applied interest in quality of care variables, the National Academy of Early Childhood Programs (NAECP), under the sponsorship of the National Association for the Education of Young Children (NAEYC), began gathering information from professionals as a means of organizing an inventory of components to define a quality child care setting. As a result of their efforts, a voluntary accreditation system for early childhood programs was established (NAEYC, 1984). Programs meeting these rigorous standards are identified as exemplary in the field of early childhood education.

The criteria selected by NAECP represents ten components found in high quality programs for young children (NAEYC, 1984). By summarizing each of these components, a clearer picture of quality child care services can be established.

The first factor involves interaction between children and staff members which provides opportunities for children to develop an understanding of themselves and others. The child care provider should display warmth, personal respect, individuality, positive support and responsiveness to each and every child.

Second, the curriculum should be implemented in such a way that it encourages children to be actively involved
in the learning process. The activities also allow children to experience a variety of developmentally appropriate practices and follow their own interests.

Thirdly, staff-parent interaction includes adequately informing parents about the program, recognizing parents as valuable contributors, and a realization of the concept that parents are the principal influence in children's lives.

Staffing a program with professionally trained adults who understand child development and provide for children's needs is the fourth component. A program should also offer regular training opportunities for staff members to improve their skills in working with children and families.

The fifth element deals with administrative efforts that are effective in creating an environment which facilitates high quality care for children. Effective administration includes good communication among all persons, community relations, fiscal stability, and attention to the needs and working conditions of staff members.

Sixth, a staffing pattern that emphasizes individualized care is a necessity. Smaller group size and a larger staff allows children to have increased interaction with adults and more cooperation among children.
Indoor and outdoor physical environments (which foster optimal growth and development) comprise the seventh component. The amount, arrangement, and use of space, both indoors and outdoors are evaluated to ensure opportunities for exploration and learning.

The eighth element is providing a safe and healthy environment for children and adults. High quality programs act to prevent illness and accident, educate children regarding safety and healthy practices, and are prepared for emergencies that may occur.

Ninth, children must be provided with adequate nutrition and educated concerning good eating habits. Mealtime should be a pleasant social and learning experience for children.

Lastly, an essential component of quality programs is an ongoing evaluation. Identifying the strengths and weaknesses based on program goals helps to improve and maintain the program's effectiveness for children, parents, and staff members. Since these components were established by professionals in the early childhood field, they can be viewed as a set of standards by which programs can be evaluated. These ten indicators of quality, then, can assist parents, teachers, and early childhood specialists in identifying and evaluating alternative child care programs.

For the purpose of this study, four components in
particular standout as underlying guidelines for quality care which enhance a child's growth and development. The first includes a curriculum that reflects the program's philosophy and involves children in the learning process. Second, open relations between staff and parents are essential. This entails giving information about operating procedures and program philosophy to parents and welcoming involvement from parents. Third, quality programs need professionally trained staff members who understand child development and staff members who recognize and provide for children's needs to ensure effective interaction with children. Finally, a sufficiently staffed center is essential in meeting the overall developmental needs of each child. With smaller groups, staff members are more likely to interact with and relate to individual children.

Developmentally Appropriate Practice

In the mid-1980's, NAEYC compiled a position statement, Developmentally Appropriate Practice, in order to assist educators interested in maintaining quality services for young children (Bredekamp, 1986). This publication defines a wide range of appropriate practices contrasted with examples of inappropriate practices. Developmentally Appropriate Practice (Bredekamp, 1986), is defined as having two dimensions: age appropriateness and
individual appropriateness. Age appropriateness refers to predictable sequences of growth which occur in young children. A framework of typical development within age spans would assist teachers in planning and implementing learning experiences for children. Individual appropriateness is interpreted as recognizing each child as a unique person with an individual pattern, personality, learning style, and family background. Learning should be matched with a child's ability, interest, and understanding.

The handbook also identifies five guidelines for Developmentally Appropriate Practice: (a) curriculum, (b) adult-child interaction, (c) relations between the home and program, (d) developmental evaluation of children, and (e) staffing procedures (Bredekamp, 1986). Each of these components are essential in establishing and maintaining quality in early childhood programs.

First, the curriculum should provide for all areas of a child's development based on teachers' observations of each child's interest and developmental progress (Cohen, Stern & Balaban, 1983; Elkind, 1986). In addition, the curriculum should allow children to explore and interact with other children, adults, and materials. Rather than stress finished products, encouraging children as they work through processes assists them in feeling successful. (Biber, 1984; Kamii, 1985; Powell, 1986).
Second, adults should respond to children's needs and messages and adapt their responses to each child's learning style and abilities (Genishi, 1986; Greenspan & Greenspan, 1985). By expressing acceptance and respect, teachers could help facilitate the development of each child's self-esteem. Appropriate guidance helps children develop self-control and the ability to make better decisions in the future. Likewise, caregivers should never neglect, ridicule, threaten or use any means conceivable to belittle children. Teachers are to be responsible for children and assist them in increasing independence and skills (Stewart, 1982).

The third guideline focuses on the relationship between home and the child care program, which is characterized by openness and participation. A mutual understanding of the child's needs provides greater consistency for development and socialization (Brazelton, 1984; Honig, 1982). Teachers are responsible for maintaining frequent contact with parents and sharing information with family members.

Fourthly, evaluation of individual children is necessary for planning and implementing developmentally appropriate programs. Assessments are used to match developmental needs of children to curriculum to ensure the effectiveness of the program (Meisels, 1985; Uphoff & Gilmore, 1985).
Finally, an important factor ensuring that appropriate practices are delivered to young children is an acceptable teacher-child ratio and teachers that are professionally trained. Limiting the size of groups and providing a sufficient number of teachers allows individual care and appropriate education for children (Phillips & Howes, 1987). In addition, teachers working with children should have college-level preparation in the area of child development or early childhood education, as well as supervised experience with young children before they are placed in charge of a group (Ruopp et al., 1979). In sum, Developmentally Appropriate Practice must be implemented to ensure that programs are being designed to meet the needs of children.

Summary

Based on this body of literature, a number of variables are defined as key ingredients in creating high quality programs for young children and their families. In both the NAEYC's Accreditation Criteria and Procedures (1984), and Bredekamp's Developmentally Appropriate Practice (1986), similar variables are reported as comprising high quality programs. These vital components include: professional training and experience of teachers, group size and adult-child ratio, child-staff interaction, parent-staff interaction, evaluation of children, and
curriculum, are imperative in establishing and maintaining a program with standards acceptable to early childhood professionals, as well as young children and their families (NAEYC, 1986).

While this information is available to researchers, no investigation has been conducted to determine if these components are employed in the professional preparation of early childhood teachers at Child Development Laboratories. It is believed that teachers prepared within university-based programs are able to apply the most current research findings in the area of child development and appropriate practices because of the laboratory preschool's affiliation with the university and actual involvement in the research process. With the training and background they receive at Child Development Laboratories, teachers should go into the field better able to implement appropriate practices and procedures. Therefore, it is vital to determine if the basic components of quality care are inherent in Child Development Laboratories, if indeed students are to be adequately prepared before they leave to become early childhood educators in the field.

Purpose of the Study

The purpose of this study was to describe the diverse roles Child Development Laboratory Schools play in
educating young children, their families, and the students with whom they work. Moreover, because laboratory schools are designed to be model programs for children, their parents, and for the professional preparation of teachers, it was of interest to determine if quality components are established and implemented in laboratory programs. Because the questionnaire sent to laboratory administrators was extensive in nature, the present study focused only on questions pertaining to components identified as quality variables found in both the NAEYC's Accreditation Criteria and Procedures (1984), and Bredekamp's Developmentally Appropriate Practice (1986), and on laboratory and institutional characteristics. The main focus of this study was to examine, describe, and compare the mission of Child Development Laboratories, the facility characteristics, and the ways in which student teachers and parents were involved in the laboratory programs at two- and four-year institutions.
Participants in this study were 101 directors of Child Development Laboratories across the United States. A representative sample of the population was desired to provide a nationwide profile of laboratory schools. The sample was drawn from the National Organization of Child Development Laboratory School's national directory and from a national list of Land-Grant institutions. The NOCDLS national directory consists of programs which have submitted relevant information for inclusion in the directory. Because laboratory programs may fit different definitions, or may be implemented in a variety of ways, the exact population size of laboratory programs at two- and four-year institutions in the United States is unknown.

Surveys were sent to 180 directors which represented programs in all 50 states. From this sample, a total of 67% (120) returned questionnaires. Approximately 30 questionnaires were returned incomplete due to recent closure of the laboratory school, or time constraints in completing the questionnaire. No reasons were available for the non-return of the remaining 30 questionnaires. Nineteen surveys were not included in data compilation due
to either incomplete or uncodable responses. This reduced the usable number of completed surveys to 101. Of the 101 responses, 22 (21.8%) of the surveys were from two-year institutions, and 79 (78.2%) were from four-year programs.

In all, thirty-six states were represented in the study. By grouping the states into regions (see Appendix A), the Midwest region was represented by 27 institutions; the Southwestern region followed with 23 institutions; the Southern and Pacific Coast regions each had 13 institutions; New England was represented by 11 institutions; and finally, the Rocky Mountain and Mid-Atlantic regions were comprised of seven institutions each.

Enrollment in the colleges and universities included in the sample varied widely. Fifty percent of the schools had less than 9,000 students attending, while 30% of the schools had enrollment ranging from 10,000 and 20,000 students. Twenty percent had more than 22,000 students enrolled. Specifically, two-year schools averaged 6,174 students, while four-year programs averaged 13,978 students.

Regarding all areas of study, 55% of the institutions sampled included both graduate and undergraduate programs. Thirty-eight percent of the institutions consisted of undergraduate programs, while seven institutions reported only graduate programs in this discipline. When
separating two- and four-year institutions, 20 (90.9%) of
two-year schools were undergraduate and two (9.1%) reported they offered both undergraduate and graduate
programs, as shown in Table 1. Conversely, seven (9%) four-year institutions offered only graduate programs,
while 18 (23.1%) were only undergraduate schools. Fifty-
three (67.9%) four-year programs had both undergraduate
and graduate offerings.

In Table 2, an examination of the history of
individual laboratory programs revealed that 17 (19.1%)
were established before 1930, and another 21 (23.6%) began

Table 1
Characteristics of Two- and Four-Year Institutions

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Combined %</th>
<th>Two-Year Schools %</th>
<th>Four-Year Schools %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=90)*</td>
<td>(n=20)</td>
<td>(n=70)</td>
</tr>
<tr>
<td>Student Enrollment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 - 9,000</td>
<td>50.0 45</td>
<td>75.0 15</td>
<td>42.9 30</td>
</tr>
<tr>
<td>10,000 - 20,000</td>
<td>30.0 27</td>
<td>25.0 5</td>
<td>32.8 23</td>
</tr>
<tr>
<td>22,000 - 55,000</td>
<td>20.0 18</td>
<td></td>
<td>24.3 17</td>
</tr>
<tr>
<td>Programs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both Graduate & Undergraduate</td>
<td>55.0 55</td>
<td>9.1 2</td>
<td>67.9 53</td>
</tr>
<tr>
<td>Undergraduate Only</td>
<td>38.0 38</td>
<td>90.9 20</td>
<td>23.1 18</td>
</tr>
<tr>
<td>Graduate Only</td>
<td>7.0 7</td>
<td></td>
<td>9.0 7</td>
</tr>
</tbody>
</table>

*Percentages vary according to the number of director responses for each individual question
Table 2

Laboratory Characteristics at Two- and Four-Year Institutions

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Combined</th>
<th>Two-Year Schools</th>
<th>Four-year Schools</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Year Laboratory Begin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>before 1930</td>
<td>19.1</td>
<td>17</td>
<td>5.0</td>
</tr>
<tr>
<td>1930 to 1959</td>
<td>23.6</td>
<td>21</td>
<td>5.0</td>
</tr>
<tr>
<td>1960 to 1969</td>
<td>19.1</td>
<td>17</td>
<td>10.0</td>
</tr>
<tr>
<td>1970 to 1979</td>
<td>33.7</td>
<td>30</td>
<td>55.0</td>
</tr>
<tr>
<td>1980 to present</td>
<td>4.5</td>
<td>4</td>
<td>25.0</td>
</tr>
<tr>
<td>Licensed by State</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>75.8</td>
<td>75</td>
<td>68.2</td>
</tr>
<tr>
<td>no</td>
<td>24.2</td>
<td>24</td>
<td>31.8</td>
</tr>
<tr>
<td>Accredited by NAEYC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>10.5</td>
<td>10</td>
<td>13.6</td>
</tr>
<tr>
<td>no</td>
<td>89.5</td>
<td>85</td>
<td>86.4</td>
</tr>
</tbody>
</table>

Percentages vary according to the number of director responses for each individual question
operation between 1930 and 1959. During the next ten years, 17 (19.1%) more laboratory programs commenced operation. Thirty programs (33.7%) were started between 1970 and 1979. The remaining four (4.5%) laboratories began in the 1980's. While only 20% of two-year schools were established before 1970, 72.5% of four-year programs were already in operation. At the time of the survey, 76 of the programs were licensed with their respective states, while only 11% of the programs had received national accreditation through the National Academy of Early Childhood Programs.

Responses to questions about administrators' education and experience indicated that 96% of directors had received MS/MA degrees, and 37% had completed PhD/EdD degrees, as depicted in Table 3. Of the 22 respondents at two-year schools 21 (95.5%) had obtained MS/MA degrees and 1 (4.5%) had earned a PhD/EdD degree. At four-year schools, of the 77 directors responding, 74 (96.1%) had completed MS/MA degrees and 36 (46.8%) had achieved PhD/EdD degrees. The most common areas of study for those who had completed MS/MA degrees was Early Childhood Education (31.7%), Education (24.0%), Child Development (15.2%), and Child and Family Studies (10.1%). Administrators who had received PhD/EdD degrees frequently reported Child Development (27.8%), and Early Childhood Education (25%) as their discipline of study. Directors'
Table 3

Laboratory Administrator Characteristics at Two- and Four-Year Institutions

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Combined</th>
<th>Two-Year Schools</th>
<th>Four-year Schools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator's Education (n=99)*</td>
<td>(n=22)</td>
<td>(n=77)</td>
<td></td>
</tr>
<tr>
<td>MS/MA yes</td>
<td>96.0 95</td>
<td>95.5 21</td>
<td>96.1 74</td>
</tr>
<tr>
<td>no</td>
<td>4.0 4</td>
<td>4.5 1</td>
<td>3.9 3</td>
</tr>
<tr>
<td>PhD/EdD (n=99)</td>
<td>(n=22)</td>
<td>(n=77)</td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>37.4 37</td>
<td>4.5 1</td>
<td>46.8 36</td>
</tr>
<tr>
<td>no</td>
<td>62.6 62</td>
<td>94.5 21</td>
<td>53.2 41</td>
</tr>
<tr>
<td>Degree Earned**</td>
<td>(n=79)</td>
<td>(n=20)</td>
<td>(n=77)</td>
</tr>
<tr>
<td>MS/MA Early Child Ed.</td>
<td>31.7 25</td>
<td>30.0 6</td>
<td>32.2 19</td>
</tr>
<tr>
<td>Education</td>
<td>24.0 19</td>
<td>15.0 3</td>
<td>27.2 16</td>
</tr>
<tr>
<td>Child Develop.</td>
<td>15.2 12</td>
<td>10.0 2</td>
<td>16.9 10</td>
</tr>
<tr>
<td>Child & Family Studies</td>
<td>10.1 8</td>
<td>20.0 4</td>
<td>6.8 4</td>
</tr>
<tr>
<td>PhD/EdD (n=36)</td>
<td>(n=1)</td>
<td>(n=35)</td>
<td></td>
</tr>
<tr>
<td>Child Develop.</td>
<td>27.8 10</td>
<td>28.5 10</td>
<td></td>
</tr>
<tr>
<td>Early Child Ed.</td>
<td>25.0 9</td>
<td>25.8 9</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>13.9 5</td>
<td>14.2 5</td>
<td></td>
</tr>
<tr>
<td>Home Economics</td>
<td>2.7 1</td>
<td>100.0 1</td>
<td></td>
</tr>
</tbody>
</table>

*Percentages vary according to the number of director responses for each individual question

**Mentioned most frequently
experience in the laboratory ranged from 1 to 28 years, with a mean of 8.8 years experience (9.7\% at two-year and 8.6\% at four-year schools) as a Child Development Laboratory administrator.

Procedures

The Accreditation Criteria and Procedures (NAEYC, 1984), and Developmentally Appropriate Practice (Bredekamp, 1986) identify specific variables as significant in establishing and maintaining quality programs. Based on these variables, a questionnaire was designed to elicit responses from laboratory directors in order to profile Child Development Laboratories. Desired were responses of directors regarding the experiences of young children and their families in the Child Development Laboratory setting, and the role of students who work within laboratory school programs.

Data were collected by self-administration of a questionnaire constructed by a three-member panel of NOCDLS officers (see Appendix B). The steering committee of NOCDLS provided an outline of essential characteristics to the three representatives to assist them in their task. The survey was designed to cover all aspects of the Child Development Laboratory. In general, questions addressed institution characteristics, administrator credentials, educational philosophy, parent and student involvement,
purpose of laboratory, licensing, and child and facility characteristics. Measurement procedures in the questionnaire included ranking, checklist, and descriptive and open-ended questions.

The questionnaire was piloted on two occasions. First, the questionnaire was given to two directors at colleges that were not involved in the study (laboratory schools were closing down) and then revisions were made. Then, the survey was mailed to six directors who were selected to be involved in the study, with the notion that if any changes were made, the responses would be discarded. Since no revisions occurred, these directors' responses were included in the analyses.

Face validity was based upon responses of the NOCDLS Steering Committee, who reviewed and critiqued the questionnaire during its development. Content validity was determined by the Steering Committee through a knowledge of existing literature and a conceptualization of the field. The committee determined that the questionnaire covered relevant content. The questionnaire was also sent to the Survey Research Center at the University of Texas; and revisions were made to establish greater content validity and clarity.

Initially, the survey was mailed to directors with an attachment stating the purpose of the survey and assuring the respondents that their responses would be confidential
and anonymous. When laboratory schools within each state were not found in the existing directory, a request for the listing of laboratory preschools at two- and four-year institutions was submitted to the State Department of Education. Upon receipt of this information, questionnaires were then mailed. A questionnaire was mailed to at least one program in each state. If no answer was received from the State Department of Education, questionnaires were mailed to the State's Land-Grant University with an explanation of the purpose of the study. The number of questionnaires sent to certain states were limited because of the abundance of laboratory schools (for instances in the case of California); this was done so the results would not be skewed by overrepresentation of programs in just a few states. The desired selection was at least two responses from each state. After a six week period, a second questionnaire were sent to those institutions which had not responded. Despite this reminder, questionnaires from schools in 14 states were not received.

Upon receiving surveys, the responses were transferred numerically onto code sheets. Interrater reliability among coders was established by the trainer randomly selecting 40 questionnaires and recoding them. Reliability ranged from a high of 100% agreement to a low of 90% agreement on the entire questionnaire. These data
were then entered into the computer and scanned for errors.
CHAPTER IV
RESULTS

The questionnaire developed by the National Organization of Child Development Laboratory Schools (NOCDLS) panel was comprehensive in nature. However, only certain aspects of the survey will be reported in this study. Questions were selected to correspond to the National Academy of Early Childhood Programs' Accreditation Criteria and Procedures for quality programs (NAEYC, 1984) and Developmentally Appropriate Practice (Bredekamp, 1986). Because laboratory schools are designed to be model programs for children, their parents, and for the professional preparation of teachers, the focus of this study is to determine if high quality components are inherent in laboratory programs.

In the following section, information presented included means and ranges to provide the reader with information regarding the general tendencies of this sample. Statistical procedures utilized in this section included Chi Square and Mann-Whitney U analyses to compare two- and four-year programs. Alpha was set at .05 or above on all statistical tests. The results are categorized and presented as follows: educational philosophy, parent and student involvement, purpose of laboratory, and child and facility characteristics.
Educational Philosophy

The directors were asked to describe the philosophy or theory on which they based their educational curriculum. Ninety-one directors' responses represented a variety of different philosophies and in some cases an integration of theories, as depicted in Table 4. Philosophies defined by respondents as either Developmental/Interactional or Piagetian/Developmental were given by 68.2% of directors. These two, although different in terminology, are likely similar in nature. In addition, a number of other directors responded with other theoretical orientations such as Open Education/Open Concept (7.7%), Whole Child (6.6%), and Learning through Play (3.3%). Both two- and four-year programs were similar in their implementation of the Developmental/Interactional and Piagetian/Developmental approaches. Two-year programs reported more use of the Whole Child Development method. Chi Square analyses revealed no significant differences between two- and four-year programs and the educational philosophy on which the curriculum was based ($\chi^2(9)= 6.59$, p=.68).

A variety of methods were reportedly utilized by laboratory programs to make their students aware of their philosophy. When the 98 directors responded to the question regarding how students participating in the laboratory were made aware of the philosophy, 78.2% said
Table 4

Educational Philosophy of Laboratory Programs at Two- and Four-Year Schools

<table>
<thead>
<tr>
<th>Domain</th>
<th>Combined (n=91)</th>
<th>Two-Year Schools (n=21)</th>
<th>Four-year Schools (n=70)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Develop./Interactional or</td>
<td>68.2</td>
<td>62</td>
<td>57.2</td>
</tr>
<tr>
<td>Piagetian/Developmental</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Ed./Open Concept</td>
<td>7.7</td>
<td>7</td>
<td>9.5</td>
</tr>
<tr>
<td>Whole Child Develop.</td>
<td>6.6</td>
<td>6</td>
<td>14.3</td>
</tr>
<tr>
<td>Learning through Play</td>
<td>3.3</td>
<td>3</td>
<td>4.8</td>
</tr>
<tr>
<td>Social and Emotional</td>
<td>2.2</td>
<td>2</td>
<td>4.8</td>
</tr>
<tr>
<td>Involvement</td>
<td>2.2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Child Development</td>
<td>2.2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>7.7</td>
<td>7</td>
<td>9.5</td>
</tr>
</tbody>
</table>
that course work was the method employed most often. Other methods reported less frequently included: written work (36.6%); field work, (which consisted of practicum experience and lessons plans) (27.8%); discussions/feedback (25.8%); and observations (18.9%). Finally, orientation (8%), was also mentioned as a method utilized to inform students of the laboratory's philosophy.

In comparing two- and four-year programs, both emphasized course work as the method used most often in teaching students about the laboratory philosophy. To a lesser degree, written materials were also utilized by both two- and four-year programs to make students aware of the philosophy in the Laboratory. Four-year schools, as shown in Table 5, tended to employ field work, discussion and feedback, and observation methods more often than two-year programs. However, analyses revealed no significant differences between two- and four-year programs in terms of how students were made aware of the philosophy utilized in the laboratory program ($X^2(7) = 2.80, p=.90$).

Ninety-seven directors reported that parents were informed of the laboratory philosophy through reading material such as parent handbooks (77.3%), conferences (58.4%), parent education programs (33.7%), observations (14.8%), and participation (7%) (see Table 6). Two- and four-year schools were similar in the ranking of the
Table 5

Methods Utilized to Make Students Aware of the Laboratory Philosophy*

<table>
<thead>
<tr>
<th>Domain</th>
<th>Combined (n=98)</th>
<th>Two-Year Schools (n=22)</th>
<th>Four-year Schools (n=76)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Course Work</td>
<td>78.2 79</td>
<td>81.8 18</td>
<td>77.3 61</td>
</tr>
<tr>
<td>Written Material</td>
<td>36.6 37</td>
<td>31.7 7</td>
<td>37.9 30</td>
</tr>
<tr>
<td>Field Work</td>
<td>27.8 28</td>
<td>13.6 3</td>
<td>31.7 25</td>
</tr>
<tr>
<td>Discussion/Feedback</td>
<td>25.8 26</td>
<td>18.2 4</td>
<td>27.8 22</td>
</tr>
<tr>
<td>Observation</td>
<td>18.9 19</td>
<td>13.6 3</td>
<td>20.3 16</td>
</tr>
<tr>
<td>Orientation</td>
<td>8.0 8</td>
<td>9.0 2</td>
<td>7.6 6</td>
</tr>
</tbody>
</table>

* Directors could give up to three responses.
Table 6
Methods Utilized to Make Parents Aware of the Laboratory Philosophy*

<table>
<thead>
<tr>
<th>Domain</th>
<th>Combined (n=97)</th>
<th>Two-Year Schools (n=22)</th>
<th>Four-year Schools (n=75)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Readings</td>
<td>77.3</td>
<td>78</td>
<td>90.9</td>
</tr>
<tr>
<td>Conferences</td>
<td>58.4</td>
<td>59</td>
<td>72.7</td>
</tr>
<tr>
<td>Parent Education</td>
<td>33.7</td>
<td>34</td>
<td>36.3</td>
</tr>
<tr>
<td>Observations</td>
<td>14.8</td>
<td>15</td>
<td>13.6</td>
</tr>
<tr>
<td>Participation</td>
<td>7.0</td>
<td>7</td>
<td>4.5</td>
</tr>
<tr>
<td>Video Tapes</td>
<td>4.0</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

* Directors could give up to 3 responses
approaches they used to inform parents of the philosophy. While a greater percentage of programs at two-year schools used reading materials and conferences than four-year programs, analyses revealed these differences to be non-significant ($\chi^2(6) = 4.38, p = .63$). Both two- and four-year schools were similar in the use of parent education, observation, and parent participation methods in making parents aware of the laboratory philosophy. Interestingly, four of the four-year schools mentioned using video tapes to make parents aware of the laboratory philosophy.

Parent and Student Involvement

Directors were asked to list the most effective ways of involving parents in their laboratory programs. As Table 7 illustrates, responses to this question included informal contacts (63.4%), which consisted of personal contact, socials and activities; volunteering (48.5%); parent groups/committees (42.6%); parent education/conferences (25.7%); and written materials (20.8%). While the various techniques were similar in ranking between the two schools, two-year programs tended to rely more on informal contacts and volunteering than did four-year programs. Both two- and four-year programs were similar in their use of parent groups, parent education, written materials, and required participation
Table 7

Ways to Involve Parents in the Laboratory Program*

<table>
<thead>
<tr>
<th>Domain</th>
<th>Combined (n=93)</th>
<th>Two-Year Schools (n=21)</th>
<th>Four-year Schools (n=72)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Informal Contacts</td>
<td>63.4</td>
<td>64</td>
<td>73.8</td>
</tr>
<tr>
<td>Volunteer Activities</td>
<td>48.5</td>
<td>50</td>
<td>59.1</td>
</tr>
<tr>
<td>Parent Groups</td>
<td>42.6</td>
<td>43</td>
<td>40.9</td>
</tr>
<tr>
<td>Parent Education</td>
<td>25.7</td>
<td>26</td>
<td>27.3</td>
</tr>
<tr>
<td>Written Material</td>
<td>20.8</td>
<td>21</td>
<td>22.7</td>
</tr>
<tr>
<td>Required Participation</td>
<td>10.9</td>
<td>11</td>
<td>9.1</td>
</tr>
<tr>
<td>Home Visits</td>
<td>4.0</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

* Directors could give up to 3 responses.
to involve parents in the laboratory program. No significant differences emerged between two- and four-year programs in terms of the ways they involved parents in the laboratory ($X^2(7)=1.85$, $p=.97$).

According to directors, the parents and students who observed in the laboratory either observed from the classroom (76.2%), observed from a booth (64.4%), or had other unspecified methods of observation (29.7%). Students in two-year programs tended to observe more from within the classroom (86.4% vs. 73.4%), and less from the observation booth (54.5% vs. 67.1%) than students at four-year schools. However, analyses revealed no significant differences between two- and four-year schools with respect to whether students conducted observations from the classroom ($X^2(2)=1.79$, $p=.41$), or from the booth ($X^2(2)=2.14$, $p=.34$).

In response to the number of students who observed in the laboratory program during an average week, directors reported a mean of 40.95 students at two-year schools and 72.87 students at four-year programs. No significant differences emerged between the number of students who observed the laboratory program at two- and four-year schools ($X^2(2)=1.58$, $p=.45$).

Directors were queried with respect to how many different courses on campus included laboratory observation as part of their assignments. Additionally,
they were asked to list the different departments that these courses represent. Directors (n=92) indicated that a mean of 7.19 courses required observation as part of the class assignments (two-year X=6.7; four-year X=7.33).

The different departments that these courses represent included psychology (52.4%), education (50.5%), nursing (29.7%), child development (27.7%), home economics (18.9%), and early childhood education (11.9%). The percentage of courses from psychology departments which required laboratory observations were similar at both two- and four-year schools, as were the percentage of courses from Nursing departments.

Chi Square analyses were conducted to determine if differences existed in the departments that utilized the laboratory for observation at two- and four-year schools. Overall, a significant difference emerged as two- and four-year programs differ in the departments which had courses requiring observations (X^2(8)=23.35, p=.003). As shown in Table 8, significant differences were apparent when comparing courses from two-year (9.1%), and four-year (62.0%), education departments. Moreover, two-year programs reported more child development (45.4%) and early childhood education (22.7%) courses, while four-year schools reported more courses from home economics departments (23.8%). Language and art departments also had courses which observed in laboratory programs at four
Table 8

Classes that Include Laboratory Observation as Part of the Required Coursework*

<table>
<thead>
<tr>
<th>Domain</th>
<th>Combined (n=92)</th>
<th>Two-Year (n=20)</th>
<th>Four-year (n=72)</th>
<th>X^2 (df)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% n</td>
<td>% n</td>
<td>% n</td>
<td></td>
</tr>
<tr>
<td>Psychology</td>
<td>52.4 53</td>
<td>50.0 11</td>
<td>53.2 42</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>50.5 51</td>
<td>9.1 2</td>
<td>62.0 49</td>
<td>23.35 (8) **</td>
</tr>
<tr>
<td>Nursing</td>
<td>29.7 30</td>
<td>36.3 8</td>
<td>27.8 22</td>
<td></td>
</tr>
<tr>
<td>Child Development</td>
<td>27.7 28</td>
<td>45.4 10</td>
<td>22.8 18</td>
<td></td>
</tr>
<tr>
<td>Home Economics</td>
<td>18.9 19</td>
<td>4.5 1</td>
<td>23.8 18</td>
<td></td>
</tr>
<tr>
<td>Early Childhood Ed.</td>
<td>11.9 12</td>
<td>22.7 5</td>
<td>8.9 7</td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>7.0 7</td>
<td></td>
<td>8.9 7</td>
<td></td>
</tr>
<tr>
<td>Art</td>
<td>4.0 4</td>
<td></td>
<td>4.1 4</td>
<td></td>
</tr>
</tbody>
</table>

* Directors could give an unlimited number of responses
**p<.05
Mission of Laboratory

To identify the purpose of laboratory schools, directors were asked to prioritize the importance of the four traditionally defined missions: training undergraduates, training graduates, research, and service. Overall, 96 directors' responses revealed, as Table 9 indicates, that the foremost mission of laboratory schools is to train undergraduate students (71.3%), followed by service (36.6%), research (32.7%), and the training of graduate students (19.8%). Two- and four-year schools differed when separately listing the priority of their missions. Two-year schools ranked training undergraduate students first, followed by service, then research and training graduates. In contrast, four-year programs mentioned training undergraduates, then research, service, and finally, training graduates. Mann-Whitney U test revealed no significant differences in ranking between two- and four-year schools in training undergraduates students (U=785.0, p=.7369), research (U=258.0, p=.7009), and training graduate students (U=72.0, p=.1999). However, there was a significant difference in the ranking of service at two- and four-year programs (U=427.0, p=.0044). Two-year programs placed a significantly higher priority on
Table 9

Missions of Child Laboratory Programs*

<table>
<thead>
<tr>
<th>Domain</th>
<th>Combined (n=96)</th>
<th>Two-Year Schools (n=22)</th>
<th>Four-year Schools (n=74)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% n rank of %</td>
<td>% n rank of %</td>
<td>% n rank of %</td>
</tr>
<tr>
<td>Training Undergraduates</td>
<td>71.3 72 1</td>
<td>77.3 17 1</td>
<td>69.6 55 1</td>
</tr>
<tr>
<td>Service</td>
<td>36.6 37 2</td>
<td>59.1 13 2</td>
<td>30.4 24 3</td>
</tr>
<tr>
<td>Research</td>
<td>32.7 33 3</td>
<td>22.7 5 3</td>
<td>35.1 28 2</td>
</tr>
<tr>
<td>Training Graduates</td>
<td>19.8 20 4</td>
<td>9.1 2 4</td>
<td>22.8 18 4</td>
</tr>
</tbody>
</table>

* Directors could give up to 4 responses
** p<.05
service.

Directors' responses to a survey question involving research participation showed that a mean of 4.64 research projects were conducted at laboratory programs each year. Analyses revealed that there were significantly less research projects during the year at two-year institutions ($X=0.25$), than at four-year institutions ($X=5.60$); ($X^2(14) = 34.39, p=0.002$). Of the 94 directors, 25% of directors at two-year schools and 75% of those at four-year schools indicated that their laboratory was used by other departments for research. Other departments conducting research in the laboratory included the psychology (64.4%), education (13.6%), language (8.5%), and nursing (5.1%) departments.

Child and Facility Characteristics

The child and facility characteristics included in these analyses consist of the age and number of children, the class sizes, the time and days classes were in session, and the amount of caregivers assisting the children. The results of the child characteristics of two- and four-year school will be presented simultaneously.

The age of children enrolled at two-year schools ranged from 9 to 75 months ($X=39.48$), while the age of children enrolled at four-year schools range from 6 to 99
months (X=44.70). After grouping the ages of children by months (0-12, 13-24, 25-36, 37-48, 49-99 months) (see Table 10), analyses were performed. No significant differences were found between full- and half-day classes and the ages of children who are served at two- and four-year schools ($\chi^2(1) = 4.90$, $p = .30$).

The number of children enrolled within each class at two-year schools ranged from 7 to 75 children (X=21.94). The enrollment of children in a class at four-year schools ranged from 4 to 63 children (X=18.21). Significant differences emerged between two- and four-year institutions with regard to the number of children enrolled within a class in a laboratory program ($\chi^2(1) = 24.77$, $p = .00006$). Four-year schools reported laboratory programs with fewer children per class than two-year schools.

Directors from two-year schools reported the mean number of classrooms within a laboratory program as 2.23 (range: 1 to 6). Four-year schools reported the mean number of classrooms in a program as 3.54 (range: 1 to 22). Analyses revealed that four-year institutions had significantly more classrooms than did two-year institutions ($\chi^2(1) = 15.04$, $p = .005$). Four-year schools indicated they had more classrooms and fewer children per class than two-year programs.
Table 10

Age of Children (by Months) that Attend the Laboratory:

Full and Half Day Classes

<table>
<thead>
<tr>
<th>Months</th>
<th>Two-Year Schools (classes=54)</th>
<th>Four-year Schools (classes=328)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full</td>
<td>Half AM</td>
</tr>
<tr>
<td>0-12</td>
<td>10.8</td>
<td>5.6</td>
</tr>
<tr>
<td>13-24</td>
<td>13.5</td>
<td>12.2</td>
</tr>
<tr>
<td>25-36</td>
<td>29.7</td>
<td>18.2</td>
</tr>
<tr>
<td>37-48</td>
<td>32.5</td>
<td>63.6</td>
</tr>
<tr>
<td>49-99</td>
<td>13.5</td>
<td>18.2</td>
</tr>
<tr>
<td>Totals</td>
<td>37</td>
<td>11</td>
</tr>
</tbody>
</table>
Two different questions dealt with aspects of class scheduling. One examined full- and half-day operations, while the other looked at specific hours of operation. Data detailing program schedules indicated that at two-year institutions, 68.5% of the schools operated full-day programs, 20.4% had ongoing half-day morning classes, and 11.1% offered half-day afternoon classes. Responses from directors at four-year programs showed that 38.9% of their schools operated full-day programs. Half-day morning (40.7%) and half-day afternoon (20.4%) classes were also reported. Analyses revealed that there were significant differences between full- and half-day programs at two- and four-year institutions ($X^2(1)=16.62492$, $p=.00025$). Half-day programs accounted for 31.5% of the total percentage at two-year institutions and over 61.1% of the total percentage at four-year schools. Corresponding with full- and half-days were the hours per day the children came to the laboratory program.

The hours per day a class operated at two-year schools ranged from 1.5 hours to 16 hours a day. Forty percent of the directors reported, as illustrated in Table 11, that their classes ran between 9 to 11 hours per day, while 32.5% of the classes operated 2 to 3 hours per day. Daily operating hours at four-year schools ranged from 1 to 11 hours. Fifty-six percent of the directors reported that their classes ran between 2 to 3 hours a day, while
Table 11

The Hours Per Day Children Attend the Laboratory Program: Two- and Four-Year Institutions

<table>
<thead>
<tr>
<th>Hours</th>
<th>Two-Year Schools (classes=43)</th>
<th>Four-year Schools (classes=343)</th>
<th>X² (df)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0- 1.5</td>
<td>2.3% 1</td>
<td>2.3% 8</td>
<td></td>
</tr>
<tr>
<td>2.0- 3.0</td>
<td>32.5% 14</td>
<td>56.3% 193</td>
<td>16.625 (1) **</td>
</tr>
<tr>
<td>3.5- 8.0</td>
<td>23.3% 10</td>
<td>21.6% 74</td>
<td></td>
</tr>
<tr>
<td>9.0-11.0</td>
<td>39.6% 17</td>
<td>19.8% 68</td>
<td></td>
</tr>
<tr>
<td>12.0-16.0</td>
<td>2.3% 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** p<.05
19.8% of the classes operated between 9 to 11 hours a day. By grouping the hours per day (0-2.5, 2.7-4.0, 5.0-8.0, 9.0-11.0 and 16.0 hours), a significant difference emerged between hours per day a child attends the laboratory at two- and four-year schools ($X^2(1)=18.39, p=.001$). Programs at four-year schools reported significantly more classes operating between 2 to 3 hours a day and significantly less classes operating between 9 to 11 hours a day than programs at two-year schools.

Responding to the number of days per week the laboratory operated, directors at two-year schools reported that 66% of the classes were offered five days a week. Twelve percent of the classes were offered four days a week, 10% three days a week, 10% two days a week, and 2% of the classes operated one day a week. At four-year schools, directors reported that 57% of the classes operated five days a week. Eighteen percent of the classes were offered four days a week, 10% three days a week, 11% two days a week, and 4% of the classes operated one day a week. Again, results revealed no significant differences between days of operation per week ($X^2(1)=2.02085, p=.73192$), at two- and four-year schools.

Finally, directors responded to questions about individuals who participated in the laboratory program. The person responsible for individual classes and in some cases, the training of students, was the lead, head, or
master teacher (referred to here as lead teacher). The mean number of lead teachers per class at two- (1.13) and four-year schools (1.09) were nearly identical. In most instances one individual was responsible for the activities and procedures of a class.

The minimum requirement to be the lead teacher at two-year schools was either an associate degree (46%), a bachelor's degree (46%), or a master's degree (8%). The professional training requirement to be a lead teacher at four-year schools was either a bachelor's degree (52.9%), a master's degree (41.4%), or an associate degree (5.1%). Analyses revealed a significant difference between two- and four-year programs and the degree required to be a lead teacher ($X^2(1)=82.87, p<.0001$). Individuals at four-year schools had a higher level of training to be a lead teacher in the laboratory program than did those employed in two-year programs.

The persons who generally assist lead teachers are the student teachers and parents. The average number of student teachers assisting per day at two-year ($X=9.44$) and four-year institutions ($X=6.03$) was significantly different ($X^2(1)=13.39483, p=.010$). There was also a significant difference in the mean number of parents participating per day in the laboratory program at two-year (5.94) and four-year (1.97) schools ($X^2(1)=7.23, p=.027$). Two-year institutions reported a significantly
higher number of students and parents involved per day in their laboratory programs. Two-year schools had more full-day programs, as indicated earlier, which generally required more students and parents participating during a day. It is likely that the number of individuals reported as helping in the classroom were not present for the duration of the day.

The mean number of adults assisting (which includes students and parents) the lead teacher per class were 8.72 at two-year schools, and 5.65 at four-year schools. Analyses revealed a significant difference in the number of adults at two- and four-year programs ($X^2(1)=15.90$, p=.001). The ratio of adults to children at two-year schools was 9.85 teachers to 21.94 children (2.23), while the ratio of adults to children at four-year programs was 6.74 teachers to 18.21 children (2.70). These results may be deceptive because the teacher ratio does not necessarily mean that all these adults were in the laboratory during the same time period, but indicates the number of adults in the laboratory during an average day.
CHAPTER V
DISCUSSION

The purpose of this study was to establish a profile of laboratory schools across the United States. By reviewing current research, the Accreditation Criteria and Procedures (NAEYC, 1984), and Developmentally Appropriate Practice (Bredekamp, 1986), variables were identified as key ingredients in creating high quality programs for young children and their families. A survey was administered to directors to determine if these components were employed in the professional preparation of teachers and communicated to the parents of children attending Child Development Laboratories. Practices in those laboratory programs at two- and four-year institutions were compared. The information parents received about the laboratory program and the involvement they had in their child's class was also explored.

Educational Philosophy

With regard to educational philosophy, the results indicated that 68% of laboratory programs involved in this study utilized the Developmental/Interactionist or Piaget/Developmental approaches. The remaining 32% were divided between fourteen other differing philosophies that were mentioned as guiding the curriculum of laboratory programs. This indicates that two of every three students
and parents that had contact with the laboratory programs were introduced to the Developmental/Interactionist or Piagetian/Developmental philosophies. Each of the laboratory programs, however, did have a philosophy that in turn influenced the curriculum of the laboratory school. The theories mentioned in this investigation did implement curricula that allowed children to encounter developmentally appropriate practices. Curriculum that encourages children to be actively involved in the learning process, such as that in the Developmental/Interactional and Piagetian/Developmental approaches, was discussed earlier as an essential component of high quality programs (Bredekamp, 1986; NAEYC, 1984).

Students at two- and four-year schools most often received information about the laboratory philosophy through course work and to a lesser degree through written materials. In addition, four-year schools reported using field work and discussions more than two-year schools as part of the process to make students aware of the laboratory philosophy. Orientation was used, minimally, by both schools to introduce the philosophy. Collectively, a variety of methods were utilized to train student teachers regarding the philosophies of the respective laboratory programs.

Given the types of philosophies reported, students
participating in the laboratory program would likely have acquired an understanding of child development principles, learned appropriate guidance techniques, and been able to identify developmental goals for young children. Students completing their schooling comply with the criterion mentioned in Developmentally Appropriate Practice (Bredekamp, 1986), and Accreditation Criteria and Procedures (NAEYC, 1984) as a college-level education.

The findings indicated that parents most often learn of the laboratory philosophy through readings and/or conferences with teachers. Both two- and four-year schools were similar in their use of parent education, observations, and participation as methods which were utilized to inform parents of the Laboratory's philosophy. The quality component identified as staff-parent interactions includes teachers informing parents about their child's program (Bredekamp, 1986; NAEYC, 1984). As shown in this study, information about the philosophy, which pertains to how children learn and develop, was conveyed to parents. A variety of methods were utilized to inform parents of the philosophy.

Parent and Student Involvement

With regard to involvement in the laboratory program, results indicated that directors most often utilized informal contact and volunteer activities to include
parents. Two- and four-year schools next reported parent groups, then parent education, written material, and required participation as techniques that involved parents in the laboratory program. Two-and four-year laboratory programs reportedly employed techniques that involved parents on an active and consistent basis. Programs that invited parents to observe and participate encouraged openness. Recognizing parents as valuable contributors has been articulated as a component of high quality centers (Bredekamp, 1986; NAEYC, 1984). Teachers and parents who communicate are more likely to have a mutual understanding of the child's needs both at home and school.

High quality centers allow parents to visit the program as observers or participants (Bredekamp, 1986). At four-year schools, the numbers of parents and students who observed the laboratory program from within the classroom and the observation booth were similar. Two-year schools reported that more parents and students tended to observe the laboratory program from within the classroom rather than from an observation booth. This could be due either to the lack of booths to observe from at two-year schools or a desire to have parents and students in the classroom with the children.

The findings indicated that during an average week four-year programs had higher numbers of students
observing the laboratory program than two-year schools. This probably occurred because the average student body at four-year schools was larger. The courses that included observations of the laboratory program differed significantly between two- and four-year schools. Two-year schools ranked psychology first, then child development, nursing, early childhood education, education, and home economics. Four-year schools ranked education first, followed by psychology, nursing, home economics, child development, and, finally, early childhood education. Directors reported similar frequencies of observations from psychology classes at both two- and four-year schools. Two-year schools reported more observations from child development and early childhood education courses, while four-year schools had more observations from education and home economic courses. A possible explanation for these differences may be that four-year schools typically offer a bachelor's degree in education and home economics, whereas many two-year schools offer associate degrees in child development and early childhood education.

Mission of Laboratory Program

Directors were asked to rank order the four traditional missions of the laboratory programs. The findings indicated that training undergraduate students
was the top priority at two-and four-year schools. Four-year programs ranked research and training graduate students higher than two-year programs. There was, however, a significant difference in the ranking of service at two- and four-year schools. Two-year schools ranked service second while four-year schools ranked service third. Perhaps two-year schools are more service oriented and four-year schools are typically research oriented. Findings showed that two-year programs have more full-day programs for children, which would also provide a greater service to the community. Four-year schools had more half-day programs than two-year schools. Training graduate students was ranked as the last priority at both two- and four-year school. Although not a surprising finding, results indicated that four-year schools trained graduate students more than two-year schools.

Child and Facility Characteristics

Child Characteristics

Only five months separated the average age of the children enrolled at two- and four-year programs. The average number of children enrolled within each class appeared to be similar. However, analyses revealed a significant difference between two- and four-year schools. Interestingly, four-year laboratory programs had less
children per class than two-year schools. These findings could be influenced by two-year school's higher priority on the mission of service and a desire to allow more children to attend their laboratory programs. Regardless, the criterion for quality programs recommends smaller group sizes (under 24 children) (Bredekamp, 1986), and both two- and four-year schools meet that standard (NAEYC, 1984).

Facility Characteristics

Findings show that two-year schools had significantly less classrooms in their programs than four-year schools. Two-year institutions typically have smaller campuses and would likely operate smaller programs with fewer teachers to be trained. On the other hand, four-year schools reported they had more laboratory classrooms, and fewer children in those classes. A greater number of classrooms could be utilized to train more graduate students and allow for more research to be conducted. Training graduate students and conducting research were higher priorities at four-year schools.

Two-year schools had significantly more full-day classes and significantly less half-day programs than four-year schools. Coinciding with full- and half-day programs was the number of hours a program operated. The hours per day the laboratory programs operated differed significantly between two- and four-year schools. Over
half of all four-year laboratory programs operated between 2 to 3 hours a day, and only a third of two-year schools operated between 2 to 3 hours. Conversely, while 4% of two-year schools ran 9 to 11 hour per day, only 20% of four-year schools operated between 9 to 11 hours. A possible explanation for the differences may relate to the mission of service of the laboratory programs at two- and four-year schools. By offering longer child care hours, two-year programs would be better able to provide a service to the community.

The number of days per week the program functioned was similar at two- and four-year schools. Almost 66% of the children at two- and four-year schools attended the laboratory five days per week. Attendance from "one to four days per week" was considerably less than attendance in the laboratory five days a week, but similar between two- and four-year schools.

The number of lead teachers at two- and four-year schools was not significantly different, but the minimum requirement to be a lead teacher did differ significantly. Nearly all of the lead teachers at two-year schools were individuals with either an Associate or Bachelor's degree, while lead teachers at four-year schools typically had Bachelor's or Master's degrees. Four-year schools required lead teachers to have more college education. Perhaps this is because lead teachers at four-year schools
generally train student teachers who are pursuing Bachelor's and Master's degrees. Lead teachers did provide supervised experiences for student teachers being trained to work with young children in this sample. Again, this was one of the quality components identified as necessary in the professional training of teachers (Bredekamp, 1986).

At laboratory schools participating in this investigation, lead teachers were typically assisted by students and parents. Two-year programs had significantly more students and parents assisting in the classroom than four-year schools. It is likely that two-year schools had more students assisting the lead teacher during an average day simply because they operate more full-day programs. Full-day programs typically require the attendance of more student teachers and parents for assistance because teachers and parents generally do not spend a full day assisting in the program. Therefore, the comparison of these frequencies may not be realistic.

At two- and four-year programs, the teacher-child ratio was well within the criterion recommended (1:7 to 1:10) by Accreditation Criteria and Procedures (NAEYC, 1984). It is highly likely, that in the case of both two- and four-year programs, children would have more opportunities to interact with teachers and parents throughout the day. In sum, the two- and four-year
schools in this investigation did exhibit many of the necessary components to maintain high quality programs.

Summary

The findings indicated that the majority of professionally trained teachers in laboratory programs had a guiding philosophy that included the Developmental/Interactional or Piagetian/Developmental framework. Parents were provided with information about the philosophy and program. This philosophy was disseminated to students through course work and written materials, and to parents through readings and conferences. A variety of methods were utilized to involve parents in the laboratory program. Students and parents observed the laboratory programs from within the classroom and from an observation booth. Students of other departments observed the laboratory program during a given week.

The traditional mission of laboratory programs differed in the ranking of service at two- and four-year schools. More research was being done at four-year laboratory programs by a greater number of departments.

While the ages of children at two- and four-year schools were similar, four-year programs had more classes with fewer children. Two-year schools had more full-day programs and longer hours, while four-year schools had more half-day programs and operated fewer hours. Children
generally attended laboratory programs five days per week.

Four-year schools had lead teachers with master's and bachelor's degrees, while two-year schools had lead teachers with bachelor and associate degrees. More student teachers and parents assisted in the classes at two-year schools. Student teachers from programs in this survey, participated in classroom settings that had small class sizes and an acceptable ratio of children to adults.

Conclusion

Collectively, the findings indicate that Child Development Laboratories in this study complied with the quality components delineated in NAEYC's (1984) Accreditation Criteria and Procedures, and Bredekamp's (1986) Developmentally Appropriate Practice. Specifically, a majority of laboratory programs had a philosophy that guided their curriculum, and moreover, that philosophy was conveyed to parents. Students were trained in programs with a smaller size class of children and an acceptable ratio of teachers to children.

It was essential to determine if the basic components of quality care were found in Child Development Laboratories and if students were being adequately prepared before they entered the field of Early Childhood Education. The findings suggest that students trained in Child Development Laboratories will likely come in to the
professional field exposed to a number of valuable skills and an appreciation for the quality inherent in the laboratory programs in which they participated.

The present investigation focused on only four components: the curriculum, the interaction between staff and parents, the training of staff members, and the child and facility characteristics ratio, each of which are each essential for high quality programs. Several other components of high quality programs, such as child-staff interaction, administrative efforts, physical environment, adequate nutritional program, and an ongoing child assessment process were not included in the present investigation. Future investigation may seek to determine if Child Development Laboratory programs include other components identified as essential elements of high quality alternative care. In addition, future studies may focus on the remaining information gathered in the questionnaire which pertained to administrative matters and concerns.

By examining two- and four-year programs a comparison of programs and services was achieved. An interesting finding from this study was that four-year institutions were preparing more students to function in half-day or preschool types of programs (less than four hours per day), while two-year schools were training students in both full-day or half-day programs. The need for quality
child care lends itself to both full- and half-day programs. While some parents desire day-long care for their young children, others need or prefer only half-day programs. Regardless of the particular setting, statistics indicate that the need for alternative care for young children is still rising.

A limitation of the current study was the lack of representation from two-year schools. Since the results mainly considered the similarities and differences at two- and four-year schools, more responses from two-year programs would have enhanced the overall generalization to laboratory programs at two-year schools across the United States.

The final limitation of this study was the lack of participants from all fifty states. Although surveys were sent to colleges and universities in each of the fifty states, only thirty-six states were represented. Questionnaires were sent to other land-grant schools and programs at other private and state supported institutions. Future studies may be more successful at obtaining responses from each of the states.

Research has identified a number of variables as important components for high quality programs for young children and their families. Components such as: professional training and experience of teachers, curriculum and philosophy, group size and adult-child
ratio, and staff-parent interactions are essential when establishing and maintaining a program for young children. This study found that laboratory programs are model programs for the preparation of teachers. With their exposure to a quality facility, teachers can go into the field better able to implement appropriate practices and procedures. The information available to parents while participating in the laboratory program can also allow parents to become better consumers of alternative child care, and raise the quality of child care in the community.
REFERENCES

APPENDICES
Appendix A

An Arrangement of States by Region
Regions
1) Pacific Coast: Alaska, California, Hawaii, Oregon, Washington
2) Rocky Mountain: Colorado, Idaho, Montana, Nevada, Utah, Wyoming
3) Southwestern: Arizona, New Mexico, Oklahoma, Texas
4) Midwestern: Kansas, Illinois, Indiana, Iowa, Minnesota, Missouri, Michigan, Nebraska, North Dakota, Ohio, South Dakota, Wisconsin
5) Southern: Alabama, Arkansas, Delaware, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Tennessee, Virginia, South Carolina, West Virginia,

6) Mid Atlantic: New Jersey, New York, Pennsylvania,

7) New England: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont,
Appendix B

Director Questionnaire
NATIONAL ORGANIZATION OF CHILD DEVELOPMENT
LABORATORY SCHOOLS

Questionnaire

My institution is:

2 year_____ Public_____ Graduate_____
4 year_____ Private_____ Undergraduate_____

The estimated enrollment of my institution is:

My Laboratory School is under the administrative supervision of:

School or College (please name) ___________________________
Department (please name) ___________________________
Other (please name) ___________________________

My immediate superior is a:

Department Head____ Dean_____ Faculty Liaison____
Department Chair____ President____
Other (specify)____

As administrator of the Laboratory School, my title is:

This position is:

Full Time____ Staff Position____
Part-Time____ (specify %) Faculty Position____
Other (please specify)__________________________
This appointment is for:

9 months____ 10 months____ 11 months____
12 months_____

Is this position a tenure track position?
yes____ no _____

What degrees have you earned and in what areas?__________________________

Years experience as a Laboratory School administrator?______

The educational curriculum in my Laboratory School is based on the following philosophy or theory:__

Student participants in the Laboratory are made aware of this philosophy or theory by:__

Parents are made aware of this philosophy or theory by:__

I have found that the three most effective ways of involving parents in the Laboratory program are:
1.__
2.__
3.__

In order for students and parents to observe the Laboratory program, they (please check all that apply):

Observe in the Classroom_____
Observe from an Observation Booth_____
Other (please specify)__

During the average week, approximately how many different students observe the Laboratory program?____
Approximately how many different courses on campus include Laboratory observation as part of their course assignments? ____

Please list the different departments that these courses represent:
__
__

My Laboratory School commenced operation in: ________ (year)

The purposes of my Laboratory School are ranked below with #1 being the highest priority and #4 being the lowest priority:

Training Undergraduate Students_____
Training Graduate Students_____
Research_____
Service_____

Is your Laboratory School licensed by the State? yes____ no____

If not, are Laboratory Schools eligible for licensure in your state? yes____ no____

Explain:__

Is your Laboratory School accredited by the National Academy of Early Childhood Programs? yes____ no____

My annual budget for 1986 fiscal year was: ____________________

Check the items below which are paid for out of this budget:

Teaching Staff Salaries____ Food Items____
Other Staff Salaries____ Art Supplies____
Equipment/Materials____ Building Overhead____
Children's Transportation____ Staff Benefits____
Additional Items (please list)_________________________

Estimate the percentage of this budget that come from the following sources:
College or University____ Tuition____
College Student Fees____ Fundraising Activities____
Grants____ Other (please specify)____

I estimate the percentage of time I spend in various aspects of my role to be:

Teaching Young Children____
(this may also include student training at the same time)

Teaching Undergraduate Courses____
Teaching Graduate Courses____

Supervision/Observation of undergraduate/graduate students____
Administration____
Research____

Department/College Committee Assignments____
Other (please specify)__________________________________

Examining just your administrative role, please check any activities in which you engage during a typical week.

Staff observation____ Student Observation____
Staff Inservice____ Student Inservice____
Staff Evaluation____ Student Evaluation____
Staff Meetings____ Research Coordination____
Child Observation____ Bookkeeping/Budgeting____
Child Evaluation____ Purchasing Materials
Child Recruitment Equipment Fundraising Public Relations Research Coordination Scheduling Children Programs
Parent Meetings
Parent Conferences "Crisis Control" Scheduling Children Programs
"Crisis Control" Scheduling Children Programs
Other (specify)

The most frustrating aspect of my Laboratory administrative position is:

The most rewarding aspect of my Laboratory administrative position is:

Do you feel that your superiors have a realistic understanding of your role? yes no

What have you done (if anything) to make your superiors aware of your role/accomplishments?

Approximately how many research projects are conducted at your Laboratory each year?

Is the Laboratory used by departments other than yours for research? yes no

If yes, please list these departments.

What percentage of research projects in your Laboratory are represented in the following categories?

Faculty Research Undergraduate Research
Graduate Student Research Other (specify)

If your Laboratory is engaged in any "in house" research, please describe this.

Does your Laboratory have a data base on children for research use? yes no
If yes, what information is collected and kept on file?

How many classrooms does your Laboratory facility have?

For your reference, please assign each of your classrooms a number. Then complete the following grid for each classroom. If you have, for instance, two half-day programs or twice and thrice weekly programs ongoing in the same room, this classroom will be listed more than once.

<table>
<thead>
<tr>
<th>CLASSROOMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
</tr>
<tr>
<td>Age of Children Enrolled</td>
</tr>
<tr>
<td># Children Enrolled</td>
</tr>
<tr>
<td># Children on Waiting List</td>
</tr>
<tr>
<td>Full-Day</td>
</tr>
<tr>
<td>Half-Day AM or PM</td>
</tr>
<tr>
<td># Days per Week</td>
</tr>
<tr>
<td>Hours per Day</td>
</tr>
<tr>
<td>Academic Year</td>
</tr>
<tr>
<td>Full Year</td>
</tr>
<tr>
<td>Summer</td>
</tr>
<tr>
<td>Charge per Hour*</td>
</tr>
<tr>
<td># Paid Lead Teachers</td>
</tr>
</tbody>
</table>
Minimum Degree Requirement for Lead Teachers

Lead Teacher Salary

<table>
<thead>
<tr>
<th># Graduate Student Teachers (Teaching Asst.)</th>
<th>Average # Students participating per Day</th>
<th>Average # Parents Participating per Day</th>
<th>Average # of Adults in Class per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If your charges are figured by week, month quarter, or semester, estimate as closely as possible what the hourly charge for care would be.