Aerocapture Benefits & Control

Benefits of Aerocapture
- Minimal propellant requirements
- Potential large savings in mass and cost
- Studies have shown conceptual & technical viability

Lack of flight demonstration inhibits use of aerocapture on actual missions

Aerocapture Conceptual Drag Modulation
- Ballistic coefficient changes used to alter vehicle’s trajectory
- Simple to implement compared to traditional lifting methods:
 - No CG off rectified
 - Simple avionics algorithms

Philosophy:
- Benefits of vehicle's trajectory
- Ballistic coefficient changes used to alter technical viability
- Studies have shown conceptual & minimal propellant requirements

Maneuver (PRM)
- Perigee Raise
- Atmospheric Descent
- Orbit Transfer (GTO)

Atmospheric Descent Orbits
- Low Earth Orbit (LEO) to Mars Transfer Orbit (GTO)
- GTO to LEO

Flight System Overview

Aerocapture
- Aerocapture is a promising architecture to effectively target desired orbit
- Dynamic, event jettison drag modulation
- Jettison guidance algorithm is able to modify entry FPA and atmospheric acceleration
- Monte Carlo results show robustness to uncertainties in entry FPA, atmospheric, and burns

Mission Concept

Purpose:
- Develop SmallSat mission concept for flight test demonstrating aerocapture at Earth
- Deliverable: Fully-documented mission concept in anticipation of future SmallSat proposal opportunities

Mission Timeline

1. **Event**
 - GTO Period: 10 hrs
 - Separation from Host
 - Perigee Lowering Maneuver (PLM)
 - Descent Orbit Duration: 5 hrs
 - Atmospheric Interface Altitude: 125 km
 - Aerocapture AV: 2 km/s
 - Post-Aerocapture Orbit 60 km x 1730 km
 - Perigee Raise Maneuver
 - Final Orbit 200 km x 1750 km

Aerocapture
- Aerocapture AV: 2 km/s
- Event jettison drag modulation is a promising architecture to effectively target desired orbit
- Jettison guidance algorithm is able to modify entry FPA and atmospheric acceleration
- Monte Carlo results show robustness to uncertainties in entry FPA, atmospheric, and burns

Trajectory Modeling

End-to-End Monte Carlo Results:
- 10000 Samples, Target = 1730 km
- Parameters:
 - Mean: 1746.0 km
 - Std Error: 104.4 km
 - Minimum: 1516.1 km
 - Maximum: 1813.7 km

Conclusions

Takeaways
- A SmallSat mission featuring single-event jettison drag modulation is a promising architecture to demonstrate ~2 km/s aerocapture maneuver at Earth
- Structural and mission design analyses have led to a ~25 kg flight system featuring COTS hardware
- Trajectory analyses and Monte Carlo results show robustness of system design to uncertainties

For more information:
Michael Werner mwerner9@gatech.edu