Quantifying Losses of Understory Forage in Aspen Stands on the Dixie and Fishlake National Forests

Barton R. Stam
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

Part of the Ecology and Evolutionary Biology Commons, Environmental Sciences Commons, Forest Sciences Commons, and the Plant Sciences Commons

Recommended Citation
https://digitalcommons.usu.edu/etd/6592

This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact dylan.burns@usu.edu.
QUANTIFYING LOSSES OF UNDERSTORY FORAGE IN ASPEN STANDS ON
THE DIXIE AND FISHLAKE NATIONAL FORESTS

by

Barton R. Stam

A thesis submitted in partial fulfillment
of the requirements for the degree
of
MASTER OF SCIENCE
In
Range Science

UTAH STATE UNIVERSITY
Logan, Utah
2004
ABSTRACT

Quantifying Losses of Understory Forage in Aspen Stands on the Dixie and Fishlake National Forests

by

Barton R. Stam, Master of Science
Utah State University, 2004

Major Professor: Dr. John C. Malechek
Department: Forest, Range, and Wildlife Sciences

The West has lost up to 60% of its historic aspen stands over the last century, probably as a result of the successional tendency of aspen to be replaced by coniferous species in the absence of periodic fires. One of several major impacts of this change is the loss of understory forage as conifer canopy cover increases. I measured understory biomass in aspen stands ranging from 0% to 81% absolute conifer cover in the canopy and found that understory production declines exponentially as conifers replace aspen. I also did an economic analysis to determine the value of the forage that is not being produced by aspen sites due to a presence of coniferous species within the tree canopy. Study results indicate significant losses in forage, marketable through the sale of livestock, and losses in revenue generated through grazing fees for the USDA Forest Service.

(43 pages)
ACKNOWLEDGMENTS

I would like to thank the Utah State Legislature and the Utah Agricultural Experiment Station for funding the Cedar Mountain Initiative, of which this research project is a part. My committee members, Dr. John C. Malechek, Dr. Dale L. Bartos, Dr. James E. Bowns, and Dr. E. Bruce Godfry, have all been helpful in providing their assistance and support. Dr. Dave Turner from the USDA Forest Service Intermountain Research Center, Logan, Utah, provided invaluable statistical help for the data analysis. Carson Stam, my technician, was a hard worker and helped make the field work possible.

My fellow graduate students have also been tremendously helpful in sharing their own experiences and insights. I'd especially like to thank my wife, Laura, for her support and willingness to spend many days and nights without me while I was in the field. Thank you all for your help.

Barton Stam
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II LITERATURE REVIEW</td>
<td>3</td>
</tr>
<tr>
<td>III METHODS</td>
<td>5</td>
</tr>
<tr>
<td>Research objectives</td>
<td>5</td>
</tr>
<tr>
<td>Study area</td>
<td>5</td>
</tr>
<tr>
<td>Site sampling</td>
<td>6</td>
</tr>
<tr>
<td>Statistical analyses</td>
<td>10</td>
</tr>
<tr>
<td>IV RESULTS AND DISCUSSION</td>
<td>12</td>
</tr>
<tr>
<td>Decline of forage</td>
<td>12</td>
</tr>
<tr>
<td>Economic losses</td>
<td>18</td>
</tr>
<tr>
<td>V CONCLUSION AND RECOMMENDATIONS</td>
<td>21</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>23</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>26</td>
</tr>
<tr>
<td>Appendix A Attributes of study sites</td>
<td>27</td>
</tr>
<tr>
<td>Appendix B Study site community types</td>
<td>29</td>
</tr>
<tr>
<td>Appendix C SAS code for the PROC MIXED procedure</td>
<td>30</td>
</tr>
<tr>
<td>Appendix D Approach for calculating gross revenue lost due to conifer encroachment</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
</tr>
</tbody>
</table>

Changes in understory biomass production and conifer cover

LIST OF TABLES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Illustration of the canopyometer used for point intercept data collection</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Relationship of conifer canopy coverage (%) to understory biomass production 2002 data. Original data points on high and low potential sites</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Relationship of conifer canopy coverage (%) to understory biomass production 2003 data. Original data points on high and low potential sites</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Predicted relationship between absolute conifer cover and understory biomass production</td>
<td>16</td>
</tr>
</tbody>
</table>
Across eight of the western states (Arizona, Idaho, Utah, Wyoming, Colorado, Nevada, New Mexico, and Montana) quaking aspen (*Populus tremuloides*) stands have been reduced to about 40% of their historic range, as estimated by Bartos (2001). Numerous problems have arisen as a result of this immense loss. These include a decline in water yields from watersheds and a reduction in biodiversity (Bartos and Campbell 1998). Intact aspen sites are also among the most prolific producers of forage in the Intermountain West. Mueggler (1988) found that some aspen sites are capable of producing up to 4,260 kg/ha of air-dry understory material. However, this production can be reduced by 50% when conifers make up as little as 15% of the total tree basal area on the site (Mueggler 1985, 1988). This potential for producing large amounts of understory biomass makes aspen stands important as suppliers of forage for both wildlife and domestic livestock. As conifer encroachment on aspen stands continues, this supply of forage is dwindling. With the loss of forage comes a corresponding economic loss in the amount of the forage that is no longer being produced.

This gradual, but now substantial reduction of the forage base has another insidious impact on high elevation rangelands; a probable overstocking of both livestock and wild ungulates. Current stocking rates for livestock are generally based on historic assessments made decades ago. The loss of aspen associated forage, coupled with an increased forage demand from increasing numbers of elk may be resulting in a forage bottleneck on some ranges administered by the USDA Forest Service.
While the problem is now obvious, there has been little research to document these understory relationships in the aspen type. Therefore, this project was conceived in 2002 to provide an initial quantification of forage loss and its economic impact.
CHAPTER II
LITERATURE REVIEW

Harper (1973), in an unpublished abstract of a presentation, reported that there was little correlation between aspen overstory and herbaceous understory production unless conifers were present. However, when the conifers were present understory production fell from over 1,568 kg/ha air-dry forage to less than 111 kg/ha. Betters (1983) later suggested that research results conflict over whether an aspen overstory, in the absence of conifers, is related to understory production. These studies suggest that a predictable overstory-understory relationship may, indeed, exist only in aspen stands, which contain a conifer component.

In contrast to aspen stands, there has been much research on overstory-understory relationships in other conifer forest types in the West. For example, Jameson (1967) developed a prediction equation relating pinyon-juniper (Juniperus spp. and Pinus edulis and P. monophylla) canopy cover to herbage production. Understory herbage production used in developing this equation dropped from 672 kg/ha at 0% canopy cover to less than 111 kg/ha at over 90% canopy cover. Clary (1971) documented that as canopy cover increases from 0% to 80% perennial grass production declines from 694 kg/ha to about 45 kg/ha on pinyon-juniper sites in Arizona. In a later study, Clary et al. (1974) related pinyon-juniper basal area increases to herbaceous production decreases. Short et al. (1977) found that production of understory herbage production fell from over 1,100 kg of dry matter/ha to around 500 kg of dry matter/ha as tree density increased from 0 to 200 trees per hectare in pinyon-juniper woodlands. Bates et al. (2000) found, on the Steens
Mountain in Southeast Oregon, that understory production increased after pinyon-juniper stands were treated with thinning cuts. Understory biomass production reached 45.7 kg/ha in treated areas compared with 20.9 kg/ha in untreated areas, during the dry year of 1992. Differences were greater in 1993 when above average precipitation fell, and treated pinyon-juniper stands produced 329.0 kg/ha, while untreated stands produced only 37.9 kg/ha. Furthermore, Ffolliott (1983) reviewed a number of studies that described understory production as a function of the overstory in ponderosa pine (*Pinus ponderosa*) forests of Eastern Arizona. Again, understory production declined as the tree canopy density increased. The overstory factors used to develop these relationships were crown cover and tree basal area (BA).

In general, research results indicate that while a coniferous component in the canopy of a forest cover type may have a negative impact on understory biomass production, an aspen canopy appears to have no consistent effect. This is probably due to different physical structure and physiological properties associated with deciduous aspens and evergreen conifers.
CHAPTER III

METHODS

Research Objectives

The primary objectives of this research were:

1. Estimate the amount of understory biomass that has been lost, and the nature of the decline, due to conifer encroachment of aspen stands within selected study sites.

 Ho: Understory biomass production losses are linear as aspen stands are succeeded by coniferous species.

 Ha: Understory biomass production declines along a curvilinear gradient as aspen stands succeed to conifers.

2. Estimate the economic value of the understory biomass lost through conifer encroachment on aspen sites within selected study sites.

 Ho: Economic losses are consistent throughout all aspen community types.

 Ha: Economic losses vary from one aspen community type to another.

Study Area

The study sites selected for this study were located in the following areas: the Cedar City Ranger District of the Dixie National Forest, the Richfield Ranger District of the Fishlake National Forest and on privately owned land on Cedar Mountain, east of Cedar City, Utah. Exact study site locations are given in Universal Transverse Mercator (UTM) units in Appendix A. Study sites ranged in elevation from 2,618 to 3,035 meters and had a mean of 2,815 meters. Mean annual precipitation for the study sites over the last 23 years
was 68-78.2 cm (Utah Snotel 2004). Most of the precipitation at these elevations comes as winter snow with up to one third coming from summer monsoons. Large mountain meadows are frequently interspersed among stands of aspen, conifers (*Picea engelmannii* and *Abies concolor* and *lasiocarpa*), and mixed aspen/conifer cover types. Soils are generally derived from sedimentary limestone parent materials.

Site Sampling

Mueggler (1988) defined 56 aspen community types (i.e., units of land with similar species dominance and composition) in the West, each with a different inherent potential to grow forage. Thirteen community types were sampled in this study in order to gain a perspective of how conifers in the stand influence the community’s ability to produce understory biomass. Appendix B contains a listing of the community types that we sampled. Mueggler’s (1988) Aspen Community Types of the Intermountain Region was used to select aspen community types that were common to the study areas selected and had varying potentials to produce understory biomass. Mueggler’s work was also used to place each study site sampled into a high or low potential category, based on the site’s inherent characteristics for producing understory biomass. It was also critical that sites with differing levels of conifer encroachment be selected for sampling to assess the decline in understory production, as the conifer component of the canopy increased. According to Mueggler’s community type key, when the conifer component of an aspen stand exceeds 10%, the community type changes. Therefore, sites with a heavy conifer component were sampled that had once been the same community type as those with little or no conifers.
At each sample site, a center point for transects was randomly chosen. Four 30-meter transect lines were established radiating from this center post, in the four cardinal directions. Transect lines were demarcated by the use of an engineering-style tape with metric units.

The sampling methods used included; weight estimate (Pechanec and Pickford 1937), reference unit (Kirmse and Norton 1985), point-intercept (Cook and Stubbendieck 1986), and tree B.A. (Husch et al. 1982) by species.

A 1.0-m² quadrat square frame was placed at 7.62-meter intervals along the right side of each transect, which yielded 16 quadrat placements per site. Herbaceous biomass in each quadrat was then estimated by the weight estimate technique. Pre-sampling work showed that this technique produced accurate and repeatable estimates of biomass. However, it required some training and calibrating to obtain accuracy. Each morning sampling began by making estimates of the weights (in grams) of herbaceous biomass present within the quadrat frame, by species. This estimate was then recorded and the actual weight measured by clipping the plants at ground level and weighing them with a hand-held scale. The first 2-4 plots measured each day served to “calibrate our eyes” to the forage biomass. Once these initial plots were done, only estimates were made of the forage within the remaining plots sampled that day. Each day, at least 2 samples of each plant species found in the area were collected, bagged, weighed, and brought back to a lab to be dried. This gave plant biomass on a dry-weight basis.

The technique used for estimating the biomass of shrubs was the reference unit method. Shrubs were sampled if they were rooted within the 3-sided quadrat frame as it was placed at each 7.62-meter interval. When a shrub was found within the frame, a
reference unit, or a couple of branches of current growth from the same species of shrub, but one outside the frame, was clipped. This reference unit was then compared to the shrub in the frame and an estimate was made at how many reference units the shrub contained. The weight of the reference unit was then measured on a hand-held scale. This weight was then multiplied by the number of reference units required to make up the shrub. Only the current year’s growth of shrub biomass was considered because it is the material that herbivores are able to utilize. All estimates were converted to a dry-weight basis.

A fundamental assumption of this study was that the amount of biomass produced varies as a function of the amount of conifers in the canopy. Hence, species composition and canopy coverage of the overstory was measured at each site. Canopy cover was measured from the ground by a line-point intercept technique. Cover readings were taken at 1-meter intervals along each transect, using a canopyometer (Fig. 1). The

Fig. 1. Illustration of the canopyometer used for point intercept data collection.
canopyometer is a device that facilitated point sampling of the tree canopy. Point sampling of the canopy can be difficult because of the height of the canopy above the observer. This presents the problem of having to strain one’s neck by looking up and the difficulty of focusing on a finite point from which to sample. The canopyometer solved both of these problems. It consisted of a wooden pole (2.5 cm diameter x 2 m length), rifle scope, and a mirror. The crosshairs in the scope allowed the observer to pinpoint one spot while the mirror relieved one from having to strain their neck because the image is viewed at the observer’s level as reflected in the mirror. The canopyometer was held vertically and placed at 1.0 - meter intervals along each of the transect lines (120 points per site). The observer sees the image of the tree canopy in the mirror and records the point intersected by the crosshairs as open sky, or by tree species. Data were then summarized and analyzed as absolute canopy cover, by species. For example if 30 points were intercepted by aspen canopy and 60 by a conifer species, out of 120 points total, on a particular transect, that would be reported as 25% aspen and 50% conifer cover. The BA of each tree species was measured using the Bitterlich technique (Husch et al. 1982). The angle gauge used had a factor of 10.

In addition to these measurements, the following information was recorded at each site: slope, aspect, elevation, and location in UTM units, using a surveyor’s compass and a Global Positioning System receiver. The field research took place during the summers of 2002 and 2003. During 2003, we were able to re-sample the 11 sites sampled in 2002, plus 16 additional sites, which gave a sample size of 27 for data taken in 2003.
Statistical Analyses

Understory biomass data were analyzed using PROC MIXED (SAS v8.2 1999). SAS code used for this procedure can be found in Appendix C. A predictive equation was developed using data from 2003, as this dataset had a larger sample size. This equation may be used to predict biomass production given a specified level of coniferous species present in the canopy. To prevent predicting biomass values below zero, data were transformed to a log scale. Preliminary statistical analysis also showed no statistical differences between high and low potential sites. As a result, we combined the data for these sites into one group, which yielded the predictive equation.

Economic data were analyzed using a partial budgeting technique (Kay and Edwards 1999). This technique was used to compare the value of the forage that is present today, with what would have been present if there had been no conifer encroachment, in terms of: a) grazing fee revenue to the USDA Forest Service and b) forage potentially marketed through the sale of livestock. The amount of additional forage that would have been available had absolute conifer cover in the canopy remained at 15% or less was calculated, using the mean understory biomass production from the study sites that had ≤15% conifer cover. In order to provide a range of possible additional understory biomass amounts that would have been realized had the aspen loss not occurred, calculations were run assuming three different levels of current understory biomass production for lost hectares of aspen (0, 60, and 187 kg/ha). Bartos and Campbell’s (1998) work was used for estimates on hectares of lost aspen. Their data indicates that 184,714 hectares of aspen have been lost to conifer succession on the two forests. Total available Animal Unit Months (AUMs) were then calculated for this forage
base, assuming 50% utilization and 272 kg/AUM (Holechek et al. 1998). A 3-month grazing season (July-September), was assumed in determining how many Animal Units these aspen sites could have supported with less than 15% absolute conifer cover in the tree canopy. Average calf body weight gains of 92.7 kg were used, based on data collected in a study done by Olson et al. (1999). This study took place in the same area as our study areas and was conducted during a typical grazing season for the area of mid-June to mid-September. Cow/calf pairs were grazed on aspen type grazing allotments and calves were weighed before and after the grazing season. These data were used because they represent results from cattle grazing regimes that are similar both spatially and temporally to the economic objectives of this study. The average calf body weight gains were multiplied by average 2003 selling prices for both steer and heifer calves ($2.23/kg and $2.07/kg, respectively) (USDA Agricultural Marketing Service 2004). With these prices the revenue that would have been generated had the conifer encroachment not occurred resulting in a higher available forage base and therefore allowed additional cow/calf pairs to be grazed was calculated (Appendix D). These additional AUMs were also multiplied by the current grazing fee of $1.43/AUM (USDA Forest Service 2004) to calculate revenue that would have been generated (for the current year) for the USDA Forest Service if the additional grazing had occurred in the absence of conifer encroachment.
CHAPTER IV
RESULTS AND DISCUSSION

Decline of Forage

Raw data collected from the study sites during the summers of 2002 and 2003 are presented in Appendix A. Absolute conifer cover in the canopy appeared to increase from 2002 to 2003 on seven of the 11 sites that were sampled both years (Table 1). These increases ranged from less than 1% to 3%, and a t-test showed that these differences were significant (P ≤ 0.05). Understory biomass production increased on nine of the 11 sites from 2002 to 2003 (Table 1). These increases ranged from 1% to 90%. Again, a t-test showed these numbers to be significant (P ≤ 0.05). Some of this increase in production can be attributed to higher amounts of precipitation in 2003 than in 2002. Total precipitation for 2002 was 36.6 cm, during 2003 a total of 58.7 cm were measured. Both of these years however, were below the 23 year average of 78.2 cm. These precipitation data were taken from the Utah Snotel (2004) Webster Flat station, which is within 10 km of sites sampled during both research years of 2002 and 2003. During 2002 study site understory biomass production ranged from 9 to 954 kg/ha across the 11 sites sampled. Absolute conifer cover ranged from a low of 0% to a high of 76%. Understory production for 2003 ranged from 10 to 1,482 kg/ha, while absolute conifer cover values were recorded from a high of 81% to a low of 0%. These data, from both years, show that as the conifer component of the tree canopy increases, understory biomass production decreases exponentially. Thus, the null hypothesis that understory production
Table 1. Changes in understory biomass production and conifer cover.

<table>
<thead>
<tr>
<th>Study site</th>
<th>2002 prod. kg/ha</th>
<th>2003 prod. kg/ha</th>
<th>%prod. Change</th>
<th>2002 % conifer</th>
<th>2003 % conifer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miner's Peak</td>
<td>954</td>
<td>1482</td>
<td>55%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Crystal #1</td>
<td>637</td>
<td>1208</td>
<td>90%</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Crystal Powerline</td>
<td>227</td>
<td>298</td>
<td>31%</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>Crystal #2</td>
<td>182</td>
<td>337</td>
<td>85%</td>
<td>50</td>
<td>52</td>
</tr>
<tr>
<td>Crystal #3</td>
<td>45</td>
<td>85</td>
<td>89%</td>
<td>76</td>
<td>75</td>
</tr>
<tr>
<td>Jim’s #1</td>
<td>227</td>
<td>198</td>
<td>-13%</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Dark Hollow</td>
<td>186</td>
<td>268</td>
<td>44%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Strips A</td>
<td>186</td>
<td>222</td>
<td>19%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Seth’s Site</td>
<td>182</td>
<td>173</td>
<td>-5%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Strips B</td>
<td>77</td>
<td>84</td>
<td>9%</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>Jim’s #2</td>
<td>9</td>
<td>10</td>
<td>11%</td>
<td>59</td>
<td>60</td>
</tr>
</tbody>
</table>

decreases as a linear function is rejected. Scatter diagrams of the data for 2002 and 2003 are shown respectively in Figures 2 and 3. The predictive equation based on the data from 2003 is \(y = (e^{(6.2516 - 0.0378 \times \%\ conifer)})*1.1204 \). Where “\(y \)” is the expected level of understory biomass production and “\(e \)” is a constant of approximately 2.71828. The line representing this equation is illustrated in Figure 4. The p-value for this data is less than 0.0001, indicating that it is highly probable that the slope of the line, drawn by the predictive equation is not zero. While the Proc Mixed procedure does not calculate an \(r^2 \) value, an “\(r^2 \) like” value of 0.9252 was calculated using the following equation (2): \(1-(\text{variance of the residuals/variance of log biomass}) \), or \(1-(0.1003/1.3402) \) (Turner, D.L. Rocky Mountain Research Station. Personal communication).

These data indicate that once coniferous species represent about 20% of absolute tree canopy cover the level of conifer encroachment in the canopy becomes the dominating factor determining how much understory biomass the stand is capable of
Fig. 2. Relationship of conifer canopy coverage (%) to understory biomass production. Original 2002 data points on high and low potential sites.
Fig. 3. Relationship of conifer canopy coverage (%) to understory biomass production. Original 2003 data points on high and low potential sites.
Fig. 4. Predicted relationship between absolute conifer cover and understory biomass production.
producing. When conifers represent less than this, or are absent, other site properties such as elevation, precipitation, aspect, soil type and depth, and the understory plant community determine the quantity of understory biomass produced. Supporting this assertion is the high level of variability in production among stands where conifers made up less than 10% of the canopy (see Figs. 2 and 3). These sites varied from 198 to 1,482 kg/ha during 2003 even within the same community types, and no relationship between canopy cover and understory biomass production was apparent. Figure 3, especially, illustrates this variability of understory production from sites with little or no conifer component. This finding is also corroborated by Harper's (1973) study mentioned in Chapter II, wherein he found that there was no relationship between the canopy coverage of pure aspen stands and their understory production.

Data acquired during two years with different levels of precipitation, both below normal, has presented some interesting information. The sites that increased the most in biomass production were generally those that had the least amount of absolute conifer cover. It appears that, given the lack of competition for resources from conifers, these aspen sites are able to respond readily to increased soil moisture. While some sites with heavy conifer encroachment did increase production between the 2 years overall production was already so low that any gains in production were of little consequence.

Conifers influence understory production in several ways. Competition for soil moisture, as mentioned, is an obvious one and obstructing precipitation from the soil is another. When snow falls on a stand with conifers, much of the snow is intercepted by branches and needles. This snow often sublimates into the atmosphere and is effectively lost from the system (Fisher and Binkley 2000). Water loss from higher levels of annual
evapotranspiration of conifers also contributes to less soil moisture available for
understory plant growth (Bartos and Campbell 1998). Thick conifer canopies are also
effective at blocking sunlight and hindering photosynthesis of understory species. This is
not so much the case in pure aspen stands. Sunlight is able to penetrate an aspen canopy
readily relative to a conifer canopy. This may be due, in part, to the aspen leaves’
tendency to move with any slight breeze or “quake” as in the common name quaking
aspen (Lambers et al. 1998).

During pre-sampling work, it was hypothesized that there would be different
levels in production among aspen stands with similar levels of conifer cover, yet with
different inherent site characteristics. Statistical analysis however, as mentioned, did not
support this. Additional studies may be needed to determine if a difference does indeed
exist. I believe that differences probably do exist in aspen stands with little or no conifer
component. However, as conifer cover increases, reductions in understory biomass are
so rapid and dependent on the conifer influence (and less on other characteristics), that
differences in levels of production due to other site properties all but disappear.

Economic Losses

Using the calculations described in the statistical analysis section (p. 10), and the
equation shown in Appendix D, it was calculated that had conifer encroachment been
limited to less than 15% absolute conifer cover, an additional $14,369,489 in revenue
could have been generated during the current year, in calf sales to livestock producers
that graze on the Fishlake and Dixie National Forests. This figure assumes that there is
absolutely no understory biomass production on the historic aspen sites that are now

*See re-calculation in Appendix D, pp. 35-36.
dominated by conifers. In reality, while production would be low, there would still be a small amount of forage produced on these sites. In order to account for this possibility, estimates of additional forage were made assuming two additional levels of current understory biomass production on these sites. These assumed levels of production were 60 and 187 kg/ha. These levels, (predicted by equation 1 on p. 13), correspond, respectively, with 60 and 30% of the canopy being coniferous species. Using these different levels of production allowed for a range of possible losses in revenue to be estimated. If the historic aspen sites now average 30% absolute cover by conifers in the canopy, then additional revenue would be $10,151,000. Assuming conifer coverage was 60% then additional revenue would be $13,015,811. It should be emphasized that these figures represent gross revenue, not profit. Furthermore, this revenue would only be realized by livestock producers if the additional forage was allocated totally to livestock grazing.

This additional grazing capacity could also have generated as much as $309,297 in the current year alone, if it was all allocated to livestock, in livestock grazing fees for the two forests. If current biomass production levels were at 60 and 187 kg/ha then additional revenue for the forests would only be $280,164 and $218,499. This additional biomass could also be allocated totally to other uses such as wildlife forage, watershed protection, etc. If this was the case, then additional grazing fee revenue for the Forests would be zero.

These estimates are based on very conservative numbers and the actual numbers may be much higher. The mean understory biomass production of 637 kg/ha was measured during a year when only 75% of normal precipitation fell, preceded by a year
when only 47% of normal was received. Other sources suggest that average
understory biomass production levels for aspen stands are typically much higher. For
example, Mueggler (1988) reported a mean of 1,095 kg/ha for aspen stands that he
sampled. Today’s livestock producers are continually struggling to maintain economic
viability and any additional revenue would be of great benefit. Furthermore, in a time
where many federal agencies are fighting to maintain budgets and complete their required
land management duties additional revenue would also be beneficial for them.
CHAPTER V
CONCLUSION AND RECOMMENDATIONS

With many demands for forage in the Intermountain West, including increasing elk herds and an on-going demand for livestock grazing, losing such prolific producers of forage as aspen stands does not bode well for the future of grazing animals on the forests. The results of this study suggest that when conifers occupy as little as 20% of a stand’s canopy a significant decline in understory biomass production results. This lost biomass would have provided needed feed for wild and domestic ungulates, and represents an economic loss to the stakeholders and land management agencies of our natural systems. Land managers need to take action now to prevent further decline of this valuable resource.

In order to maintain resources such as forage within aspen sites, the aspens themselves must remain dominant in the stand (Bartos and Campbell 1998). A study conducted by Ohms (2003) showed that decadent aspen stands were capable of regenerating if subjected to a disturbance such as partial cuts or fire. Disturbance of aspen stands, either human-induced or natural occurrences, may be necessary to revitalize aspen stands and recover some of the lost forage producing capabilities in historic aspens stands that are now dominated by coniferous species. Maintaining properly functioning aspen stands will help ensure that these systems will continue as prolific producers of forage for wildlife and domestic livestock. These recommendations should not be taken to suggest that a widespread extensive extermination of conifers should be conducted. Conifer stands themselves provide protective cover, shade, habitat, and commercial
products for wildlife, livestock, and humans. However, a balance of conifer and aspen cover should be maintained. This balance will be dependent on the management goals of a particular area.

pine forests, p. 13-18. In: E.T. Bartlett and D.R. Betters (eds.) Overstory-
understory relationships in western forests. Western Regional Res. Pub. 1.
Colorado State University, Ft. Collins, Co.

Harper, K.T. 1973. The influence of tree overstory on understory production and
composition in aspen forests of central Utah. Abstracts of papers, Soc. Range
Manage. annual meeting. Boise, Id. 26:22.

stocking rate, p. 190-227. In: M. Carnis (ed.) Range management principles and
practices. Prentice Hall, Upper Saddle River, N. J.

Husch, B., C.I. Miller, and T.W. Beers. 1982. Inventory using sampling with
New York.

Jameson, D.A. 1967. The relationship of tree overstory and herbaceous understory
vegetation. J. Range Manage. 20:247-249.

(ed.) Farm management. WCB McGraw-Hill.

dimensional analysis methods for two large shrubby species in the Caatinga

Appendix A

Attributes of study sites

2002 Data

<table>
<thead>
<tr>
<th>Site name</th>
<th>Area</th>
<th>UTM</th>
<th>% conifer</th>
<th>Dry weight kg/ha</th>
<th>Potential*</th>
<th>Elevation</th>
<th>Aspect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miner's Peak</td>
<td>Cedar Mtn</td>
<td>N 4158739 E</td>
<td>0</td>
<td>954</td>
<td>Hi</td>
<td>2657</td>
<td>NE</td>
</tr>
<tr>
<td>Crystal #1</td>
<td>Cedar City</td>
<td>N 4168607 E</td>
<td>4</td>
<td>637</td>
<td>Hi</td>
<td>2715</td>
<td>W</td>
</tr>
<tr>
<td>Crystal Powerline</td>
<td>Cedar City</td>
<td>N 4169281 E</td>
<td>19</td>
<td>227</td>
<td>Hi</td>
<td>2761</td>
<td>N</td>
</tr>
<tr>
<td>Crystal #2</td>
<td>Cedar City</td>
<td>N 4168520 E</td>
<td>50</td>
<td>182</td>
<td>Hi</td>
<td>2717</td>
<td>W</td>
</tr>
<tr>
<td>Crystal #3</td>
<td>Cedar City</td>
<td>N 4168483 E</td>
<td>76</td>
<td>45</td>
<td>Hi</td>
<td>2715</td>
<td>W</td>
</tr>
<tr>
<td>Jim's #1</td>
<td>Cedar City</td>
<td>N 4176228 E</td>
<td>1</td>
<td>227</td>
<td>Lo</td>
<td>2930</td>
<td>S</td>
</tr>
<tr>
<td>Dark Hollow</td>
<td>Cedar City</td>
<td>N 4184293 E</td>
<td>0</td>
<td>186</td>
<td>Lo</td>
<td>2731</td>
<td>W</td>
</tr>
<tr>
<td>Strips A</td>
<td>Cedar City</td>
<td>N 4162875 E</td>
<td>0</td>
<td>186</td>
<td>Lo</td>
<td>2964</td>
<td>NW</td>
</tr>
<tr>
<td>Seth's Site</td>
<td>Cedar City</td>
<td>N 4176153 E</td>
<td>0</td>
<td>182</td>
<td>Lo</td>
<td>2939</td>
<td>SE</td>
</tr>
<tr>
<td>Strips B</td>
<td>Cedar City</td>
<td>N 4162777 E</td>
<td>35</td>
<td>77</td>
<td>Lo</td>
<td>2954</td>
<td>W</td>
</tr>
<tr>
<td>Jim's #2</td>
<td>Cedar City</td>
<td>N 4176208 E</td>
<td>59</td>
<td>9</td>
<td>Lo</td>
<td>2932</td>
<td>S</td>
</tr>
<tr>
<td>Site Name</td>
<td>Area</td>
<td>UTM</td>
<td>% conifer</td>
<td>dry-weight kg/ha</td>
<td>Potential*</td>
<td>Elevation</td>
<td>Aspect</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------</td>
<td>------------------</td>
<td>------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>Miner's Peak</td>
<td>Cedar Mtn</td>
<td>N 4158739 E 856723</td>
<td>0</td>
<td>1482</td>
<td>Hi</td>
<td>2657</td>
<td>NE</td>
</tr>
<tr>
<td>Second Last</td>
<td>Richfield</td>
<td>N 4305014 E 965282</td>
<td>0</td>
<td>1013</td>
<td>Hi</td>
<td>2874</td>
<td>NE</td>
</tr>
<tr>
<td>Dale's Goose</td>
<td>Richfield</td>
<td>N 4306216 E 965718</td>
<td>0</td>
<td>926</td>
<td>Hi</td>
<td>2750</td>
<td>E</td>
</tr>
<tr>
<td>Little Deer</td>
<td>Richfield</td>
<td>N 4305695 E 965480</td>
<td>0</td>
<td>733</td>
<td>Hi</td>
<td>2834</td>
<td>NW</td>
</tr>
<tr>
<td>My Last</td>
<td>Richfield</td>
<td>N 4305273 E 965509</td>
<td>0</td>
<td>637</td>
<td>Hi</td>
<td>2838</td>
<td>E</td>
</tr>
<tr>
<td>Crystal #1</td>
<td>Cedar City</td>
<td>N 4168607 E 862778</td>
<td>5</td>
<td>1208</td>
<td>Hi</td>
<td>2715</td>
<td>W</td>
</tr>
<tr>
<td>Carson's Favorite</td>
<td>Richfield</td>
<td>N 4302352 E 965146</td>
<td>10</td>
<td>688</td>
<td>Hi</td>
<td>3019</td>
<td>E</td>
</tr>
<tr>
<td>Birdhouse</td>
<td>Richfield</td>
<td>N 4302600 E 964870</td>
<td>13</td>
<td>473</td>
<td>Hi</td>
<td>3035</td>
<td>E</td>
</tr>
<tr>
<td>Crystal Powerline</td>
<td>Cedar City</td>
<td>N 4169281 E 862559</td>
<td>23</td>
<td>298</td>
<td>Hi</td>
<td>2761</td>
<td>N</td>
</tr>
<tr>
<td>Bend in the Road</td>
<td>Richfield</td>
<td>N 4303627 E 965002</td>
<td>37</td>
<td>132</td>
<td>Hi</td>
<td>2939</td>
<td>N</td>
</tr>
<tr>
<td>Storm Site</td>
<td>Cedar City</td>
<td>Unavailable</td>
<td>47</td>
<td>152</td>
<td>Hi</td>
<td>unavailable</td>
<td>E</td>
</tr>
<tr>
<td>Crystal #2</td>
<td>Cedar City</td>
<td>N 4168520 E 862745</td>
<td>52</td>
<td>337</td>
<td>Hi</td>
<td>2717</td>
<td>W</td>
</tr>
<tr>
<td>Crystal #3</td>
<td>Cedar City</td>
<td>N 4168483 E 862789</td>
<td>75</td>
<td>85</td>
<td>Hi</td>
<td>2712</td>
<td>W</td>
</tr>
<tr>
<td>Dead Bobcat</td>
<td>Richfield</td>
<td>N 4272619 E 937813</td>
<td>0</td>
<td>604</td>
<td>Lo</td>
<td>2618</td>
<td>N</td>
</tr>
<tr>
<td>Ford Tough</td>
<td>Richfield</td>
<td>N 4269404 E 935070</td>
<td>0</td>
<td>510</td>
<td>Lo</td>
<td>2796</td>
<td>NW</td>
</tr>
<tr>
<td>Dark Hollow</td>
<td>Cedar City</td>
<td>N 4184293 E 870806</td>
<td>0</td>
<td>268</td>
<td>Lo</td>
<td>2731</td>
<td>W</td>
</tr>
<tr>
<td>Strips A</td>
<td>Cedar City</td>
<td>N 4162875 E 871544</td>
<td>0</td>
<td>222</td>
<td>Lo</td>
<td>2964</td>
<td>NW</td>
</tr>
<tr>
<td>Seth's Site</td>
<td>Cedar City</td>
<td>N 4178153 E 875271</td>
<td>0</td>
<td>173</td>
<td>Lo</td>
<td>2939</td>
<td>SE</td>
</tr>
<tr>
<td>Where's North</td>
<td>Richfield</td>
<td>N 4272195 E 937320</td>
<td>1</td>
<td>426</td>
<td>Lo</td>
<td>2667</td>
<td>E</td>
</tr>
<tr>
<td>Jim's #1</td>
<td>Cedar City</td>
<td>N 4176228 E 875513</td>
<td>4</td>
<td>198</td>
<td>Lo</td>
<td>2930</td>
<td>S</td>
</tr>
<tr>
<td>No Rules</td>
<td>Richfield</td>
<td>N 4265856 E 935933</td>
<td>20</td>
<td>232</td>
<td>Lo</td>
<td>2785</td>
<td>N</td>
</tr>
<tr>
<td>Carson's Last</td>
<td>Richfield</td>
<td>N 4265041 E 933918</td>
<td>20</td>
<td>149</td>
<td>Lo</td>
<td>2830</td>
<td>NE</td>
</tr>
<tr>
<td>Strips B</td>
<td>Cedar City</td>
<td>N 4162777 E 871471</td>
<td>36</td>
<td>84</td>
<td>Lo</td>
<td>2954</td>
<td>W</td>
</tr>
<tr>
<td>Prison Crew</td>
<td>Richfield</td>
<td>N 4267552 E 935135</td>
<td>37</td>
<td>148</td>
<td>Lo</td>
<td>2728</td>
<td>NE</td>
</tr>
<tr>
<td>Half-n-Half</td>
<td>Richfield</td>
<td>Unavailable</td>
<td>52</td>
<td>35</td>
<td>Lo</td>
<td>unavailable</td>
<td>N</td>
</tr>
<tr>
<td>Jim's #2</td>
<td>Cedar City</td>
<td>N 4176208 E 875584</td>
<td>60</td>
<td>10</td>
<td>Lo</td>
<td>2932</td>
<td>S</td>
</tr>
<tr>
<td>Daily Double</td>
<td>Richfield</td>
<td>N 4272109 E 937274</td>
<td>81</td>
<td>33</td>
<td>Lo</td>
<td>2659</td>
<td>E</td>
</tr>
</tbody>
</table>

See page 6.
Appendix B

Study site community types as defined by Mueggler (1988)

<table>
<thead>
<tr>
<th>Community Type</th>
<th>Vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miner’s Peak</td>
<td>Populus tremuloides/Tall forb</td>
</tr>
<tr>
<td>2nd Last</td>
<td>Populus tremuloides/Bromus carinatus</td>
</tr>
<tr>
<td>Dale’s Goose</td>
<td>Populus tremuloides/Bromus carinatus</td>
</tr>
<tr>
<td>Little Deer</td>
<td>Populus tremuloides/Bromus carinatus</td>
</tr>
<tr>
<td>My Last</td>
<td>Populus tremuloides/Bromus carinatus</td>
</tr>
<tr>
<td>Crystal Springs #1</td>
<td>Populus tremuloides/Bromus carinatus</td>
</tr>
<tr>
<td>Carson’s Favorite</td>
<td>Populus tremuloides/Bromus carinatus</td>
</tr>
<tr>
<td>Birdhouse</td>
<td>Populus tremuloides/Bromus carinatus</td>
</tr>
<tr>
<td>Crystal Springs P.</td>
<td>Populus tremuloides/Bromus carinatus</td>
</tr>
<tr>
<td>Bend in the Road</td>
<td>Populus tremuloides-Abies lasiocarpa/Tall forb</td>
</tr>
<tr>
<td>Storm Site</td>
<td>Populus tremuloides-Abies lasiocarpa/Tall forb</td>
</tr>
<tr>
<td>Crystal Springs #2</td>
<td>Populus tremuloides-Abies lasiocarpa/Symphoricarpus oreophilus/Tall forb</td>
</tr>
<tr>
<td>Crystal Springs #3</td>
<td>Unclassified Populus tremuloides-Abies lasiocarpa</td>
</tr>
<tr>
<td>Dead Bobcat</td>
<td>Populus tremuloides/Amelanchier alnifolia-Symphoricarpus oreophilus/Bromus carinatus</td>
</tr>
<tr>
<td>Ford Tough</td>
<td>Populus tremuloides/Amelanchier alnifolia-Symphoricarpus oreophilus/Bromus carinatus</td>
</tr>
<tr>
<td>Dark Hollow Trail</td>
<td>Populus tremuloides/Thalictrum fendleri</td>
</tr>
<tr>
<td>Strips #A</td>
<td>Populus tremuloides/Stipa comata</td>
</tr>
<tr>
<td>Seth’s Site</td>
<td>Populus tremuloides/Artemisia tridentata</td>
</tr>
<tr>
<td>Where’s North</td>
<td>Populus tremuloides/Symphoricarpus oreophilus/Poa pratensis</td>
</tr>
<tr>
<td>Jim’s #1</td>
<td>Populus tremuloides/Poa pratensis</td>
</tr>
<tr>
<td>No Rules</td>
<td>Populus tremuloides-Abies lasiocarpa/Symphoricarpus oreophilus/Thalictrum fendleri</td>
</tr>
<tr>
<td>Carson’s Last</td>
<td>Populus tremuloides-Abies lasiocarpa/Symphoricarpus oreophilus/Thalictrum fendleri</td>
</tr>
<tr>
<td>Strips #B</td>
<td>Unclassified Populus tremuloides-Abies lasiocarpa</td>
</tr>
<tr>
<td>Prison Crew</td>
<td>Populus tremuloides-Abies lasiocarpa/Carex rossii</td>
</tr>
<tr>
<td>Half</td>
<td>Populus tremuloides-Abies lasiocarpa/Carex rossii</td>
</tr>
<tr>
<td>Jim’s #2</td>
<td>Unclassified Populus tremuloides-Abies lasiocarpa</td>
</tr>
<tr>
<td>Daily Double</td>
<td>Unclassified Populus tremuloides-Abies lasiocarpa</td>
</tr>
</tbody>
</table>
Appendix C

SAS code for the PROC MIXED procedure

options ls=120 ps=67;

PROC IMPORT OUT=fulldata
 DATAFILE= "E:\data\Barton Stam\fulldata3.wk1"
 DBMS=WK1 REPLACE;
 GETNAMES=YES;
RUN;

data fulldata;
 set fulldata;
 logbiom=log(biomassd);
run;

proc print data=fulldata;
run;

title 'heterogeneous slope model for biomass on %conifer';
run;
proc mixed data=fulldata CL;
 class site_nam area potentia;
 model biomassd=potentia | pct_coni/outp=pred solution CL;
 random area(potentia);
run;

title2 'Check normality of residuals from MIXED model';
run;
proc univariate data=pred normal plot;
 var resid;
run;

title 'heterogeneous slope model for log(biomass) on %conifer';
run;
proc mixed data=fulldata CL;
 class site_nam area potentia;
 model logbiom=potentia | pct_coni/outp=pred solution CL;
 random area(potentia);
run;

title 'HOMOgeneous slope model for log(biomass) on %conifer';
run;
proc mixed data=fulldata CL;
 class site_nam area potentia;
model logbiom=potentia pct_coni/outp=pred solution CL;
random area(potentia);
run;

title 'HOMOgeneous slope & Intercept model for log(biomass) on %conifer';
run;
proc mixed data=fulldata CL;
class site_nam area potentia;
model logbiom=pct_coni/outp=pred solution CL;
random area(potentia);
estimate '5% conifer' int 1 pct_coni 5/CL;
estimate '10% conifer' int 1 pct_coni 10/CL;
estimate '20% conifer' int 1 pct_coni 20/CL;
estimate '30% conifer' int 1 pct_coni 30/CL;
estimate '40% conifer' int 1 pct_coni 40/CL;
estimate '50% conifer' int 1 pct_coni 50/CL;
estimate '60% conifer' int 1 pct_coni 60/CL;
estimate '70% conifer' int 1 pct_coni 70/CL;
estimate '80% conifer' int 1 pct_coni 80/CL;
estimate '90% conifer' int 1 pct_coni 90/CL;
estimate '95% conifer' int 1 pct_coni 95/CL;
ods output estimates=estimate;
run;

data pred;
set estimate;
*backtransform from log to biomass scale;
lower_log=lower;
lower+exp(lower);
estimate_log=estimate;
estimate=exp(estimate);
StdErr_log=stderr;
stderr=exp(stderr);
upper_log=upper;
upper=exp(upper);
rename label=pct_conifer;
drop df tvalue probt alpha;
run;

proc print data=pred;
run;

PROC EXPORT DATA= pred
OUTFILE= "e:\data\Barton Stram\pred.xls"
DBMS=EXCEL2000 REPLACE;
RUN;

title2 'Check normality of residuals from MIXED model';
run;
proc univariate data=pred normal plot;
 var resid;
run;

*do printer plot of predicted values and confidence limits;
proc plot data=pred;
 plot (lower estimate upper)*pct_conifer/overlay;
run;

*do higher resolution plot of predicted values and confidence limits;
symbol1 color=blue interpol=join value=none height=1;
symbol2 color=red interpol=join value=none height=1;
symbol3 color=blue interpol=join value=none height=1;
proc gplot data=pred;
 plot (lower estimate upper)*pct_conifer/overlay;
run;
Appendix D

Approach for calculating gross revenue lost due to conifer encroachment

A. Potential AUMs of forage not realized

Biomass lost = Hectares of lost aspen * Mean production for stands with < 15% conifer - forage remaining in hectares of lost aspen (0, 60, and 187 kg/ha)

\[
117,662,818 \text{ kg} = 184,714 \text{ ha} \times 637 \text{ kg/ha} - 0 \text{ kg/ha}
\]

\[
106,579,978 \text{ kg} = 184,714 \text{ ha} \times 637 \text{ kg/ha} - 184,714 \times 60 \text{ kg/ha}
\]

\[
83,121,300 \text{ kg} = 184,714 \text{ ha} \times 637 \text{ kg/ha} - 184,714 \times 187 \text{ kg/ha}
\]

Total available forage (without the conifer succession) = Biomass lost * 50% utilization

\[
58,831,409 \text{ kg} = 117,662,818 \text{ kg} \times .50
\]

\[
53,289,989 \text{ kg} = 106,579,978 \text{ kg} \times .50
\]

\[
41,560,650 \text{ kg} = 83,121,300 \text{ kg} \times .50
\]

Total AUMs = Total available forage / 272 kg/AUM (Holechek 1998)

\[
163,876
\]

216,292 AUMs = 58,831,409 kg / 272 kg/AUM

\[
148,440
\]

195,919 AUMs = 53,289,989 kg / 272 kg/AUM

\[
115,768
\]

152,797 AUMs = 41,560,650 kg / 272 kg/AUM

B. Number of marketable calves

Allowable animal units (AUs) for 3-month grazing season = Total AUMs / 3

\[
64,625 / 163,876
\]

72,097 AUs = 216,292 AUMs / 3 months

USFS used a factor of 1.22 AUMs for cow/calf pairs on summer range.
- 65,306 AUs= 195,919 AUMs / 3 months
- 38,559 AUs= 115,768 AUMs / 3 months
- 50,932 AUs= 152,797 AUMs / 3 months

Number of steer calves that would be marketable = Allowable animal units / 2

Number of heifer calves that would be marketable = Allowable animal units / 2

C. Potential cattle weight gain from “lost” forage biomass

Total pounds of body weight gained by all steer calves = Number of steer calves * Average body weight gain while on aspen type grazing allotments

Total pounds of body weight gained by all heifer calves = Number of heifer calves * Average body weight gain while on aspen type grazing allotments

* Assumes a 50:50 sex ratio of males:females
D. Gross revenue from unrealized cattle weight gain

Gross revenue from steer calves = Total pounds of body weight gained by all steer calves * market price

$7,452,084 = 3,341,742 kg * $2.23/kg

$6,750,060 = 3,026,933 kg * $2.23/kg

$5,264,356 = 2,360,698 kg * $2.23/kg

Gross revenue from heifer calves = Total pounds of body weight gained by all heifer calves * market price

$6,917,405 = 3,341,742 kg * $2.07/kg

$6,265,751 = 3,026,933 kg * $2.07/kg

$4,886,644 = 2,360,698 kg * $2.07/kg

Total lost gross revenue = Market price of body weight gain by steer calves + heifer calves =

$7,452,084 + $6,917,405 = $14,369,489

$6,750,060 + $6,265,751 = $13,015,811

$5,264,356 + $4,886,644 = $10,151,000

The additional gross revenue generated by lost production due to conifer encroachment would be $14,369,489 if there is no current understory biomass production on the hectares of historic aspen stands. In reality, there is some current level of production. If this production is 60 or 187 kg/ha, an additional $13,015,811, or $10,151,000,
respectively, could be generated had the conifer coverage in these hectares remained at \(\leq 15\% \).