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Regeneration response and seedling bank dynamics on a Dendroctonus
rufipennis-killed Picea engelmannii landscape

R. Justin DeRose & James N. Long

Abstract
Question: How does regeneration response to a host-
specific, high-severity, infrequent Dendroctonus rufi-
pennis outbreak differ from our conceptualization
of high-severity, infrequent/low-severity, frequent
disturbance regimes in Picea engelmannii-Abies lasio-
carpa communities?
Location: Southern Utah, USA.
Methods: One hundred and seven plots across a high-
elevation P. engelmannii forest were sampled to re-
construct pre-outbreak overstory and seedling bank
densities, and calculate their associated metrics of
diversity. Decade of establishment by seedling bank
trees indicated ‘‘chronic’’ and ‘‘pulse’’ regenerators.
Results: The post-outbreak overstory and seedling
bank were dominated by A. lasiocarpa. Although
Pinus flexilis, Pinus ponderosa, Picea pungens, and
Psuedotsuga menziesii were present in the overstory,
they were virtually absent in the seedling bank.
Seedling bank recruitment of A. lasiocarpa and P.
engelmannii has been occurring chronically for at
least the last �205 and �152 years, respectively. A
pulse response of seedling bank Populus tremuloides
was apparent; however, results were complicated by
intense ungulate browsing.
Conclusions: Despite some similarities to the high-
severity, infrequent/low-severity, frequent concep-
tualization of regeneration response to disturbance,
the high-severity D. rufipennis outbreak is best
described by explicitly considering host specificity
and severity. Although, the outbreak simulta-
neously promoted both a pulse of P. tremuloides
and a release of chronically regenerated A. lasiocar-
pa, the P. tremuloides response was generally
masked by ungulate browsing, and the regeneration
response came overwhelmingly from the A. lasiocar-
pa seedling bank. In this landscape, once dominated
by P. engelmannii, the chronically regenerating seed-
ling bank, typically thought to take advantage of

canopy gaps associated with low-severity distur-
bances, is poised to dominate forest reorganization
in response to the host-specific outbreak.

Keywords: Advance regeneration; Aspen herbivory;
Browsing pressure; Disturbance ecology; Engel-
mann spruce; Regeneration ecology; Spruce beetle;
Subalpine fir.

Nomenclature: Wood(1982); Flora of North Amer-
ica Editorial Committee eds. (1993).

Introduction

Regeneration response to disturbance is an in-
tegral part of forest stand dynamics and is
commonly described as a function of the dis-
turbance regime severity. Descriptors of disturbance
magnitude such as severity (White & Pickett 1985)
are inversely related to disturbance frequency
(White & Jentsch 2001). Disturbance regimes are
often characterized as high severity and infrequent,
low severity and frequent, or mixed in severity and
frequency (Turner et al. 2001). Characteristics of
mixed-severity disturbances are intricately linked to
gap size but are typically intermediate to high- and
low-severity disturbances. Regeneration response to
mixed-severity disturbance is extremely variable and
is often called ‘‘gap phase’’ (Veblen 1992). In this
paper, we explicitly focus on the comparison be-
tween regeneration response associated with high-
severity and low-severity disturbances.

High-severity, infrequent disturbances typically
create increased growing space, high light levels, ex-
pose mineral soil, and reduce competition (Oliver
1981). Early successional, shade-intolerant species
respond to the rapid environmental change caused
by the disturbance with a ‘‘pulse’’ of regeneration.
As a result, regeneration can be characterized as an
event, with establishment occurring over a fairly
short time period. In contrast, low-severity, frequent
disturbances are commonly associated with limited
growing space, low light levels, limited exposed mi-
neral soil, and a high level of competition with
existing vegetation (Veblen 1986). In response to
low-severity disturbances, seedlings of late succes-
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sional, shade-tolerant species, capable of existing in
very low light conditions, gradually accumulate as
advance regeneration beneath the overstory. This
continuous, or ‘‘chronic’’, establishment of regenera-
tion can be characterized as a process whereby a
seedling bank (i.e., trees o5 cm diameter at breast
height) gradually develops as advance regeneration in
the absence of high-severity disturbance.

Disturbance regimes and their characteristic re-
generation responses are typically associated with a
particular forest type. For example, Pinus contorta
var. latifolia forests are usually comprised of even-
aged cohorts resulting from a high-severity, stand-
replacing fire (Oliver 1981), whereas subalpine con-
ifer forests in British Columbia are multi-aged as a
result of frequent, low-severity mortality of canopy
dominants (Lertzman & Krebs 1991).

Southern Rocky Mountain Picea engelmannii-
Abies lasiocarpa communities are high elevation ex-
tensions of the boreal forest (Peet 2000) and are
dominated by P. engelmannii, A. lasiocarpa, and
their common associates including Populus tremu-
loides, P. contorta, and less commonly Pinus flexilis
and Pseudotsuga menziesii (Long 1994). These
forests are typically many centuries old (Aplet
et al. 1988); their origin usually attributed to high-
severity, infrequent, stand-replacing fires that are
indiscriminate with respect to species composition
and result in large patches of mineral soil available
for establishment (Bloomberg 1950). Shortly after a
disturbance, early successional, shade-intolerant
species such as P. tremuloides or P. contorta, which
have biological legacies on-site (root stocks or canopy
seed banks), are able to quickly establish the site. This
establishment, representing a pulse of regeneration,
results in domination by these species for 100 years or
more. In the long absence of another high-severity
disturbance, a suite of disturbances such as root dis-
ease, bark beetles, and wind throw, often act in
combination to create small, spatially separated gaps
by causing species-specific mortality of individuals.
The continuous creation of small patches favors
chronic regeneration of shade-tolerant P. engelmannii
and A. lasiocarpa in the seedling bank (Veblen 1986).
Differences in gap creation can confer an advantage
to one species or another e.g., exposed mineral soil
associated with a tip-up mound will favor P. en-
gelmannii; in contrast, A. lasiocarpa is more likely to
establish without exposed mineral soil. The process of
chronic regeneration will eventually result in a dense
seedling bank.

Recently (1990s), a catastrophic (sensu Hardy
2005) Dendroctonus rufipennis outbreak occurred on
theMarkagunt Plateau in southern Utah. In this once

P. engelmannii-dominated forest, the D. rufipennis
outbreak resulted in nearly complete overstory mor-
tality (DeRose & Long 2007). High-severity D.
rufipennis outbreaks (epidemics) selectively kill only
overstory P. engelmannii, leaving the non-host overs-
tory and the seedling bank to respond. Regeneration
response to D. rufipennis outbreaks and other dis-
turbances such as catastrophic wind are not
adequately described by the conventional disturbance
regime conceptualization, which does not take into
account disturbance host specificity.

In this study, we describe seedling bank dynamics
and regeneration response in the wake of a host-
specific, high-severity D. rufipennis outbreak. We
analyzed species-specific age structures and growth
dynamics of the seedling bank to ascertain whether the
regeneration response to the outbreak was more char-
acteristically a pulse (high-severity) or chronic (low-
severity) disturbance. We also analyzed the influence
of pre-outbreak, non-host overstory abundance and
composition on the post-outbreak seedling bank to
evaluate their roles in regeneration response.

Our objective is to characterize regeneration
response to a D. rufipennis outbreak, determine how
it may or may not differ from the high-severity,
infrequent/low-severity, frequent conceptualization
of disturbance regimes in P. engelmannii-A. lasio-
carpa communities, and to determine how an
extreme D. rufipennis outbreak may influence forest
stand dynamics.

Methods

Study area

The study area is located in the subalpine P.
engelmannii-A. lasiocarpa zone in the Dixie National
Forest, Cedar City Ranger District, on the Marka-
gunt Plateau in southwestern Utah (Fig. 1). Prior to
the mid-1990s D. rufipennis outbreak, the forest was
dominated by P. engelmannii (Fig. 2; DeRose &
Long 2007). Minor components of the forest in-
cluded A. lasiocarpa and P. tremuloides at higher
elevations, and P. flexilis, P. menziesii, P. pungens,
and Pinus ponderosa at lower elevations. Shrub spe-
cies included Ribes montigenum and Mertensia
arizonica, with abundant Artemisia spp. in adjacent
subalpine meadows. Elevation of the study sites
ranged from 2600 to 3300ma.s.l. (Table 1, Fig. 1).
Tertiary deposits of the Claron Lake Formation are
responsible for the reddish silty soil over much of the
western and northern parts of the plateau (Chronic
1990). Recent (1000-5000 years BP) conspicuous
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basalt flows cover a large portion of the central
part of the plateau and are underlain by Tertiary
volcanic rock (Chronic 1990). Annual precipitation
varied between 369 and 1709mm over the period
1948-2005. Average annual temperature varied

between � 0.9 and 3.11C over the same period
(http://www.nrcs.usda.gov/). A general description
of regional climate for the plateau can be found in
DeRose & Long (2009).

Field sampling

Study sites were carefully chosen where no evi-
dence of past large-scale anthropogenic canopy
disturbance was evident (i.e., logging). Each
sampled stand appeared homogeneous in terms of
overstory structure. Most stands were recently
dominated by P. engelmannii, with composition
varying from �50% to �95% P. engelmannii basal
area (m2 ha� 1 at 1.3m) prior to the outbreak (ex-
cept for Rainbow Meadows and Sydney Valley,
which were dominated by A. lasiocarpa). Past ele-
vated beetle populations have been reported as early
as 1937 (cited in Hebertson & Jenkins 2008), and a
large-scale outbreak occurred during 1916-1918
�120 km east-northeast of the study site on the
Aquarius Plateau (Mielke 1950).

Depending on overall stand size, three to 10
plots were measured at each site during the summers
of 2005, 2006, and 2007. A grid sampling network
was established in each stand from a randomly lo-
cated starting point and azimuth. Variable radius
plot sampling was used to assess overstory trees
[45 cm diameter at breast height (DBH)] (Bell &
Dilworth 2002). DBH and height were measured for
each overstory tree, and species and status (live or
dead) were noted. Since the outbreak was recent
(1990s), nearly every beetle-killed tree was still
standing (�99.2%); therefore, both live and dead
standing trees were measured to indicate beetle-
caused mortality (Veblen et al. 1991b). Rate-of-fall
for beetle-killed P. engelmannii is thought to be site-
specific (E.G. Hebertson, pers. comm., fall 2008, US
Forest Service, Forest Health Protection Specialist),
and the rate found on nearby Aquarius Plateau
(�0.6% per year Mielke 1950) was consistent with
our observations. P. engelmannii were examined to
determine whether mortality was caused by the re-
cent D. rufipennis outbreak, which would be
indicated by the presence of beetle galleries on the
surface of the bole and emergence holes in the bark.
Although foresters often differentiate seedlings
(o2m in height) from saplings (42m in height but
o5 cm in DBH), for ease of interpretation in this
study all trees 45 cm in height and o5 cm in DBH
were referred to as the seedling bank. The seedling
bank was measured on fixed-area subplots (1-3-m
radius based on site-specific seedling bank density)
in the center of each overstory plot. Height and

Fig. 1. Map of the Markagunt Plateau showing location
of study sites. Study site labels are as follows (see Table 1):
ASH – Ashdown, BPT – Bristlecone Pine Trail, HCK –
North Hancock, HPT – Hancock Peak Trail, LC – Lava
Cone, LF – Lava Flow, MF – Midway Face, MID –
Midway Point, MTH – Mammoth Creek, NLS – Navajo
Lake, RBW – Rainbow Meadows, SNO – Snotel, SF –
South Face, SYD, Sydney Valley.

Fig. 2. Composite diameter distribution for all 14 sites
constructed from pre-outbreak live overstory (45-cm
DBH) trees per hectare by 10-cm diameter class, showing
dominance by Picea engelmannii. The 801 category in-
cludes P. engelmannii up to 130 cm. Other includes, in
order of abundance: Pseudotsuga menziesii, Pinus flexilis,
Pinus ponderosa, Picea pungens, Abies concolor.
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basal diameter were measured and species noted be-
fore cross-sections were removed at ground level
from every tree in the subplot, including root suck-
ers of P. tremuloides. In the lab, cross-sections were
sanded with progressively finer sandpaper before
annual rings were counted under a microscope.

A total of 2093 seedling bank trees were mea-
sured in 107 plots on 14 sites across the plateau and
used for abundance estimation and comparisons of
the overstory composition to seedling bank com-
position (Table 1). Of these trees, 1850 were
successfully aged. In order of abundance they were:

A. lasiocarpa 1535 (83%); P. tremuloides 249 (13%);
P. engelmannii 62 (4%); P. pungens three (o0.01%);
and P. ponderosa one (o0.001%). Seedling bank age
structure and height-age relationships were analyzed
using 1846 of these trees (three P. pungens and one
P. ponderosa were removed). Although found in the
overstory, neither P. menziesii nor P. flexilis were
present in the seedling bank (Fig. 3).

Abundance by species in the seedling bank
was calculated on a per hectare basis and averaged
across plots within sites. Although the seedling
bank was measured after the outbreak, it reflected

Table 1. Site and seedling bank attributes for the sampled stands. �Other: 1 – Pinus ponderosa, 3 – Picea pungens.

Site No.
plots

Elevation range
(m a.s.l.)

Slope
(%)

Aspect Seedling bank densitym� 2

Abies
lasiocarpa

Populus
tremuloides

Picea
engelmannii

Other�

Ashdown 9 3176-3219 0-5 North 1.48 – 0.03 –
Bristlecone Pine
Trail

4 2974-3038 15-40 Northwest 0.16 – – –

North Hancock 10 3054-3127 3-30 North 2.55 – 0.37 –
Hancock Peak Trail 10 3062-3101 0-5 Southeast 0.70 1.31 0.06 –
Lava Cone 10 2926-3032 0-20 Variable 1.00 0.29 0.03 –
Lava Flow 3 3125-3147 5-10 Southwest 4.44 0.44 0.11 –
Midway Face 3 2980-3172 5-10 North 1.56 2.33 0.56 –
Midway Point 10 2931-2988 0-3 North 2.33 0.71 0.08 –
Mammoth Creek 10 2618-2723 15-40 North 0.16 0.16 0.02 o0.001
Navajo Lake 10 2845-2914 10-30 Northeast 0.24 0.03 0.02 –
Rainbow Meadow 5 3179-3233 2-10 South 3.07 0.43 0.10 –
Snotel 10 3154-3250 5-45 North 0.21 – 0.02 –
South Face 3 2990-2993 15-30 South 2.00 1.11 – –
Sydney Valley 10 3073-3117 3-15 Southwest 4.48 0.13 0.08 –

Averages: 1.74 0.50 0.11 o0.001

Fig. 3. Pre-outbreak overstory trees per hectare, averaged per site, reconstructed from field data plotted over post-outbreak
seedling bank trees per hectare by species shows: (1) the paucity of Picea engelmannii in the seedling bank, (2) remaining
overstory species after the host-specific beetle outbreak. Individual sites are named and divided by dotted lines (see Table 1).
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pre-outbreak composition because age data revealed
only a small percentage of sampled trees recruited
after the outbreak; and of these, most were sprout-
ing P. tremuloides. To facilitate analysis, recon-
structed pre-outbreak overstory trees per hectare
(TPHA) were plotted over seedling bank TPHA
(Fig. 3). Overstory abundance of non-host species
reflects the presence of biological legacies and
potential seed sources post-disturbance.

To quantify timing of establishment by indivi-
dual species, we generated a frequency distribution
of seedling bank recruitment by pooling age data
into decadal classes of origin. Evaluating the dis-
tribution for consistent or episodic seedling bank
recruitment revealed whether a species more typi-
cally exhibited chronic or pulse regeneration. Long
drawn-out establishment indicated availability for
response to overstory disturbance at any time since
the earliest decade of seedling establishment,
whereas spikes in origin dates indicated rapid esta-
blishment of a large number of individuals i.e., a
pulse, likely a response triggered by rapid environ-
mental change. Seedling bank tree-ring counts in
our analysis were not cross-dated and are therefore
conservative.

Composite species-specific height growth rates
were estimated by pooling all measured seedling
bank individuals and fitting linear models of height
and age. Using the fitted equation, average potential
growth rates were used to suggest the potential
of each species to accede to the canopy. After
preliminary inspection, P. tremuloides data were
split into two groups: one associated with lava flow
substrates and another representing an absence of
lava flow substrate. The lava flow substrate popula-
tion is almost entirely from the Lava Cone site,
which is surrounded in every direction by �1.6 km
of recent (1000-5000 years) lava flows. Lava flows
are composed of large blocky boulders of basalt,
making ungulate access both currently and histori-
cally impossible. Therefore, lava flow populations
represented natural exclosures that have never
experienced ungulate browsing, in contrast to the
other sites. To evaluate the possibility for P. tremu-
loides canopy accession, approximate browsing
height thresholds were juxtaposed over height
growth patterns. Height thresholds were: 200 cm for
Cervus elaphus (elk) (Romme et al. 1995), 130 cm for
Odocoileus hemionus (deer), and 115 cm for domestic
Ovis aries (sheep) (Sampson 1923).

Biological legacies of the pre-outbreak forest
were represented by remnant, live overstory trees
which are a residual seed source, and by a seedling
bank of advance regeneration. Relationships be-

tween these components were assessed to indicate
potential scenarios of future forests and successional
dynamics. To determine if pre-outbreak overstory
composition influenced the seedling bank composi-
tion post-outbreak, three metrics were calculated for
both the overstory and seedling bank.

(1) Berger–Parker dominance (D)

D ¼ NðMAXÞ=N;

where N(MAX) is the number of individuals in the lar-
gest group, and N is the total number of individuals
on a given plot.

(2) Shannon diversity (H0)

H 0 ¼
Xn

i¼1
pi; ln pi;

where pi is the proportion of species i and ln is the
natural log.

(3) Shannon evenness (EH),

EH ¼ H 0=HðMAXÞ;

where H0 is defined above, H(MAX) is maximum H0.
In order for metrics to be comparable between

the overstory and the seedling bank, each was calcu-
lated using estimated TPHA. Relationships were
assessed by calculating Pearson correlation coeffi-
cients. Any predictable relationship could potentially
yield important information regarding the hastening
or delay of succession as a result of the D. rufipennis
outbreak.

Results

It is likely that A. lasiocarpa has been con-
tinuously establishing in the seedling bank for many
centuries. We measured individuals with establish-
ment dates to 1800 (age range 6-205 years). A
decreasing percentage of those individuals persisted
through time because of the balance between estab-
lishment and mortality that occurs in the seedling
bank when canopy accession is restricted (Fig. 4).
P. engelmannii also likely had continuous establish-
ment for centuries. We measured individuals as old
as 152 years, although P. engelmannii never re-
presented 41% of the seedling bank in any given
decade (Fig. 4). Clearly both A. lasiocarpa and
P. engelmannii were chronic regenerators prior to
the D. rufipennis outbreak, although at drastically
different levels (Fig. 4). P. tremuloides exhibited a
pulse response immediately following the death of
canopy P. engelmannii associated with the recent
outbreak, which varied by year across the plateau
but was manifest in the spikes of establishment seen
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in the 1990s and 2000s (Fig. 4). Although P. tremu-
loides ranged in age from 1 to 36 years, the few
individuals present during the 1970s and 1980s
established under ungulate-free circumstances
on lava substrates. The only other seedling bank
species sampled were one P. ponderosa and three
P. pungens, all at Mammoth Creek. The three
P. pungens were recruited into the seedling bank in
1900 (1) and 1940 (2).

The chronically regenerating species A. lasio-
carpa and P. engelmannii had similar height growth
patterns of 1.2 cm yr� 1 (Figs 5 and 6); although for
A. lasiocarpa they were extremely variable and
ranged from �8 too0.25 cmyr� 1. Average growth
rate suggested that by the time �2.0-3.5m in height
was reached, the species were capable of accession to
the overstory (threshold of 5-cm DBH used in this
study); however seedling bank ages (Fig. 4) sug-
gested canopy accession is a very rare event. The
post-outbreak P. tremuloides (o20 years) from two
different populations, lava (non-browsed) and non-
lava (browsed), have drastically different net height
growth rates (Fig. 7). It is clear P. tremuloides from
all sites without a lava substrate were unable to at-
tain heights above the minimum browsing
threshold, masking the expected pulse response to
the high-severity D. rufipennis disturbance.

The outbreak resulted in �96% mortality of
overstory P. engelmannii (R.J. DeRose, unpubl.

data). Furthermore, almost none of the seedling
bank established after the outbreak. As a result, the
site-by-site comparison of pre-outbreak overstory
TPHA and post-outbreak seedling bank TPHA
highlights the drastic reduction in P. engelmannii site
dominance as a result of the outbreak (Figs 2 and 3).
In some stands there were virtually no P. en-
gelmannii in the seedling bank (e.g., Bristlecone Pine
Trail, South Face) whereas in a few stands there was
some P. engelmannii regeneration (e.g., Midway
Face, North Hancock); however, there is a paucity
of P. engelmannii across the 14 sites. In most cases,
A. lasiocarpa was well represented in the overstory
and abundant in the seedling bank. Indeed, the spe-
cies composition of the seedling bank is almost
certainly indicative of potential future dominance

Fig. 4. Frequency distribution (percentage of total seed-
lings) of decade of establishment by species for the
seedling bank. Chronic regeneration of Abies lasiocarpa
dated to 1800. Picea engelmannii establishment dated to
1850, but was chronically occurring from 1910 to 2000. A
pulse of Populus tremuloides establishment occurred in
1990 and 2000. Picea pungens was recruited once in 1900
and twice in 1940 (not shown in legend).

Fig. 5. Height (cm)-age (years) relationship for Abies la-
siocarpa. Data pooled across all sites.

Fig. 6. Height (cm)-age (years) relationship for Picea en-
gelmannii. Data pooled across all sites.
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by A. lasiocarpa and, to a lesser degree, P. tremu-
loides (Fig. 3).

Comparisons of three metrics relating to com-
position revealed little relationship between pre-
outbreak overstory and post-outbreak seedling
bank composition. In all cases, regressions of the
metrics between overstory and seedling bank com-
ponents showed no significant relationship (a5 0.05
level), and there was little correlation among the
metrics (Table 2). Only for A. lasiocarpa was there a
relationship overall between overstory and seedling
bank abundance (R2 5 0.41, Po0.001). Many plots
contained only A. lasiocarpa, i.e., D5 1 and for
these plots H05 0, which indicated complete dom-
inance and no diversity, respectively. Similarly,
there was no relationship in EH between the overs-
tory and the seedling bank.

Discussion

Our purpose in this study was to characterize
regeneration response to a D. rufipennis outbreak
and to describe its effects on stand dynamics.
We also evaluated how it compared with the
high-severity, infrequent/low-severity, frequent con-
ceptualization of P. engelmannii-A. lasiocarpa
disturbance regimes. We found the regeneration re-
sponse to the outbreak did not fit the conceptual
disturbance regime model. Instead, the host-specific,
high-severity, infrequent D. rufipennis outbreak pro-
moted a regeneration response dominated by the
pre-existing seedling bank.

Had the recent high-severity disturbance been a
stand-replacing fire instead of a host-specific beetle
outbreak, most individuals in both the overstory and
the seedling bank would have been killed, regardless
of species, not just P. engelmannii. The resulting for-
est reorganization would have included a pulse of
P. tremuloides, vigorously resprouting from root
suckers on sites where rootstocks were present prior
to the fire. In many P. engelmannii-A. lasiocarpa for-
ests P. contorta also responds favorably to stand-
replacing fire; however, the Markagunt Plateau is
outside the geographic range of this species. It is
possible that mature, thick bark P. menziesii, and, to
a lesser extent, P. flexiliswould survive the fire in rare
refugia, and be available as seed sources. Somewhat
counter-intuitively, it is possible that a stand-repla-
cing fire would have been more advantageous for
P. engelmannii recolonization, since post-fire there is
a window of establishment possibility i.e., the ‘‘colo-
nization phase’’ prior to the P. engelmannii
‘‘exclusion phase’’ (sensu Aplet et al. 1988), and it is
likely fire is what initially regenerated at least some of
the recently killed stands on the Markagunt Plateau
(DeRose & Long 2007). In addition, a large-scale
fire would have exposed mineral soil, necessary for
P. engelmannii establishment (e.g., see Kulakowski &
Veblen 2006), and the seed source would have come
from biological legacies on rocky outcrops and in
moist refugia. Finally, a stand-replacing fire would
have killed most canopy and seedling bank A. lasio-
carpa, a drastically different outcome than the recent
D. rufipennis outbreak (Fig. 3). The result would be
few A. lasiocarpa legacies and a possible lengthening
of the time (decades) beforeA. lasiocarpa regenerated
on the burned site (Little et al. 1994).

In the absence of a high-severity disturbance,
the Markagunt Plateau would eventually begin to
have gap-forming disturbances, in which primarily
mature trees, individually or in small groups, would
be killed. The continuous creation of small patches

Fig. 7. Height (cm)-age (years) relationships for post-
outbreak (o20 years) Populus tremuloides across the
Markagunt Plateau. Aspen height growth rate calculated
separately for sites with (absence of lava flow) and without
(lava flow substrate) browsing pressure, to show the po-
tential difference due to grazing history. See text for
explanation. Regression lines plotted to suggest average
height growth rates.

Table 2. Correlation coefficients for overstory and seed-
ling bank diversity metrics.

Overstory Seedling bank

D H0 EH D H0 EH

Overstory
D 1.0
H0 � 0.95 1.0
EH � 0.84 0.81 1.0

Seedling bank
D 0.13 � 0.16 � 0.07 1.0
H0 � 0.10 0.12 � 0.04 � 0.94 1.0
EH 0.12 � 0.13 0.05 � 0.90 0.96 1.0
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would favor the chronic regeneration of shade-
tolerant P. engelmannii and A. lasiocarpa in the
seedling bank (Veblen 1986). Gaps with tip-up
mounds, dead and down wood (Zielonka 2006), or
mineral soil would favor P. engelmannii establish-
ment, whereas gaps due to broken stems or crowns
and thick litter layers would favor A. lasiocarpa. In
the continued absence of a high-severity dis-
turbance, the process of chronically regenerating
species would have maintained a multi-aged P. en-
gelmannii-A. lasiocarpa forest, where species
coexistence would be mediated by a balance between
long-lived P. engelmannii and prolifically regenerat-
ing A. lasiocarpa (Veblen 1986; Aplet et al. 1988).

Regeneration response to some disturbance re-
gimes does not necessarily fit the high-severity,
infrequent/low-severity, frequent model. For ex-
ample, mixed-severity disturbance regimes operate
at different spatial and temporal scales. Fire regimes
in Rocky Mountain P. menziesii forests create spa-
tial heterogeneity of burned patches on the
landscape (Klenner et al. 2008). Catastrophic wind
and bark beetle outbreaks are disturbances that are
more difficult to characterize with the conventional
disturbance regime conceptual model. Although
high severity and infrequent, they are both funda-
mentally different from stand-replacing fire. Like
fire, severe wind storms are not fundamentally spe-
cies-specific, and create large patches of growing
space (Foster & Boose 1992). However, wind storms
mostly affect overstory individuals, leaving biologi-
cal legacies such as shade-tolerant, late seral species,
which have chronically established in the seedling
bank and can persist in low light conditions until
released by canopy disturbance. Regeneration re-
sponse to high-severity wind throw is likely a
combination of new establishment of pulse species
and a release of chronic species from the seedling
bank (Cooper-Ellis et al. 1999; Kulakowski &
Veblen 2003).

Unlike both catastrophic wind and stand-re-
placing fire, the high-severity D. rufipennis outbreak
on the Markagunt Plateau resulted in beetle
populations that selectively killed only overstory
P. engelmannii, leaving the non-host overstory trees
and the seedling bank to respond. Moreover, prior
to the outbreak the canopy was heavily dominated
by dense, mature (many centuries old) P. en-
gelmannii with a sub-canopy of A. lasiocarpa (Fig.
2), so that when the outbreak killed the dominant P.
engelmannii it left almost entirely A. lasiocarpa in
both the overstory and seedling bank (Figs 3 and 4).
The dominance of A. lasiocarpa in both the overs-
tory and seedling bank (in terms of TPHA) is likely

the reason metrics of pre-outbreak overstory and
post-outbreak seedling bank composition were un-
related (Table 2), not unlike that found by Lecomte
et al. (2005). Overstory P. engelmannii were rare or
completely absent from our sites post-outbreak, and
since seed-bearing P. engelmannii exhibit irregular
years of good seed production (Long 1994) and do
not form a soil seed bank that persists longer than 9
months (Greene et al. 1999), seed from P. engelmannii
will not effectively contribute to the future forest.
Overstory biological legacies of species other than A.
lasiocarpa, such asP. tremuloides and, less commonly,
P. menziesii and P. flexilis, occurred on the plateau
(Fig. 3); however, they were rare and unlikely to ef-
fectively contribute to the regeneration response. In
Canada, Astrup et al. (2008) found little evidence for
a post-Dendroctonus ponderosae outbreak pulse of re-
generation, as would be expected after fire, and
instead, concluded that the response was likely domi-
nated by previously established individuals (advance
regeneration) composed almost entirely of A. lasio-
carpa. In contrast to our data andAstrup et al. (2008),
Axelson et al. (2009) found D. ponderosae-affected
P. contorta forests had adequate representation of live
P. contorta in the canopy (29%) and sub-canopy
(25%) post-outbreak that would contribute to forest
reorganization.

A regeneration response to the recent outbreak
characteristic of low-severity, frequent disturbance
was evident in our data. The process of chronic seed-
ling bank regeneration has likely been occurring for
centuries (Fig. 4); however, it was much more pro-
nounced for A. lasiocarpa than for P. engelmannii,
which is consistent with their relative shade tolerances
(Kobe & Coates 1997). Moreover, the large difference
in numbers between these two species suggested A.
lasiocarpa was better able to establish in the thick lit-
ter associated with this P. engelmannii-A. lasiocarpa
forest floor (Noble & Alexander 1977), and likely re-
lied on a long-lived seedling bank to maintain its
position as a sub-canopy associate of P. engelmannii
(Veblen 1986; Antos & Parish 2002). In contrast, P.
engelmannii has more exacting seedbed requirements
and, as reflected in our data, only rarely establishes,
probably when an appropriate microsite becomes
available. Indeed, P. engelmannii regeneration has
been found to be limited to sites with thin to no litter
layer (Noble & Alexander 1977; Knapp & Smith
1982). The bell-shaped age frequency distribution of
the chronic regenerators was likely a result of the
gradual mortality of most of the seedling bank over
time, suggesting they cannot survive indefinitely
(Fig. 4). However, our data were not inconsistent with
the observation by Veblen et al. (1991a) of an overall
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increase in seedling bank A. lasiocarpa in general in
P. engelmannii-A. lasiocarpa communities of Rocky
Mountain National Park during the last 100 years,
possibly as a result of increased regional moisture.

In contrast to a D. rufipennis outbreak, dis-
turbances that expose mineral soil increase the
likelihood of P. engelmannii establishment. Canopy
gaps in old-growth forests as a result of low-severity,
gap-phase dynamics create and maintain the neces-
sary seedbed conditions (i.e., fallen logs, tip-up
mounds, and mineral soil) for P. engelmannii estab-
lishment and also allow it to increase its
representation in the seedling bank (Kulakowski &
Veblen 2003). There was limited evidence of pit and
mound topography on our sites (R.J. DeRose, in
prep.), which may partially explain the very low
numbers of P. engelmannii in the seedling bank. Re-
latively low abundances of P. engelmannii have been
found in other systems; e.g., Schulze et al. (2005)
suggested seedling bank density of Picea obovata in
the Dark Taiga forest ranged from 100 to 400
TPHA but did not state over what time period these
trees established. Similarly, Antos & Parish (2002)
found 7.6% of the P. engelmannii-A. lasiocarpa for-
est seedling bank was P. engelmannii in British
Columbia. If we assume the �1% establishment of
P. engelmannii per decade on our sites in the mid- to
late-1900s (from Fig. 4) represented average decadal
recruitment into the seedling bank, then �50
seedlingsha� 1 yr� 1 became established, whereas the
�10% establishment, on average, of A. lasiocarpa
over the same time period translated into �550
seedlingsha� 1 yr� 1. Therefore, although A. lasio-
carpa exhibits a more rapid extinction in numbers
over time than P. engelmannii (from right to left on
Fig. 4), it maintained much larger quantities in the
seedling bank overall. Furthermore, although overall
seedling bank abundances appeared high enough to
be adequate for forest regeneration (Fig. 3, sensuNigh
et al. (2008), in beetle-killed P. contorta),A. lasiocarpa
makes up a vast majority of that total. Antos et al.
(2000) suggested the paucity of P. engelmannii ob-
served on two sites in British Columbia is partially
offset by its’ increased height growth; however, we
found no height growth advantage for P. engelmannii
in our data (Figs 5 and 6).

In contrast to A. lasiocarpa and P. engelmannii,
the regeneration response of P. tremuloides was a
characteristic pulse, as expected given the high-
severity 1990s beetle outbreak (Fig. 4). Nevertheless,
with the exception of sites with a lava flow substrate
(i.e., Lava Cone and Mammoth Creek), virtually
none of the P. tremuloides pulse achieved heights
above the minimum browsing threshold (Fig. 7).

P. tremuloides on lava flow substrates reflect height
growth in the absence of browsing, whereas the bal-
ance of P. tremuloides on the plateau are simply
unlikely to attain appropriate height for canopy ac-
cession due to browsing pressure from both
domestic and native ungulates. Odocoileus hemionus
(deer), Cervus elaphus (elk), Ovis aries (domestic
sheep), and Bos spp. (domestic cattle) are primarily
responsible for browsing pressure on theMarkagunt
Plateau. In general, O. aries browse choice is similar
to O. hemionus, with a preference for leaves and
tender stems, whereas C. elaphus eat a more varied
diet. As a result, O. aries browsing should directly
increase the grass component by removing the her-
baceous component that the C. elaphus prefer;
however, if there are too many O. aries, C. elaphus
might have to find something else to eat (i.e., P. tre-
muloides; Sampson 1923). In addition to O. aries,
if Bos spp. are present they will compete with
C. elaphus for grass, further pushing C. elaphus to
rely on P. tremuloides. Indeed, recent work has
found evidence of top-down regulation of P. tremu-
loides by C. elaphus in Yellowstone National Park
(Halofsky & Ripple 2008), where increased P. tre-
muloides growth has resulted from the coupling of
recent fire and reduced C. elaphus herbivory, pre-
sumably from increased Canis lupus (wolf) presence
(Halofsky et al. 2008).

In sharp contrast to other large-scale, high-
severity disturbance types such as fire, the recent
D. rufipennis outbreak did not destroy the non-host
overstory or seedling bank, nor did it create en-
vironmental conditions generally associated with
pulse regeneration of early seral species as we would
expect, given the conventional disturbance regime
conceptualization. Instead, the loss of the dominant
overstory P. engelmannii has opened growing space
for the few non-host overstory species, where they
occur, and released the seedling bank of primarily
A. lasiocarpa, which has been chronically regenerat-
ing for centuries. Although P. tremuloides exhibited
a pulse regeneration response to the outbreak, it will
not dominate post-outbreak stands (except on lava
substrates) because of intense browsing pressure.
In this once P. engelmannii-dominated landscape,
the relatively few residual, non-host overstory trees
will not be able to fully reoccupy the growing space;
instead, the seedling bank will play the primary
role in regeneration response. The chronically
regenerating seedling bank, typically associated with
canopy gaps, created by low-severity disturbances,
is posed to dominate forest reorganization in
response to the high-severity, host-specific D. rufi-
pennis outbreak.
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The regeneration response to this high-severity,
host-specific outbreak may not be typical of what has
happened previously on our site. However, such aty-
pical regeneration response in western North America
might become more common in the future due to
changing bark beetle dynamics. Beetle outbreaks,
both D. rufipennis on the Kenai Peninsula of Alaska
(Berg et al. 2006) and D. ponderosae in western Ca-
nada (Wulder et al. 2006) and northern Colorado (D.
Kulakowski & T.T. Veblen, unpubl. report), are af-
fecting larger areas than previously documented.
Increasing area of susceptible hosts, predicted shifts in
D. rufipennis populations from one generation every 2
years to one generation in a single year (Bentz et al.
submitted), and a predicted shift in P. engelmannii
habitat to higher elevations (Rehfeldt et al. 2006) may
all contribute to altered disturbance dynamics of P.
engelmannii and a reduction in area of P. engelmannii
forest in the western US.
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