Document Type

Article

Journal/Book Title

Journal of Chemical Physics

Publication Date

1987

Volume

87

First Page

2214

Last Page

2224

DOI

10.1063/1.453148

Abstract

Frequencies and intensities are calculated by ab initio methods for all vibrational modes of the 1:1 H3X–HF and 1:2 H3X–HF–HF complexes (X=N,P). The HF stretching frequencies are subject to red shifts, roughly proportional to the strength of the H bond, and to manyfold increases in intensity. Although the intramolecular frequency shifts within the proton acceptors are relatively modest, the intensities of the NH3 stretches are magnified by several orders of magnitude as a result of H bonding (in contrast to PH3 which exhibits little sensitivity in this regard). The frequencies and intensities corresponding to bending of the H3X–HF H‐bond rise with increasing H‐bond strength while the properties of the other intermolecular modes appear somewhat anomalous at first sight. The intensity patterns are analyzed by means of atomic polar tensors which reveal that intensification of the proton donor stretch is chiefly due to increasing charge flux associated with H‐bond formation. The different behavior of the N–H and P–H stretching intensities is attributed to the opposite sign of the hydrogen atomic charges in the two molecules. As a general rule, low intensities can be expected for intermolecular modes with the exception of those which involve motions of hydrogens that appreciably alter the magnitude or direction of a subunit’s dipole moment.

Comments

Originally published by American Institute of Physics in the Journal of Chemical Physics.

Publisher's PDF can be accessed through the remote link.

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.