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Missing The Warning Signs?

The Case of “Yellow Air Day” Advisories in Northern Utah

Arthur J. Caplan∗

Department of Applied Economics

Utah State University

August 17, 2021

Abstract

Using a dataset consisting of daily vehicle trips, PM2.5 concentrations, along with a host of climactic

control variables, we test the hypothesis that “yellow air day” advisories provided by the Utah Division

of Air Quality resulted in subsequent reductions in vehicle trips taken during northern Utah’s winter-

inversion seasons in the early 2000s. Winter inversions occur in northern Utah when climactic conditions

are such that PM2.5 concentrations (derived mainly from vehicle emissions) become trapped in the lower

atmosphere, leading to unhealthy air quality (concentrations of at least 35 µg/m3) over a span of what

are called “red air days”. When concentrations rise to between 15 and 25 µg/m3 on their way to the

35 µg/m3 threshold, the region’s residents are informed via several different media sources and road

signage that the region is experiencing a yellow air day, and urged to reduce their vehicle usage during

the day. Our results suggest that yellow air day advisories have been at best weak, at worst perverse,

measures for reducing vehicle usage on yellow air days and ultimately for mitigating the occurrence of

red air day episodes during northern Utah’s winter inversion season.

∗Professor, Department of Applied Economics, Utah State University, 4835 Old Main Hill, Logan, Utah 84322-4835. Email:
arthur.caplan@usu.edu. This study is funded in part by the Utah Agricultural Experiment Station, UTA0-1334.



1 Introduction

When it comes to protecting local environments, regulators and policymakers often find themselves in the

unenviable position of having to choose between “hard” and “soft” policies aimed at altering their citizens’

externality-causing behaviors. Hard policies refer to taxation, rationing of threatened resources (e.g., via a

cap-and-trade program or the setting of an environmental standard), or subsidization of abatement technol-

gies – policies that either mandate a new, environmentally benign behavior or alter the economic tradeoff

associated with the existing externality-causing behavior (e.g., via raising the relative price of that behavior).

To the contrary, soft policies rely on educating the public about an existing externality, and encouraging its

mitigation through voluntary adjustments in behavior without providing an economic incentive to do so.

For example, eco-labeling is a soft policy that provides consumers with pertinent information about a prod-

uct’s environmental impact at point of purchase (i.e., on the product’s label), with the tacit encouragement

that consumers choose “greener” products (c.f., Potter et al., 2021; Rihn et al., 2019; Shumacher, 2010)1

Information dissemination via a clearinghouse to both firms and consumers, or specifically to firms via

demonstration projects, technical assistance, newsletters, seminars, and field days, represents another soft

policy approach (c.f., Ribaudo and Horan, 1999; Hamilton, 1995; Terry and Yandle, 1997; de Marchi and

Hamilton, 2006).2

This paper investigates the efficacy of a third type of soft policy, whereby a regulatory authority is-

sues an environmental advisory (a.k.a., alert or warning) with the short-term goal of protecting its citi-

zens from an existing environmental harm, and, similar to ecolabeling and information-dissemination, with

1In their systematic review of the ecolabeling literature – encompassing studies of ecolabels presented as text, logo, or a com-
bination of the two, and messages promoting organic, environmentally sustainable, and low-to-no greenhouse gas embodying food
products – Potter et al. (2021) conclude that ecolabels help motivate consumers to choose greener products. Experimental evidence
provided by Rihn et al. (2019) suggests that ecolabel format (i.e., text vs. logo) influences consumers visual attention and, concomi-
tantly, product valuation. Logos capture relatively more visual attention than text ecolabels, which in turn increases respondents
bids for ecolabeled products. Shumacher (2010) finds that demand for ecolabeled goods is higher among environmentally conscious
consumers than price-oriented consumers. Kaiser and Edwards-Jones (2006) caution that a myriad of issues bedevil the impact of
ecolabeling in marine fisheries, issues pertaining to a general lack of consumer concern for marine fishes and sustainable fisheries,
the absence of guaranteed, continued financial benefits to participating fishers, and difficulties associated with quality assurance
(i.e., monitoring compliance of marine fisheries).

2Hamilton (1995) was the first to show that shareholders in firms that self-reported their toxic emissions via the U.S. Envi-
ronmental Protection Agency’s (EPA’s) Toxic Release Inventory (TRI) experienced abnormally negative returns on the day the
information was first publicly released. With respect to actual firm-level emissions in response to the TRI, Terry and Yandle (1997)
find that, all else equal, lower per-capita emissions levels were recorded in more densely populated areas of the country. According
to de Marchi and Hamilton (2006), subsequent decreases in self-reported emissions in the TRI were not always matched by similar
reductions in measured concentrations from EPA monitors. With respect to the control of nonpoint source water pollution, Ribaudo
and Horan (1999) find that propitious conditions for information dissemination exist when (1) actions that improve water quality
also increase firm profitability, (2) firms have strong altruistic or stewardship motives to begin with, or (3) the on-farm costs of
water quality impairments are sufficiently large. However, none of these three conditions guarantees an expected improvement in
water quality.
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the longer-term goal of mitigating the human behaviors that cause the harm. As with ecolabeling and

information-dissemination, empirical questions abound. To what extent might an advisory reduce citizens’

exposure to environmental harm and, more importantly from the soft policy perspective, trigger a reduction

in externality-causing behaviors? In the case of water pollution, for example, the questions are what effect

does a beach advisory have on a swimmer’s decision to take a plunge in contaminated water? What effect

does a fish consumption advisory have on angler’s decision to cast a line into a contaminated lake or river?

And to what extent do changes in these individual behaviors translate into a reduction in a water source’s

contamination level? In terms of air pollution, what effect does an air quality advisory have on people’s

decisions to exercise outdoors or commute to work by bicycle, mass transit, or automobile?

In answer to the latter question, the current paper adds to a relatively small set of previous empirical

studies by investigating the effect of repeated air quality advisories issued during northern Utah’s winter

inversion seasons in the early 2000s, when elevated PM2.5 concentrations tied mainly to region-wide vehicle

usage sporadically exceeded the EPA’s National Ambient Air Quality Standards (NAAQS), causing “red air

day” episodes. As elaborated on in Section 2, these episodes were often dramatic in their scope. Hence, our

study area and period of analysis provide an opportune setting within which to measure the effectiveness of

an air quality alert program. Furthermore, because the red air day episodes are seasonal and sporadic within

a given season, intra- and inter-episode dynamic responses to an advisory, in the form of “alert fatigue”, can

be conveniently measured. Alert fatigue occurs when contemporaneous, or immediate changes in human

behavior – happening in response to the issuance of an air quality advisory – fade over time, i.e., when

individuals eventually revert back to their original behavior patterns (Saberian et al., 2017).

Air quality advisory programs are a common form of soft policy for metropolitan areas that are in non-

attainment of the NAAQS (Fujii et al., 2009; Moser and Bamberg, et al., 2008). The advisory programs pub-

licize local air quality conditions on a daily basis. The conditions are typically categorized as color-coded,

ordinal rankings and accompanied by descriptions of corresponding health implications and desired public

actions to mitigate the problem. In the case of northern Utah’s advisory program for PM2.5 concentrations,

one of three color-coded alerts was provided daily to Utah citizens by the Utah Department of Environmen-

tal Quality (UDEQ) reflecting localized (county-wide) air quality conditions. The alerts were disseminated

through a wide variety of news outlets (newspapers, television, radio, emails, and various internet sites) on

the day of rather than day before measured PM2.5 concentrations.3 The color green indicated “good” air

3Similar to Tribby et al. (2013) and Cummings and Walker (2000), Utah’s advisories were disseminated “day of”, and were
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quality, with “no action required”, yellow indicated “moderate” air quality with “voluntary reductions in the

use of wood/coal stoves, vehicle travel, and industrial emissions” recommended, and the color red indicated

“unhealthy air for sensitive groups” with a “mandatory ban on wood/coal stove use and voluntary reductions

for vehicle travel and industrial emissions” recommended (c.f., Hollenhorst, 2021). Thus, during our study

period a yellow air day is clearly interpretable as an air quality advisory. It warns citizens of an impending

red air day episode and recommends avoidance behaviors that can be taken on an individual basis, such as

reducing vehicle trips or travel speeds, carpooling, or using alternative transportation modes; behaviors that

alleviate the negative impacts of pollution on a personal level and simultaneously help alleviate the problem

region-wide.

Previous studies report small or no reductions in vehicle usage (and concomitantly small or no increases

in the use of alternative transportation modes) in response to soft policies such as air quality advisories,

which has led Bamberg et al. (2011) and Noonan (2011) to interpret the literature on soft policies as be-

ing guardedly optimistic about their effectiveness.4 For instance, Welch et al. (2005) find no substantial

increase in overall ridership on Chicago Transit Authority (CTA) trains during ozone alert days, although

they report increases during peak commuting periods and decreases during non-peak hours.5 Using a quasi-

experimental design, Cutter and Neidell (2009) find decreases in daily traffic counts, but no increase in

public transportation ridership during alert days in the San Francisco Bay Area of California. Using a data-

driven traffic forecasting model, Cummings and Walker (2000) find no significant traffic reductions in 13

non-attainment counties in the Atlanta, Georgia metropolitan area during ozone alert days.6 Nevertheless,

meta-analyses conducted by Fujii et al. (2009) and Moser and Bamberg (2008) suggest statistically signifi-

cant reductions in vehicle usage in response to soft policies.7

As Noonan (2011) points out, by their very nature air quality advisories send conflicting messages. One

thus not as peremptory as “day-before” advisories would otherwise have been. We nevertheless test for the existence of potential
day-before effects in Section 6, as their existence would suggest that vehicle users possibly base their decisions on expectations that
an advisory will be issued, e.g., in response to evening news reports on the radio and television that predict ensuing poor air quality,
or information on current PM2.5 concentrations available from various websites.

4Noonan (2011) argues that air quality advisories can impact behavior, mostly among sensitive groups such as the elderly, and
for high-exposure activities such as outdoor exercise. In other words, advisory programs do not alter behavior uniformly in a given
population; impacts vary across individuals, contexts, and activities. In fact, some of these behavioral impacts may be perverse in
terms of mitigating the underlying effects of vehicle emissions, e.g., by inducing a greater reliance on automobiles on alert days in
order to reduce exposure to poor air quality.

5Cutter and Neidell (2009) point out that Welch et al.’s (2005) standard errors were not adjusted to account for observing
multiple stations per hour per day, and are therefore likely under-estimated.

6Cummings and Walker’s (2000) finding was later echoed by Henry and Gordon’s (2003) analysis of telephone survey responses
from Atlanta residents.

7Moser and Bamberg (2008) estimate an 11% reduction across 141 studies spanning workplace travel plans, school travel plans,
and travel awareness campaigns.
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message persuades individuals to voluntarily reduce their vehicle usage in order to mitigate collective health

and environmental damages associated with poor air quality, while another message prompts individuals to

limit their exposure to outdoor air. The first message therefore encourages less vehicle use, e.g., by switching

from driving automobiles to walking, riding a bicycle, or taking mass transit, while the second encourages

greater vehicle usage as a means to limit exposure (taking public transportation typically requires additional

time outdoors walking to and from a transit station and waiting outdoors for a bus or train to arrive). To the

extent that enough individuals heed the second message more than the first, we should therefore expect an

air quality advisory to increase vehicle use region-wide – an unanticipated outcome we explore theoretically

in Section 4.

In this paper, we analyze daily administrative data on region-wide traffic volumes and PM2.5 concentra-

tions spanning northern Utah’s winter-inversion seasons from 2002-2012, a decade during which the region

was in non-attainment status for PM2.5 concentrations. Based upon several different empirical specifications

that inter alia control for autocorrelation in our model’s error structure and potential endogeneity associated

with yellow air day advisories, we find evidence of a heterogeneous relationship between yellow air day

advisories and region-wide vehicle trips. In our baseline models we find that, on average, one-day lagged

advisories have a negative impact on vehicle trips. However, this negative impact is greatly reduced in mag-

nitude when the advisories are issued on weekdays and Saturdays, in some perverse cases turning positive.

We also find no evidence of intra-seasonal alert fatigue. In our more disaggregated models we find addi-

tional instances of the advisory’s relatively meager negative impact on vehicle usage in Cache Valley, which

again under certain circumstances (specifically, during certain days of the week and later years during our

study period) exhibits a perverse positive effect. The later-year effect is indicative of possible inter-seasonal

alert fatigue.

The next section expounds upon three previous studies most relevant to ours – Cutter and Neidell (2009),

Saberian et al. (2017), and Tribby et al. (2013) – with the goal of placing our study’s contribution in the

context of the existing literature. Section 3 describes our study area, northern Utah. Section 4 discusses

the theoretical underpinnings of our main hypothesis, in particular how and under what circumstances we

should expect yellow air day advisories to instigate region-wide reductions in vehicle trips with the aim

of preempting the onset of red air day episodes. This discussion is premised upon a conceptual model

developed in Appendix A. Section 5 describes and summarizes our data. Section 6 presents the results of

our empirical analysis, and Section 7 concludes.
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2 Literature Review

Cutter and Neidell (2009) provide an early analysis of the efficacy of air quality advisory programs, in

particular San Francisco Bay metropolitan area’s Spare the Air (STA) program implemented in the early

2000s. Under the STA program, advisories were issued on days when ground-level ozone was predicted

to exceed the NAAQS. The authors apply a regression discontinuity (RD) design to traffic and weather

data from 2001-2004 to identify the effect of STA on region-wide transportation choices across days and

times of day. They estimate that STA reduces total daily traffic volume by 2.5% - 3.5%, with the largest

effect occurring during and just after morning commuting hours.8 The STA has no statistical effect on total

daily public transit use, but borderline statistically significant effects during peak commute times. Further,

the authors find statistically significant decreases in traffic during and immediately after morning commute

hours, statistically insignificant traffic responses throughout the middle of the day and into the evening rush

hour, but then statistically significant decreases after 8 pm. Cutter and Neidell interpret this latter result as

evidence that discretionary trips, as opposed to commuter trips, respond to STA advisories. All results are

robust to alternative specifications of the RD design and the inclusion of traffic monitor and public transit

station fixed effects.

As described in Section 5, our data for the current study is aggregated to a daily – rather than disag-

gregated to an hourly – time-step. As such, we do not assess advisory effects on an hourly basis. We take

results such as Cutter and Neidell’s – in particular, that discretionary vehicle trips tend to be more responsive

than commuting trips, as one would naturally expect – as underpinning an average daily effect, which is the

effect we expressly seek to measure in our study. For one thing, focusing on the average effect reflects the

full extent of northern Utah’s reliance on yellow air day advisories as the sole means of regulating vehicle

usage during its winter inversion seasons. The advisory’s message was universal in this regard: regardless of

whether you use your vehicle for commuting or discretionary purposes, drive it less often during yellow air

8This result – of the STA’s statistically negative effect on the Bay area’s traffic volume – is perhaps the most widely cited
finding of statistical significance in the literature. More recently, Zou (2021) finds that “pollution gaps”, which exist in areas of
the US where pollution concentrations are measured intermittently by regulatory authorities (in specific, once every six days of
the week), are excerbated when advisories accompany relatively high concentrations on days during which the concentrations are
measured, i.e., on “on-days”. Pollution gaps occur when, all else equal, concentrations are lower on on-days than “off-days”, i.e.,
days when concentrations are not measured by regulatory authorities (but are measured by the researcher using satellite data). Zou’s
empirical model detects 1.6% less particulate pollution during on-days than off-days. Further, there is a 10% higher likelihood that
an advisory is issued on on-days, and the advisories are associated with pollution gaps of 5% to 7% (as compared with the average
1.6% gap). This evidence leads Zou to conclude that gaming by the regulatory authorities most likely reflects short-term cutbacks
of polluting activities during critical times, e.g., when a county’s noncompliance risk is high. Advisories are used strategically by
the authorities to widen the pollution gap.
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days. Thus, measuring the advisory program’s average effect is consistent with, and the most relevant test

of, the regulation’s main objective. Further, the nature of our data permits relatively robust estimation of an

average effect. We utilize daily data for winter inversion seasons spanning ten years, a period of time during

which northern Utah residents experienced frequent yet intermittent issuance of advisories in response to

significant variation in PM2.5 concentrations.

With respect to use of the Bay area’s public transport system (Bay Area Rapid Transit, or BART), Cutter

and Neidell find instances of decreases in BART use daily from 2 to 4 pm, with the 3 pm estimate statisti-

cally significant in certain specifications. They postulate that since the STA program provides information

about expected air quality at a level where health concerns may arise, people may have responded to alerts

by reducing their BART trips in order to lower their exposure to pollution. Ozone levels peak around 3

p.m., so the decrease in BART ridership during these hours coupled with no change in traffic volumes is

demonstrative of avoidance behavior in the cancellation of public transit trips. Data limitations preclude us

from measuring public transit responses to the yellow air day advisories in northern Utah.9

In addition to providing a benchmark for comparison with this study’s empirical results, Cutter and

Neidell’s research design also offers useful methodological comparisons. As they point out, potential con-

founding factors are obviated under the RD design when unobservable factors either do not vary or evolve

smoothly around the STA trigger rule in the same manner as observed covariates (in their case within bands

of 0.01 and 0.02 ppm of the STA trigger concentration level).10 Hence, the RD design is suitable for causal

inference in this case. In our study, we utilize the instrumental variable (IV) approach for causal inference

– which is a commonly used approach to mitigate potential endogeneity in data pertaining to voluntary be-

havior – for two main reasons. First, as discussed in Section 6, our instruments are “strong” (Angrist et al.,

1996). Second, our ‘non-discontinuous’ approach permits an investigation of alert fatigue, whereas the RD

design does not.

Although Saberian et al. (2017) estimate the effect of day-before, city-wide air quality advisories on a

different behavior than vehicle usage – strenuous outdoor activities, in specific bicycling – several aspects

of their econometric strategy are worthy of emulation. As for their empirical results, the authors find a

9Although its bus service is free to the public, northern Utah’s transit system is for the most part limited to the region’s major
city, Logan. The system’s (Cache Valley Transit Authority’s) limited service area and hours of operation and relatively slow travel
speeds stands in stark contrast to the Bay area’s interurban rapid-transit system, which is ranked as the fifth busiest rapid transit
system in the US (World Atlas, 2021).

10Cutter and Neidell’s evidence supports the former condition, i.e., that unobservable factors do not vary around the trigger
concentration level. See Lee and Lemieux (2010) for survey of the RD method.
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relatively large, statistically significant reduction in cycling among riders in Sydney, Australia during a

five-year period, 2008-2013. The reduction ranges between 14% and 35%, which is larger in magnitude on

weekends than on weekdays (suggesting a larger impact on leisure cyclists as opposed to commuter cyclists)

and diminishes to between zero and 2% as a consequence of alert fatigue.11

Saberian et al. (2017) estimate both OLS and IV models (their instrument for the IV model, the oc-

currence and proximity of bushfires, is shown to be a “strong” instrument, in that it negatively impacts

Sydney’s air quality index (AQI) but has no direct influence on cycling behavior other than through its effect

on the AQI, i.e., bushfire activity is orthogonal to other unobservable factors affecting cycling behavior.12.

To account for potential alert fatigue, they follow Zivin and Neidell’s (2009) approach of introducing an

interaction term consisting of contemporaneous and one-day lag dummy variables that respectively equal

one if an advisory was issued on that day, zero otherwise. As discussed further in Section 6, we also adopt

this approach.

Most similar to our study, Tribby et al. (2013) integrate a decade (2001 – 2011) of daily traffic counter

data for Salt Lake and Davis counties (located in the Wasatch Front region of Utah), with data on air quality

advisory status and meteorological data to control for weather effects. The authors test for advisory effects

on vehicle usage during both the winter months, when PM2.5 concentrations tend to be elevated, and the

summer months, when ground level ozone levels are elevated.13 We henceforth discuss Tribby et al.’s

results for wintertime PM2.5 concentrations, since these are most relevant to our study’s focus on northern

Utah’s winter-inversion season.

Tribbey et al. find evidence suggesting that yellow air day advisories have perverse effects on vehicle

usage – yellow air days are associated with higher traffic volume relative to green air days. Specifically,

traffic volume is 12% and 10% higher on yellow air days falling on Fridays and Saturdays, respectively, and

almost 6% higher during Mondays-Thursdays. These results are robust to controlling for the variation in

weather and number of days since the last green air day. The number of days since the last green air day –

Tribbey et al.’s control variable for alert fatigue – is found to be statistically insignificant.

11In a series of robustness checks, Saberian et al. find a roughly 40% reduction in leisure cycling in response to an alert, compared
with only a 20% reduction in commuter cycling. With respect to the measurement of alert fatigue, the authors caution that because
the number of consecutive-day alerts in their data is minimal – occurring only seven times during the five-year study period – the
precision of their estimate is concomitantly diminished. As described in Section 6, the number of consecutive-day alerts in our data
is markedly higher than Saberian et al.’s.

12In other words, bushfire activity satisfies the exclusion restriction (c.f., Angrist et al., 1996)
13Similar to Cache Valley in northern Utah, Salt Lake and Davis counties were in non-compliance with the NAAQS for PM2.5

concentrations, as well as for ozone concentrations during their study period.
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Because of the relatively large number of automatic traffic recorders (ATRs) and their dispersed locations

throughout Salt Lake and Davis Counties, the authors conduct a disaggregated analysis of their data by ATR

location.14 They find that increases in vehicle usage on yellow air days is evident throughout the region’s

main metropolitan area, and is concentrated along the major commuting thoroughfares. Decreased traffic

volume is evident in the center of the metropolitan area. Further, Tribbey et al. find substantial increases in

vehicle trips near canyons providing access to the neighboring mountains, which the authors interpret as an

increase in discretionary trips to the mountains (where the air is typically cleaner) on yellow air days.

The empirical results presented in Cutter and Neidell (2009) and Tribbey et al. (2013) delineate the

extent to which vehicle usage responds to an air quality advisory in any given area. Cutter and Neidell find

evidence supporting the efficacy of advisories, in particular that vehicle usage declined contemporaneously

(albeit marginally) when air quality advisories were issued in the San Francisco Bay area during the early

2000s. To the contrary, Tribbey et al. (2013) find that vehicle usage responded positively to advisories

issued in the Wasatch Front region of Utah during the same time period, with no evidence of alert fatigue.

We develop a theoretical framework in Section 5 that provides a basis for these disparate results. In Section

6, we present empirical results for air quality advisories issued in northern Utah during the early 2000s,

a region at the time experiencing sometimes dramatic surges in wintertime PM2.5 concentrations. These

results add to the mixture of evidence uncovered by these previous studies.

3 Study Area

As Moscardini and Caplan (2017) point out, elevated PM2.5 concentrations were a persistent, episodic pol-

lution problem in northern Utah’s Cache Valley during the early 2000s. Figure 1 shows the valley’s location

in the northern region of the state (Cache Valley is shaded orange in the upper portion of the figure).15

Primarily during the winter months of December through February each year, temperature inversions trap

PM2.5 mostly in the form of dust and smoke particles for days or weeks at a time. These particles in turn

pose an elevated risk to human health, as their small size enables them to lodge deep in human lung tissue.

14Since the number and dispersion of ATRs in northern Utah is much less than in Salt Lake and Davis Counties, the need to
conduct this type of disaggregated analysis is obviated in our study.

15Logan is the region’s largest city, with a population in 2009 (the middle of our study period) of 46,000 people residing in
16,000 households (Census Bureau, 2010). Cache Valley’s population is growing rapidly – it is expected to roughly double in size
from 135,000 currently to 230,000 by 2050 (Perlich et al., 2017).
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Figure 2 depicts the seasonality of the valley’s winter-inversion problem during our study period, with the

mass of the distribution of monthly average PM2.5 concentrations occurring during the winter months.

[INSERT FIGURES 1 AND 2 HERE]

As discussed in Acharya and Caplan (2020), short-term exposure to elevated PM2.5 concentrations is

linked to increased hospital admissions and emergency department visits for respiratory effects, such as

asthma attacks, as well as increased respiratory symptoms, such as coughing, wheezing and shortness of

breath. Short-term exposure is also linked to reduced lung function in children and in people with asthma.

Long-term exposure to elevated PM2.5 concentrations can cause premature death due to heart and cardiovas-

cular disease associated with heart attacks and strokes. Some studies suggest that long-term exposure can

cause cancer as well as harmful developmental and reproductive defects, such as infant mortality and low

birth weight (USEPA, 2016; Dockery et. al, 1993; Pope et. al, 1995; Pope, 1989).16

Moscardini and Caplan (2017) also point out that residents of Cache Valley are victims of both their

climatology and topography. Under certain meteorological conditions, cold air is trapped between the

mountains close to the surface and is held in place by a layer of warm air above – the process creating

an inversion. As elevation rises, temperature gradually decreases. Given conducive barometric-pressure,

precipitation, and wind-speed conditions, descending warm air creates an inversion layer. Within this layer,

temperature increases with increasing elevation, constituting the reverse of normal air patterns. The inver-

sion layer traps PM2.5 concentrations between geologic barriers which, in the case of Cache Valley, are the

Wellsville and Bear River Mountain Ranges.

Figure 3 depicts the annual distributions of PM2.5 concentrations in the valley during the first half our

study period, 2003-2007 (the second half of the period, 2008-2012, depicts similar annual distributions).

Note the variability in spikes above the Environmental Protection Agency’s (EPA’s) national ambient air

quality (primary and secondary) standard (NAAQS) of 35 µg/m3 averaged over any 24-hour period (hori-

zontal red line) from year to year. Once above the 35 µg/m3 threshold, the concentrations trigger a red air

day episode. Concentration levels rising to within the yellow bands of 15 µg/m3 and 25 µg/m3 trigger a

yellow air day advisory.

[INSERT FIGURE 3 HERE]
16Moscardini and Caplan (2017), Caplan and Acharya (2019), Acharya and Caplan (2020), and references therein elaborate on

the precursors, causes, and patterns of elevated PM2.5 concentrations in Cache valley during the winter inversion seasons of our
study period.
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The extent to which yellow air day advisories may have induced a change in individuals’ behaviors is

hinted at in Figure 3. For example, in relation to the 2002-2003 winter-inversion season the advisories issued

for yellow air days during the 2004-2005 inversion season did not seem to constrain subsequent increases

in PM2.5 concentrations to below the red air day threshold. Yellow air day advisories issued during the

2005-2006 and 2006-2007 inversion seasons likewise suggest at best limited success for the advisories in

obviating the progression of PM2.5 concentrations to red air day status. The extent to which the advisories

affected region-wide vehicle usage on yellow air days, which in turn determined PM2.5 concentrations, is

explored at length in Section 6.

As pointed out by Caplan and Acharya (2019), a new PM2.5 standard for Cache Valley was set in Utah’s

State Implementation Plan (SIP) at 40.7 µg/m3 subsequent to our study period, calculated as an average of

three running three-year averages of 98th percentile concentration levels surrounding the baseline year 2010

(known as the “baseline design value”). This new standard effectively raised the 24-hour standard by over

five µg/m3 relative to the long-standing threshold of 35 µg/m3. The UDEQ also revised its color-coded

warning system. Currently, yellow air day advisories are triggered when PM2.5 concentrations rise to “mod-

erate” levels between 12.1 and 35.4 µg/m3. Unhealthy conditions prevail for sensitive groups between 35.5

and 55.4 µg/m3, unhealthy conditions for everyone occur between 55.5 and 150.4 µg/m3, very unhealthy

between 150.5 and 250.4 µg/m3, and hazardous at 250.5 µg/m3 and above (see https://air.utah.gov/).

Table 1 provides the relative frequencies of yellow air day advisories occurring in each year’s winter-

inversion season, as well as the number of separate “yellow air day episodes”, the average lengths of the

episodes (with attendant standard deviations), and the percentage of yellow air day advisories that preceded

a red air day episode. By yellow air day episode we mean any span of days in which consecutive-day yellow

air day advisories were issued. For example, if an advisory was issued on a single day (followed by a green

air day), then the span of that episode is a single day. If an advisory was issued on two consecutive days (and

then followed by a green air day), the span of the episode is two days, and so on. A yellow air day episode

that preceeds a red air day episode is one whose final day is consecutive with the first day of an ensuing red

air day episode. For example, if yellow air day advisories are issued consecutively on Monday and Tuesday

of a given week and then a red air day episode begins on Wednesday, the two-day yellow air day advisory

preceeded red air day episode. If instead Wednesday is not a red air day, then the two-day yellow air day

11



advisory did not preceed a red air day episode.17

[INSERT TABLE 1 HERE]

From Table 1 we see several instances of variation in yellow air day advisories across the yearly inversion

seasons. For example, the percentage of days in which an advisory was issued reached as high as 40% during

the 2009-2010 season and as low as 20% in the 2003-2004 and 2010-2011 seasons. The number of yellow

air day episodes reached as high as 13 during the 2004-2005 season and as low as 5 in the 2011-2012 season.

The average episode length was 4.4 days long in 2011-2012 and only 1.8 days long in 2003-2004. Lastly,

the variability in the percentage of yellow air day episodes preceding red air day episodes (as high as 89%

in the 2009-2010 season and low as 0% in the 2011-2012 season) is similarly pronounced. Across seasons,

there does not appear to be a noticeable decline in the precedence of yellow air day advisories prior to red

air day episodes, suggesting a lack of unconditional evidence in support of the hypothesis that vehicle usage

in northern Utah evolved to be more responsive to the advisories over the course of our study period.

As Moscardini and Caplan (2017) point out, during a typical inversion episode anywhere from 60% to

85% of all PM2.5 is created by secondary particulate formation. Secondary particulate formation occurs

when precursor emissions of nitrogen oxides (NOx), sulfur oxides (SOx), and especially volatile organic

compounds (VOCs) react and combine in the atmosphere to create concentrations of PM2.5. VOCs are

highly reactive. As they break apart, they combine with other gaseous chemicals to form nitrates. These

nitrates then react with ammonia to form ammonium nitrate, the leading contributor to PM2.5 concentrations

in Cache Valley. This led the UDEQ to conclude that reducing VOC emissions offered the best near-term

approach to reducing the valleys PM2.5 concentrations during winter inversions. Approximately 50% of

anthropogenic VOC emissions in Cache Valley were attributable to industrial and commercial processes,

45% to motor vehicles, and 5% to consumer solvents (NASA 2014). Therefore, a policy aimed at reducing

vehicle use represented a potentially effective way of advancing the UDEQ’s goal of reducing the valley’s

VOC emissions.18

In an effort to reduce mobile-source emissions, Cache Valley’s policymakers adopted a mandatory ve-

hicle emissions testing program (VETP) during the period under study – the efficacy of which has since

17There is only one instance in the dataset where a red air day episode occurred without having been preceeded by a yellow air
day advisory.

18The positive link between vehicle usage and PM2.5 concentrations is certainly not unique to Cache Valley, Utah. For example,
see Chen et al. (2020).
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been hotly debated, primarily due to exemptions for diesel trucks, and subsequently later-model vehicles

(Anderson, 2013). In concert with yellow air day advisories issued by the UDEQ, the VETP was the sole

mandatory initiative enacted by the state of Utah during our study period to control the valleys winter inver-

sion problem.

4 A Theory

Human mobility often creates a tension between individual decision-making and collective outcomes. The

private automobile bestows clear benefits to individuals in terms of enabling access to utility-generating

consumption, but generates harms to collective well-being, as in the case of noxious tailpipe emissions con-

tributing to poor local air quality. The extent to which yellow air day advisories impact region-wide vehicle

usage ultimately traces to individual- (or household-) level decision-making. If a large-enough number of

individuals heed the advisory and reduce their vehicle trips on yellow air days by, for example, switching to

alternative modes of transportation such as buses or walking, more efficiently using their vehicles via “trip

chaining”, carpooling, or telecommuting, then we would expect an advisory to correlate statistically with

the region-wide reduction in vehicle trips. To the contrary, if too small a number of individuals respond to

the advisory then we would expect to find no correlation. It is also possible that a large-enough number of

individuals might respond perversely to the advisory by increasing their vehicle usage on yellow air days

e.g., to provide what they perceive as greater protection from poor air quality than walking or using mass

transit, or simply to reduce their need for travel during an ensuing red air day episode (Tribby et al., 2013).

To better understand these potential influences, we develop a simple conceptual framework in Appendix

A that models the three polar types of individuals that comprise a region and that (no pun intended) drive

the region’s overall response to a given yellow air day advisory. Since individuals are in reality precluded

from predicting the emergence of yellow air days and the days’ pattern of occurrence throughout a given

winter inversion season, the model presumes individuals are myopic in their decision making, in particu-

lar that they are unable to identify an optimal path of vehicle usage at the outset of the inversion season.

As a result, individuals are assumed to make vehicle-use decisions contemporaneously without the aid of

foreknowledge.19

19Given its static nature, our model is precluded from explicitly accounting for potential alert fatigue among individuals. How-
ever, if we assume that alert fatigue impacts equally each of the three types of individuals we describe below, then relatively
speaking the differences in individuals’ behaviors identified by the model would be unaltered in the presence of fatigue.
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As Appendix A shows, one type of individual (Case 1) ignores the damages associated with region-wide

vehicle trips in each period altogether, even given the fact that a yellow air day advisory causes the marginal

damage associated with increases in region-wide vehicle trips to increase. With only minimal assumptions

placed on the structure of this individual’s preferences, we show that in this case the individual responds to

the issuance of the advisory by increasing his vehicle trips (refer to equations (5)-(8) in the appendix). A

second type of individual (Case 2) accounts solely for the expected damages she alone incurs in any given

period, i.e., the individual partially internalizes the contribution her vehicle trips makes to region-wide

environmental damages. This type of individual responds to yellow air day advisories to a lesser (positive)

extent than a Case 1 individual, and may in fact respond by decreasing her vehicle trips in equilibrium when

the change in her perceived marginal damage (from vehicle trips) associated with the issuance of a yellow

air day advisory exceeds the corresponding change in her marginal benefit (refer to equations (10)-(14) in

the appendix).

The third type of individual (Case 3) is altruistic, accounting not only for the expected damages that his

vehicle trips imposes on himself and all other individuals in the region, but also the expected benefits that

all other individuals in the region obtain as a result of increasing their vehicle trips in response to a yellow

air day advisory (e.g., by limiting their exposure to outdoor air). As Appendix A demonstrates, a sufficient

condition for a Case 3 individual’s (henceforth “Individual 3’s”) vehicle trip level to respond less positively

to a yellow air day advisory than a Case 2 individual’s is that the change in Individual 3’s perception of

the added aggregate damages suffered by all other individuals in the region in response to the advisory

exceeds his perception of the added aggregate benefits obtained by all other individuals. The corresponding

sufficient condition comparing Individual 3’s vehicle-trip response with a Case 1 individual’s is shown to be

more likely to hold (refer to equations (16)-(20) in the appendix).

Surely a given region consists not only of these three polar types of individuals, but rather a variety of

convex combinations of the three. The point is, to the extent that more Case 1 type individuals comprise a

region than Case 2 and Case 3 types we should expect to see less of a reduction in vehicle usage in response

to a yellow air day advisory. Or, alternatively stated, the more likely we will see an increase in vehicle usage

in response to the advisory. Because the data we describe in Section 5 and analyze in Section 6 is region- as

opposed to household- or individual-level, we are precluded from directly testing whether Case 2 and Case

3 individuals in northern Utah have met their respective sufficient conditions for responding less positively

14



(and perhaps negatively) to yellow air day advisories.20 Rather, we test whether on average northern Utah

residents’ vehicle usage responded positively or negatively (or not all) to yellow air day advisories issued

during the first decade of 2000.21

5 Data and Summary Statistics

The data for our empirical analysis in Section 6 are compiled from several different sources. Each variable

in our dataset consists of a daily time step for the years 2002-2012. Since the problem addressed in this

study occurs seasonally (from December-February) we restrict the dataset to these three months each year.

PM2.5 concentrations were recorded hourly for Cache County by the Utah Division of Air Quality (UDAQ)

at EPA station code 490050004 located in downtown Logan (UDEQ 2016a, 2016b, 2016c).22 The average

concentration level recorded over a given day’s 24-hour period was selected as that day’s concentration

level. Average daily readings of a host of weather variables - consisting of temperature gradient, wind

speed, humidity, atmospheric pressure, snow depth, and snowfall level - were obtained from the Weather

Underground and Utah Climate Center (Weather Underground, 2016; Utah Climate Center, 2016). Lastly,

hourly vehicle trip count data were obtained from the Utah Department of Transportation (UDOT, 2014),

which were then aggregated to obtain daily counts. The Automatic Traffic Recorder (ATR) stations for

the trip count data in Cache Valley are 303, 363, and 510, which cover the county’s main north-south

transportation artery. Figure 4 depicts the specific ATR locations. Stations other than 303, 363, and 510

provided insufficient data for our study period, including station 620 (demarked in the color red), which was

added during the second half of our study period.

[INSERT FIGURE 4 HERE]

Specific names of and summary statistics for the variables used in our study are presented in Table 2.

We see that on average over 43,000 vehicle trips (VehicleTrips) were recorded each day in Cache Valley.

On the one hand, this is likely an underestimate of actual trips taken due to the finite number and specific

20Even household- or individual-level data would require....to enable us to distinguish the different types of individuals compris-
ing the region.

21We also acknowledge that the effect of the advisory on vehicle usage in northern Utah is also averaged over commuting and
discretionary trips. As Cutter and Neidell (2009) point out, commuters generally have little flexibility when it comes to missing
a work day, especially if telecommuting alternatives are limited. Hence, commuting trips have a significantly higher cost of
cancellation and thus are much less likely to be delayed or substituted away from than are discretionary trips.

22Station 490050004 was subsequently moved five miles north of downtown Logan to the town of Smithfield shortly after the
conclusion of our study period.
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locations of the ATR stations in the valley. On the other, at least some trips are double-counted whenever

a vehicle passes more than one station during a given trip. We have no reason to believe that instances of

over- and under-counting are correlated with any specific day of the week or hour of the day. Hence, the

imprecision of our vehicle trip measure is not systematically biasing the analysis presented in Section 6 in

any apparent way.

[INSERT TABLE 2 HERE]

As indicated in Table 2, daily PM2.5 concentration levels averaged slightly more than 19 µg/m3 during

our study period. This level rises to over 39 µg/m3 per day in the presence of a temperature inversion,

illustrating the positive relationship between northern Utah’s wintertime temperature inversions and elevated

PM2.5 concentrations.23 Yellow air day advisories (YellowAdvisory) were issued on roughly a third of the

days included in our study period, which suggests that if the advisories did in fact impact vehicle use in

Cache Valley, vehicle owners may have been susceptible to alert fatigue (as described in Sections 2 and

3) given the advisories’ relatively high frequency of issuance. Lastly, in addition to the varied controls

for weather conditions, e.g., Humidity, Wind, Humwind, Pressure, SnowFall, and SnowDepth, we follow

Tribbey et al. (2013) by also controlling for the potential effect of holidays on vehicle usage in the valley.24

As indicated by the variable Holiday, we dummy for three-day windows surrounding the respective national

holidays occurring during our study period. These holiday windows account for more than a tenth of total

number of days in our sample.

Figure 5 provides a glimpse of the unconditional relationship between red air days and yellow air day

advisories, on the one hand, and region-wide vehicle trips on the other, across days of the week. To facilitate

these comparisons, we convert each of the three variables to their respective percentage equivalents. For

example, Average # Vehicle Trips for a given day of the week is measured as the percentage of total weekly

vehicle trips, on average, taken during that day. Similarly, Average # Red Air Days for a given day of the

week is measured as the percentage of total weekly red air days, on average, experienced during that day,

and Average # Advisories for a given day of the week is measured as the percentage of total weekly yellow

air day advisories, on average, experienced during that day. The comparisons are anchored by day-of-the-

week due to the statistically significant, negative pairwise correlations that exist for vehicle trips across all
23The negative value for TempDi f f indicates that the average day during our study period did not experience a temperature

inversion.
24Tribbey et al. removed holidays from their data, thus eliminating their possible influence on individual’s vehicle usage. In

contrast, we explicitly control for, and thus quantify, their possible effects.
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days of the week, e.g., between trips taken on Mondays vs. Tuesdays, Mondays vs. Wednesdays, Tuesdays

vs. Wednesdays, etc.25 Further, Moscardini and Caplan (2017), Caplan and Acharya (2019), and Acharya

and Caplan (2020) found day-of-the-week to be strong instruments for vehicle trips in their econometric

analyses (Angrist et al., 1996).

[INSERT FIGURE 5 HERE]

The relatively tight, unconditional relationship existing between red air days and vehicle trips echoes that

uncovered by the conditional analyses conducted by Moscardini and Caplan (2017), Caplan and Acharya

(2019), and Acharya and Caplan (2020). To the contrary, we see that yellow air day advisories do not exhibit

as tight a relationship with vehicle trips. Although it mimics that of red air days and vehicle trips on Sundays

through Tuesdays of the average week, the relationship between advisories, on the one hand, and vehicle

trips and red air days on the other, seems to break down across the remaining days of the week. This is an

indication that if we are successful in uncovering a conditional relationship between advisories and vehicle

trips in the next section it is likely to be weak.

6 Empirical Results

In measuring the relationship between the issuance of yellow air day advisories and region-wide vehicle

trips in Cache Valley, we estimate a number of different specifications to control for the potential effects of

autocorrelation and endogeneity in our model’s error structure, and to probe the robustness of our results. In

general, the functional relationship between YellowAdvisory and VehicleTrips can be expressed as,

VehicleTrips = f (X ;Θ,ε) ,

where matrix X contains a set of explanatory variables taken from Table 2 (each set including a control

for YellowAdvisory), Θ represents the corresponding vector of constant parameters to be estimated, and ε

denotes an independently, identically distributed (i.i.d.) error term. We consider two different specifica-

tions of the variable VehicleTrips in the econometric model’s framework – levels and natural logarithmic

– as well as two specifications of YellowAdvisory – one as defined in Table 2 and the other redefined to

25Although relatively low in magnitude – the Pearson’s correlation coefficients hover in the neighborhood of -0.15 for each
pairwise comparison – they are each statistically different at the 5% level of significance.
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include the green air day preceding each yellow air day episode.26 For example, if during any given week

of our study period a yellow air day episode began on a Wednesday with, say, a PM2.5 concentration of

27.5 µg/m3, and the concentration on the preceding Tuesday was less than 15 µg/m3, then the Tuesday’s

YellowAdvisory value would also be set equal to one (from what had been zero) in the redefined version of

YellowAdvisory. The purpose of this redefinition of YellowAdvisory was to test for the potential of indi-

viduals foreseeing an impending yellow air day advisory one day prior to its issuance, and adjusting their

vehicle usage accordingly. In the end, this redefinition of YellowAdvisory had no quantitative effect on our

results, suggesting that during our study period individuals responded myopically to worsening air quality

conditions and concomitant issuances of yellow air day advisories.27

6.1 Identifying and Controlling for Autocorrelation

We henceforth report results for both the levels and log-transformed specifications of VehicleTrips.28 To

begin, we apply Ljung and Box’s (1978) and Cumby and Huizingas (1992) Portmanteau tests for white noise

error terms in each specification. Results are presented in Table 3. We find that including the first four lags

of VehicleTrips and Ln(VehicleTrips), respectively, as regressors satisfies the null hypothesis of no second-

order autocorrelation in the residuals.29 This is evidenced by the statistically insignificant χ2 values for the

Portmanteau tests. Further, the statistically insignificant Durbin χ2 statistics for both models indicate that

the regression results are consistent with an absence of first-order autocorrelation in the residuals. Hence,

all ensuing regression models explaining variation in VehicleTrips and Ln(VehicleTrips) include the four

lagged terms, respectively, as sets of controls for first- or second-order autocorrelation that would otherwise

be present in the error structures.30

[INSERT TABLE 3 HERE]

As the results in Table 3 indicate, contemporaneous vehicle trip counts are, for the most part, positively

correlated with their lagged values. For example, for every additional vehicle trip taken in the previous

26A green air day occurs when its PM2.5 concentration averages less than 15 µg/m3 over the 24-hour period. We also estimated
the model using a three-day forward moving average of VehicleTrips and found the results to be qualitatively similar to those for
levels. The results using this specification are available from the author upon request.

27Results based on this redefined version of YellowAdvisory are also available upon request from the author.
28Stata/IC version 16.1 for Windows (64-bit x86-64) was used for all regression analyses reported in the paper.
29In other words, second-order autocorrelation is controlled for once four lags of VehicleTrips and Ln(VehicleTrips) are included

as regressors in their respective models.
30Residual plots also indicate the existence of white-noise error terms. The plots are available upon request from the author.
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period (i.e., VehicleTript−1), contemporaneous trips (VehicleTript) are estimated to increase by 0.52. From

column three of the table we see that for every one percent increase in VehicleTript−1, VehicleTript are

estimated to increase by 43 percent. For these and all ensuing regressions, observations for January and

February of 2002, December of 2004, and all of 2005 and 2006 were dropped due to missing data.

6.2 Baseline and Disaggregated Regression Results

Table 4 presents our baseline results for equation (1) quantifying the relationship exhibited between YellowAdvisory

and the two vehicle trip measures.31 Focusing on the model estimated for VehicleTrips (whose results are

closely corroborated by the model estimated for Ln(VehicleTrips)), we see that contemporaneous yellow

air day advisories have no influence on the valley’s vehicle trip counts. However, one-day lagged advi-

sories do. On average, a lagged yellow air day advisory induces a subsequent increase of slightly more than

4,000 vehicle trips the next day (an increase of more than nine percent of average daily trips). Neverthe-

less, as evidenced by the larger negative coefficient estimate (in magnitude) for variable [YellowAdvisory x

NotSunday]t−1, lagged advisories occurring on days of the week other than Sundays result in a net decrease

of slightly more than 140 region-wide vehicle trips. Although statistically significant, this non-Sunday ef-

fect of lagged yellow air day advisories represents a relatively small, 0.3 percent of average daily trips. The

meagerness of this effect is particularly notable given that, on average, 20,500 more vehicle trips are taken

in the valley on non-Sundays (the coefficient value for variable NotSunday = 20,487.62).32

[INSERT TABLE 4 HERE]

Table 4 also shows that while vehicle trips taken during three-day windows around national holidays

decrease by roughly 4,500, the effect of yellow air day advisories issued during these windows of time

are statistically insignificant. The annual dummy variables for years 2007 – 2012 (the latter half of our

study period), denoted Year2007 – Year2012, each indicate higher numbers of vehicle trips relative to the

former half of the study period, and thus control for trend increases in region-wide vehicle trips during the

study period. The statistically significant F value indicates that the null hypothesis of jointly insignificant

31The coefficient estimates corresponding to the four lagged VehicleTrips and Ln(VehicleTrips) variables included in these and
all ensuing regressions to control for first- and second-order autocorrelation have been suppressed in order to eliminate unnecessary
clutter in the tables.

32Vehicle trips are noticeably lower in the valley on Sundays due to the preponderance of members of the Church of Jesus Christ
of Latter Day Saints (LDS), who have historically been encouraged to attend church for three-hour stints each Sunday. Church
attendance in turn reduces vehicle usage on Sundays each week. The valley’s population was estimated to be 83 percent LDS in
2010 (Cannon, 2015).
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coefficient estimates is rejected. Together, the set of regressands explain 82 percent of the total variation in

VehicleTrips.

Following Saberian et al. (2017), we also included a control variable for (intra-seasonal) alert fatigue in

each of the models in Table 4, defined as the interaction between YellowAdvisory and YellowAdvisoryt−1.

We find no evidence of intra-seasonal fatigue in either model using this approach, whether restricted to

non-Sundays or not. Although our measure of alert fatigue is formulated differently than theirs, the absence

of fatigue found for Cache Valley comports with Tribbey et al.’s (2013) finding for Utah’s Wasatch Front,

suggesting that within a given winter-inversion season the effect of Utah’s yellow air day advisories on

vehicle usage is not necessarily a function of when they are issued during the season. For comparison, the

effect of inter-seasonal alert fatigue is tested in the next set of models. As will be shown, we find spotty

evidence of this type of fatigue.

Table 5 reports more disaggregated results for the VehicleTrips and Ln(VehicleTrips) models. To elim-

inate unnecessary clutter in the tables, we have suppressed the coefficient estimates for the Year2007 –

Year2012 dummy variables, as these are qualitatively very similar to those reported in Table 4. We have

also suppressed the estimates for daily dummy variables (with Sunday as the excluded category), as these

estimates correspond individually very closely with the estimates for NotSunday in Table 4.33

[INSERT TABLE 5 HERE]

We begin by noting that while the model for Ln(VehicleTrips) reports respective coefficient estimates of

the same signs as the model for VehicleTrips, only the estimate for Holiday is statistically significant. This

estimate indicates that, all else equal, the three-day windows around holidays are correlated with a nine-

percent reduction in region-wide vehicle trips – a result that is corroborated by the coefficient estimate of

just under -3,800 trips in the VehicleTrips model.34 In contrast, the model for VehicleTrips reports several

interesting relationships between yellow air day advisories and region-wide vehicle trips. For example,

contemporaneous yellow air day advisories – as opposed to one-day lagged advisories – are associated

with an average reduction in region-wide vehicle usage of just under 3,300 trips. When weighed against

advisories issued during holidays, this average reduction falls to approximately 520 vehicle trips (-3,370.21

+ 2,847.50). Further, advisories issued on Fridays result in an average reduction of only 150 trips (-3,370.21

33We also suppress results for monthly dummy variables and monthly dummies interacted with YellowAdvisory, as these coeffi-
cient estimates were all statistically insignificant for both VehicleTrips and Ln(VehicleTrips).

34Relative to the study period’s average daily trip count of 43,261, the estimate is roughly equal to nine percent.
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+ 3,219.62), and advisories issued on Wednesdays result in an increase of 1,125 trips (-3,370.21 + 4,494.90),

both relative to Sundays. Lastly, the average advisory effects for years 2008 and 2010 (relative to the average

for earlier years 2002 – 2006) are both positive: an increase of 276 vehicle trips for the year 2008 (-3,370.21

+ 3,646.29) and 1,336 trips for the year 2010 (-3,370.21 + 4,706.17). This is (admittedly spotty) evidence

of possible inter-seasonal alert fatigue, since the negative effect of advisories are greatly reduced (to the

point of exhibiting positive effects) during these two later years, or alternatively stated, the winter-inversion

seasons comprising these two later years.

To summarize, our basic results suggest that a measure of heterogeneity exists in the relationship be-

tween yellow air day advisories and region-wide vehicle trips. In the baseline models we find that, on

average, one-day lagged advisories have a negative impact on vehicle trips. However, this negative impact is

greatly reduced in magnitude when the advisories are issued on weekdays and Saturdays, in some perverse

cases turning positive. We also find no evidence of intra-seasonal alert fatigue. In our more disaggregated

models we find additional instances of the advisory’s relatively meager negative impact on vehicle usage in

Cache Valley, which again under certain circumstances (specifically, during certain days of the week and

later years during our study period) exhibits a perverse positive effect. The later-year effect is indicative of

possible inter-seasonal alert fatigue.

We are unsurprised to find cases of perverse yellow air day advisories. Recall that Tribbey et al. (2013)

also found a similar perverse advisory effects for Utah’s Wasatch Front region. Further, as pointed out

in Section 4 (and explored further in Appendix A), when a large-enough number of individuals respond

perversely to the advisory by increasing their vehicle usage on yellow air days e.g., to provide what they

perceive as greater protection from poor air quality than walking or using mass transit, or simply to reduce

their need for travel during an ensuing red air day episode, we should expect to see a perverse advisory

effect.

6.3 Identification

In this section, we explore the potential for heretofore unexpressed factors to confound the relationship

between yellow air day advisories and region-wide vehicle trips. Similar to Tribbey et al. (2013), we

now incorporate a host of weather variables from Table 2 into our analysis that may conceivably identify

YellowAdvisory. Similar to our analysis in Section 6.1, we preface this analysis with a set of Portmanteau
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tests to identify and control for potential autocorrelation in the series of this variable. Results are presented

in Table 6.

[INSERT TABLE 6 HERE]

We find that including the first lag of YellowAdvisory as a regressor is sufficient to satisfy the null

hypothesis of no autocorrelation in the residuals. This is evidenced by the statistically insignificant χ2 values

for the Ljung and Box, Cumby and Huizinga, and Durbin χ2 statistics. As the results in Table 6 indicate,

contemporaneous advisories are positively correlated with their one-day lagged values – on average, an

advisory issued yesterday increases the probability that an advisory will be issued today by 42 percent.

Hence, the subsequent regression models explaining variation in YellowAdvisory each include the single

lagged term as our control for first-order autocorrelation that would otherwise pervade the error structure.

As will become clear below, these models are effectively first-stage regressions ultimately meant to identify

instruments for second-stage regressions explaining VehicleTrips.

Our main results explaining variation in the issuance of yellow air day advisories are presented in Table

7. We relate this variation to changes (i.e., first differences denoted by the “D.” prefix) in the weather

variables.35 The results reported in this table are derived from a linear-probability specification of the model.

Results from a probit specification, which are provided in Appendix B, are qualitatively similar, albeit with

generally lower levels of statistical significance reported for the coefficient estimates.36

[INSERT TABLE 7 HERE]

We see that, on average, the issuance of a yellow air day advisory is positively correlated with the change

in the temperature gradient, and humidity and wind levels, and negatively related to changes in interaction

term Humwind and snow depth. These results are similar to those reported in Caplan and Acharya (2019) for

PM2.5 concentrations with respect to Humidity’s positive and Humwind’s negative (statistically significant)

coefficient estimates. In contrast with Caplan and Acharya (2019), the regression results reported in Table

7 indicate that changes in TempDi f f and Wind are positive and statistically significant, while SnowDepth

is negative and statistically significant.37 Based upon the atmospheric science described in Moscardini

35First-differencing mitigates potential collinearity between the weather variables and the one-day lag in YellowAdvisory.
36Since the objective in presenting our probit results is merely to compare the signs and statistical significance levels with the

linear-probability specification, we report the raw coefficient estimates for the probit model rather than their associated marginal
effects.

37As in Caplan and Acharya, Pressure is statistically insignificant in our regressions and therefore omitted from the table.
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and Caplan (2017), the positive coefficient estimate for the change in TempDi f f and negative estimate for

change in SnowDepth are as expected. However, the positive coefficient estimate for change in Wind is

unexpected, especially because it is not more than offset by Humwind’s negative coefficient. The absence

of a statistically significant relationship between the change in VehicleTrips and YellowAdvisory is not

unexpected, since the issuance of a yellow air day advisory is more directly tied to changes in weather

conditions than region-wide vehicle usage per se.

To gauge whether the endogeneity of YellowAdvisory is of practical concern, in particular whether it

could be biasing YellowAdvisory’s estimated relationship with VehicleTrips in Section 6.2, we perform two

additional sets of analyses. The first set tests whether omitted variable bias could potentially be a source

of endogeneity bias in our regressions (c.f., Greene, 2018). In the second set, we conduct Hausman speci-

fication tests to directly measure the extent to which endogeneity may be biasing in our earlier regressions

(Hausman, 1978; Durbin, 1954; Wu, 1973).

Table 8 contains our results testing for the presence of potential omitted variable bias in the estimation

of VehicleTrips and Ln(VehicleTrips), where we again suppress the respective sets of four lagged values

of the two variables (which control for first- and second-order autocorrelation in the residuals) in order to

eliminate unnecessary clutter in the table. Potential omitted variables are the same weather variables as

those used in Table 7 to explain variation in YellowAdvisory. We see that solely the change in snow depth

has a statistically significant (negative) effect on vehicle trips in both specifications, which suggests scant

evidence of potential omitted variable bias in the regressions reported in Section 6.2.38

[INSERT TABLE 8 HERE]

For the Hausman specification tests we first regressed YellowAdvisory on the set of weather variables

included in Table 8, along with NotSunday, Holiday, the yearly dummy variables, and the four lagged

terms for VehicleTrips and Ln(VehicleTrips), respectively. Next, we included the residuals (Residuals)

from these first-stage regressions as explanatory variables in second-stage regressions specified the same

as the baseline regressions in Table 4. The F-statistic for Residuals (F(1,308) = 3.95) was statistically

significant at the 5% level forLn(VehicleTrips), but insignificant (F(1,308) = 0.49) for VehicleTrips.

38We also ran regressions with non-differenced versions of the weather variables. In these specifications Humidity and Snow f all
were the sole statistically significant (negative) coefficient estimates.
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We therefore instrumented for one-day lagged YellowAdvisory in the regression for Ln(VehicleTrips)

using our set of (lagged first-differenced) weather variables.39 Results are presented in Appendix B. We

see that while the coefficient estimate for one-day lagged YellowAdvisory is a larger positive value than

that obtained in Table 4, it is not statistically significant. All other coefficient estimates – for NotSunday,

Holiday, and the annual dummy variables – conform to their corresponding values in Table 4. Hence,

controlling for potential endogeneity bias weakens the perverse statistical relationship between yellow air

day advisories and region-wide vehicle trips exhibited in our baseline regression in Section 6.2.

As a final note, we assess the strength of our instrumental variables (weather variables), i.e., the extent

to which they satisfy the three assumptions delineated in (Angrist et al., 1996; Lousdal, 2018): relevance,

exclusion, and exchangeability. The relevance assumption is met due to the overall statistical significance

of the set of instruments explaining YellowAdvisory in Table 7, as well as the individual significance levels

of the coefficient estimates for D.TempDi f f , D.Humidity, D.Wind, D.Humwind, and D.SnowDepth. The

relative lack of statistical significance of the coefficients for these same variables in directly explaining vari-

ation in VehicleTrips and Ln(VehicleTrips) (in Table 8) provides evidence that the exclusion assumption

is also provisionally met. The exchangeability assumption is trivially satisfied by virtue of our data limita-

tions – we are unable to control for potential confounding factors other than those associated with our set

of climate variables. As a result, we are confident that our instrumented approach adequately controls for

potential endogeneity bias in our estimated coefficients.

7 Summary and Conclusions

We have tested the hypothesis that yellow air day advisories issued by Utah’s Department of Environmental

Quality resulted in subsequent reductions in vehicle trips taken during northern Utah’s winter-inversion

seasons in the early 2000s. During this period, when PM2.5 concentrations (derived mainly from vehicle

emissions) rose to between 15 and 25 µg/m3, on their way to the 35 µg/m3 national-standard threshold for

red air days, the study area’s residents were informed via several different media sources that the region was

experiencing a yellow air day, and urged to reduce their vehicle usage during the day. Our results suggest

that yellow air day advisories provided at best weak, at worst perverse, incentives for reducing vehicle usage

on yellow air days and ultimately for mitigating the occurrence of red air day episodes during northern

39We instrumented for lagged rather than contemporaneous YellowAdvisory to be as consistent as possible with the results in
Table 4 for Ln(VehicleTrips).
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Utah’s winter inversion season. Because these episodes were often dramatic in their scope, our study area

and period of analysis have provided an opportune setting within which to measure the effectiveness of an

air quality alert program.

In specific, we have found evidence of a heterogeneous relationship between yellow air day advisories

and region-wide vehicle trips. On average, one-day lagged advisories have a negative impact on vehicle

trips. However, this negative impact is greatly reduced in magnitude when the advisories are issued on

weekdays and Saturdays, in some perverse cases turning positive. Further, we have found no evidence of

intra-seasonal alert fatigue. In our more disaggregated models we have found additional instances of the

advisory’s relatively meager negative impact on vehicle usage in Cache Valley, which again under certain

circumstances (specifically, during certain days of the week and later years during our study period) exhibits

a perverse positive effect.

As mentioned in the Introduction section, yellow air day advisories are an example of a “soft” envi-

ronmental policy, which rely on educating the public about an existing externality, and encouraging its

mitigation through voluntary adjustments in behavior without providing an economic incentive to do so.

Our findings echo those of previous studies in that these types of policies typically provide relatively weak

incentives for indviduals to adjust their behaviors in ways that the improve social welfare. In some cases

the incentives may provoke perverse behaviors that instead diminish welfare. Clearly, our results affirm the

need for “harder” environmental policies, such as taxation, subsidization, or the establishment of permit

markets, to accompany soft policies in redressing behaviors that contribute to negative externalities. This

is particularly the case in locations where substitutes for the externality-causing behavior are not readily

available.

For example, in Cache Valley, Utah, viable transportation alternatives – particularly during the winter

months – are relatively scarce. While a free bus service run by the Cache Valley Transit District offers

relatively convenient and timely transportation within select areas of the valley, its reach is not frequent

enough in time and broad enough in space to substitute for private vehicle usage among most residents.

Hence, if a hard policy, such as the seasonal gas tax proposed by Moscardini and Caplan (2017) or the

issuance of a municipal clean air bond proposed by Acharya and Caplan (2020) were to be imposed, it

is likely the former would simply raise the revenue via taxation that the bond would raise by fiat, and

vehicle-based contributions to PM2.5 concentrations would not necessarily be ameliorated, at least in the

short term. Until the revenue generated by the tax or bond is used to create viable transportation alternatives
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at a scale large enough to make PM2.5-generating vehicle usage redundant, soft policies such as the issuance

of advisories are unlikely to spur the behavioral changes necessary to mitigate negative externalities, whether

they be local, regional, or global in scale.
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Appendices

A Appendix for Section 4

Consider myopic individual (or household) i in a given time period t, who derives benefit from making

vehicle trips (e.g., commuting to work, shopping, traveling to recreation sites, etc.), but also incurs costs

associated with the aggregate amount of trips taken in i’s community or region during time t (to which

individual i contributes atomistically), e.g., in the form of elevated PM2.5 concentrations.40 We specify i’s

benefit function in period t, uit , as,

uit = uit (zit (qit) ,xit ;β
z
i (θt) ,β

x
i (θt)) , i = 1, ..., I, t = 1, ...,T, (1)

where zit represents the amount of a composite good obtained as a function of vehicle usage, denoted as qit ,

and xit is the composite amount of all other goods not obtained via vehicle usage, i.e., household-produced

goods. Information-conditioned parameters 0 < β
z
i (θt) < 1 and 0 < β x

i (θt) < 1, respectively, parameterize

zit and xit in function uit such that β x
i (θt) ≡ 1− β

z
i (θt). And θt is an information parameter representing

issuance of a yellow air day advisory when PM2.5 concentrations rise to within the 15 – 25 µ/m3 interval.41

For ease of exposition and without loss of generality, we assume all variables zit , qit , and xit , and parameters

β
z
i (θt), β x

i (θt), and θt are measured continuously. In particular, increases in θt imply that the region’s

individuals are being supplied with more information (via an advisory) about the onset of a yellow air day.

In addition to standard curvature conditions specified for function uit , i.e., ∂uit/∂ zit > 0, ∂ 2uit/∂ z2
it ≤ 0,

∂uit/∂xit > 0, ∂ 2uit/∂x2
it ≤ 0, and ∂ 2uit/∂ zit∂xit = ∂ 2uit/∂xit∂ zit > 0, and for function zit , i.e., ∂ zit/∂qit > 0

and ∂ 2zit/∂q2
it ≤ 0, we specify a key curvature condition for the ensuing analysis: ∂β

z
i /∂θt > 0. This

condition indicates that, all else equal, the marginal value of zit (relative to that of xit) increases with the

issuance of a yellow air day advisory, i.e.,
(
∂ 2uit/∂ zit∂β

z
i

)
(∂β

z
i /∂θt) > 0. Note that identity β

q
i (θt) ≡

1−β
z
i (θt) in turn implies

(
∂ 2uit/∂xit∂β

z
i

)
(∂β

z
i /∂θt)< 0. These conditions underlie the intuition expressed

in Section 4 that, given the issuance of a yellow air day advisory, an individual derives added benefit from any

given vehicle trip, since making the trip using the next-best alternative, e.g., walking or riding a bus, involves

40As we will see below, assuming myopic decision-making among individuals simplifies our model without compromising its
relevance to the problem at hand.

41Assuming β x
i (θt)≡ 1−β

z
i (θt) is a convenient way to embed the assumption that an increase in β

z
i in response to an increase

in θt increases the value of an additional unit of zit relative to xit .
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greater exposure to the yellow air. Furthermore, given that a yellow air day advisory signals the onset of

a subsequent red air day episode, individuals could perceive added benefit associated with intertemporally

substituting vehicle trips forward in time to reduce the need for making future vehicle trips during the

episode itself.

Individual i forms an expectation over the health and environmental damages s/he suffers with respect

to aggregate PM2.5 concentrations accumulated in the atmosphere during period t, regardless of the tradeoff

s/he makes between zit and xit on yellow air days – a tradeoff accounted for in benefit function uit . We

represent these expected damages with function E [dit ],

E [dit ] = d̄it (Qt ;αi (θt)) , i = 1, ..., I, t = 1, ...,T, (2)

where region-wide vehicle trips Qt = ∑i qit , αi (θt) is an information-conditioned parameter distinct from

β
z
i , and standard curvature conditions are specified for expected damage function E [dit ], i.e., ∂ d̄it/∂Qt > 0,

∂ 2d̄it/∂Q2
t ≥ 0, and ∂ d̄it/∂αi > 0. Similar to the relationship between β

z
i and θt we assume ∂αi/∂θt > 0,

which in turn indicates that, all else equal, marginal damages suffered by each individual i in period t

increase in response to the issuance of a yellow air day advisory, i.e.,
(
∂ 2d̄it/∂Qt∂αi

)
(∂αi/∂θt)> 0. This

condition accounts for an overall increase in expected marginal damages to an individual’s health due to the

issuance of a yellow air day advisory.

The individual’s budget constraint in any given period t is given by,

wit = pz
t zit(qit)+ pq

t qit + xit , i = 1, ..., I, t = 1, ...,T, (3)

where wit represents individual i’s given wealth level in period t, and per-unit prices pz
t and pq

t are taken as

given for good zit and vehicle trips qit , respectively (the price of xit is normalized to one).42

Next, we consider three cases reflecting three polar types of individuals comprising the region.43 Case

1 pertains to individuals who ignore the damages associated with region-wide vehicle trips in each period t,

Qt , altogether, even given ∂αi/∂θt 6= 0. Case 2 pertains to individuals who account solely for the expected

damages that they alone incur in period t, i.e., individual i dissects function d̄it as d̄it (qit +Q−it ;αi (θt)),

42Because individuals are assumed myopic in their decision-making, we could just as well aggregate the individual’s budget
constraint over all periods t, i.e., express the constraint instead as ∑t wit = ∑t

(
pz

t zit(qit)+ pq
t qit + xit

)
.

43Again, we acknowledge that in reality the set of individuals in any given region are likely a convex combination of these three
polar extremes.
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where Q−it represents the aggregate trip count across all individuals in the region except individual i. Case

3 pertains to altruistic individuals who account not only for the expected damages that their vehicle trips

impose on themselves and all other individuals in the region, but also the expected benefits that all other

individuals obtain as a result of increasing their vehicle trips in response to a yellow air day advisory.

A.1 Case 1

An individual i who fits the description of Case 1 myopically chooses qit and xit to solve the following

Lagrangian in each period t,

uit (zit (qit) ,xit ;β
z
i (θt) ,β

x
i (θt))− d̄it (Qt ;αi (θt)) +λit

(
wit − pz

t zit(qit)− pq
t qit − xit

)
where λit > 0 represents i’s period t Lagrangian multiplier. First-order conditions for this problem result in,

∂uit

∂ zit

∂ zit

∂qit
=

∂uit

∂xit

(
pz

t
∂ zit

∂qit
+ pq

t

)
, i = 1, ..., I, t = 1, ...,T. (4)

The left-hand side of (4) represents the marginal benefit of an additional vehicle trip and the right-hand side

represents the corresponding marginal cost. Together with (3) and function zit (qit), optimality condition

(4) solves for q∗it = qit
(
wit , pz

t , pq
t ,αi (θt) ,β

z
i (θt) ,β

x
i (θt)

)
, z∗it = zit

(
wit , pz

t , pq
t ,αi (θt) ,β

z
i (θt) ,β

x
i (θt)

)
, and

x∗it = xit
(
wit , pz

t , pq
t ,αi (θt) ,β

z
i (θt) ,β

x
i (θt)

)
.

Substituting q∗it , z∗it , and x∗it into (4) and differentiating allows us to solve for the marginal effect of a

change in θt on q∗it relative to x∗it .
44 The expression for this marginal effect is,

∂q∗it
∂θt

=−Ψ1

Ω1
> 0, i = 1, ..., I, t = 1, ...,T, (5)

where

Ψ1 =
∂ 2uit

∂ z∗it∂β
z
i

∂β
z
i

∂θt

∂ z∗it
∂q∗it
− ∂ 2uit

∂x∗it∂β
z
i

∂β
z
i

∂θt

(
pz

t
∂ z∗it
∂q∗it

+ pq
t

)
> 0 (6)

and

Ω1 =
∂ 2uit

∂ z∗2it

(
∂ z∗it
∂q∗it

)2

+
∂uit

∂ z∗it

∂ 2z∗it
∂q∗2it

− ∂ 2uit

∂x∗it∂ z∗it

∂ z∗it
∂q∗it

(
pz

t
∂ z∗it
∂q∗it

+ pq
t

)
− ∂uit

∂x∗it
pz

t
∂ 2uit

∂ z∗2it
< 0. (7)

44Solving for the relative change in q∗it is sufficient for the analysis at hand. Deriving the absolute change in q∗it in response to a
change in θt requires simultaneous differentiation of (3) and (4).
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Note that Ψ1 > 0 in (6) follows directly from the curvature conditions specified above for uit (·). To see why

Ω1 < 0 in (7), first rewrite (4) as,

∂uit

∂ zit
− ∂uit

∂xit
pz

t =
pq

t
∂ zit
∂qit

> 0, i = 1, ..., I, t = 1, ...,T. (8)

Now note from (7) that Ω1 < 0 when

(
∂uit

∂ z∗it
− ∂uit

∂x∗it
pz

t

)
∂ 2z∗it
∂q∗2it

< 0 =⇒ ∂uit

∂ z∗it
− ∂uit

∂x∗it
pz

t > 0,

which coincides with the result in (8). Thus, Ω1 < 0.

Clearly, the result in (5) is driven by the assumptions underlying our problem, in particular the separa-

bility of uit and d̄it in individual i’s Lagrangian function. In a more general specification of i’s welfare, e.g.,

uit

(
zit (qit) ,xit ;Qt ,β

z
i (θt) ,β

x
i (θt) ,β

Q
i (θt)

)
, where β

Q
i (θt) < 0 parameterizes Qt in uit , we cannot defini-

tively sign ∂q∗it/∂θt without specifying additional assumptions governing the tradeoff between zit and xit in

response to an increase in θt . As is, our result for Case 1 depicts the predilection of certain types of indi-

viduals who weight the private benefit associated with their vehicle trips during yellow air days more than

the correlative public damages to which their trips contribute (which, according to our particular welfare

specification, are completely ignored in this case).

A.2 Case 2

An individual i who fits the description of Case 2 myopically chooses qit and xit to solve the following

Lagrangian in each period t,

uit (zit (qit) ,xit ;β
z
i (θt) ,β

x
i (θt))− d̄it (qit +Q−it ;αi (θt)) + γit

(
wit − pz

t zit(qit)− pq
t qit − xit

)
where γit > 0 represents i’s period t Lagrangian multiplier. First-order conditions for this problem result in,

∂uit

∂ zit

∂ zit

∂qit
=

∂uit

∂xit

(
pz

t
∂ zit

∂qit
+ pq

t

)
+

∂ d̄it

∂Qt
, i = 1, ..., I, t = 1, ...,T. (9)

As with Case 1, the left-hand side of (9) represents the marginal benefit of an additional vehicle trip

and the right-hand side represents the corresponding marginal cost, which in this case now accounts for the
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expected marginal damage associated with an additional vehicle trip, ∂ d̄it/∂Qt . Similar to Case 1, equation

(3), function zit (qit), and optimality condition (9) solve for q∗∗it , z∗∗it , and x∗∗it , which when substituted back

into (9) and differentiated allows us to solve for the marginal effect of a change in θt on q∗∗it relative to x∗∗it .

The expression for this marginal effect is,

∂q∗∗it
∂θt

=−Ψ2

Ω2
, i = 1, ..., I, t = 1, ...,T, (10)

where

Ψ2 = Ψ1−
∂ 2d̄it

∂Q∗∗t ∂αi

∂αi

∂θt
(11)

and

Ω2 = Ω1−
∂ 2d̄it

∂Q∗∗2t
< 0. (12)

Comparing (10)–(12) with (5)–(7) we see that,

∂q∗∗it
∂θt

<
∂q∗it
∂θt

> 0. (13)

Further, we find that,

∂q∗∗it
∂θt

≷ 0 as
∂ 2d̄it

∂Q∗∗t ∂αi
≶

∂ 2uit

∂ z∗∗it ∂β
z
i

∂β
z
i

∂θt

∂ z∗∗it
∂q∗∗it

− ∂ 2uit

∂x∗∗it ∂β
z
i

∂β
z
i

∂θt

(
pz

t
∂ z∗∗it
∂q∗∗it

+ pq
t

)
, (14)

where the term ∂ 2d̄it
∂Q∗∗t ∂αi

represents the change in individual i’s perceived marginal damage (from vehicle

trips) associated with the change in information-conditioned parameter αi as a result of the issuance of a

yellow air day advisory (i.e., change in θt). The term ∂ 2uit
∂ z∗∗it ∂β

z
i

∂β
z
i

∂θt

∂ z∗∗it
∂q∗∗it
− ∂ 2uit

∂x∗∗it ∂β
z
i

∂β
z
i

∂θt

(
pz

t
∂ z∗∗it
∂q∗∗it

+ pq
t

)
represents

the corresponding change in i’s marginal benefit associated with the change in information-conditioned

parameter β
z
i . Our result for Case 2 therefore depicts the predilection of a different type of individual than

Case 1. In this case, the individual explicitly accounts for the (private effect of) the public damage to which

his trips contribute, which leads to a lower increase in vehicle usage in response to a yellow air day advisory

than for Case 1 individuals, all else equal. As equations (13) and (14) demonstrate, Case 2 individuals may

choose to decrease the number of their vehicle trips in response to a yellow air day advisory.
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A.3 Case 3

An individual i who fits the description of Case 3 myopically chooses qit and xit to solve the following

Lagrangian in each period t,

uit

(
zit (qit) ,xit ,∑

j 6=i
ū jt

(
z jt (q jt) ,x jt ;β

z
j (θt) ,β

x
j (θt)

)
;β

z
i (θt) ,β

x
i (θt)

)
− d̄it (qit +Q−it ;αi (θt))

−∑
j 6=i

d̄ jt (qit +Q−it ;α j (θt)) +φit
(
wit − pz

t zit(qit)− pq
t qit − xit

)
where φit > 0 represents i’s period t Lagrangian multiplier. An altruistic individual i accounts for the effect of

a yellow air day advisory on the expected benefits that all other individuals j, j 6= i, i, j = 1, ..., I obtain from

their vehicle usage, represented by inclusion of the term ∑ j 6=i ū jt

(
z jt (q jt) ,x jt ;β

z
j (θt) ,β

x
j (θt)

)
in i’s own

utility function uit . Altruistic individual i also accounts for the effects of both the yellow air day advisory

and her vehicle usage on the expected damages incurred by all other individuals, represented by inclusion

of the separate term ∑ j 6=i d̄ jt (qit +Q−it ;α j (θt)) in her Lagrangian function. First-order conditions for this

problem result in,

∂uit

∂ zit

∂ zit

∂qit
=

∂uit

∂xit

(
pz

t
∂ zit

∂qit
+ pq

t

)
+

∂ d̄it

∂Qt
+∑

j 6=i

∂ d̄ jt

∂Qt
, i, j = 1, ..., I, t = 1, ...,T. (15)

where ∂ d̄ jt/∂Qt > 0∀ j 6= i, i.e., individual i perceives all other members of the region as suffering positive

marginal damages from additional vehicle trips made within the region.

As with Cases 1 and 2, the left-hand side of (15) represents the marginal benefit of an additional vehicle

trip and the right-hand side represents the corresponding marginal cost, which in this case now accounts

for i’s expected private marginal damage associated with taking an additional vehicle trip as well as i’s

expectation of the impact that that additional vehicle trip has on the damages incurred by all other individuals

in the region, represented by the term ∑ j 6=i
∂ d̄ jt
∂Qt

. Similar to Cases 1 and 2, equation (3), function zit (qit),

and optimality condition (15) solve for q∗∗∗it , z∗∗∗it , and x∗∗∗it , which when substituted back into (15) and

differentiated allows us to solve for the marginal effect of a change in θt on q∗∗∗it relative to x∗∗∗it . The

expression for this marginal effect is,

∂q∗∗∗it

∂θt
=−Ψ3

Ω3
, i = 1, ..., I, t = 1, ...,T, (16)
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where

Ψ3 = Ψ2 +∑
j 6=i

(
∂ 2uit

∂ z∗∗∗it ∂ ū jt

∂ ū jt

∂β
z
j

∂β
z
j

∂θt

∂ z∗∗∗it
∂q∗∗∗it

− ∂ 2uit

∂x∗∗∗it ∂ ū jt

∂ ū jt

∂β
z
j

∂β
z
j

∂θt

(
pz

t
∂ z∗∗∗it
∂q∗∗∗it

+ pq
t

)
−

∂ 2d̄ jt

∂Q∗∗∗t ∂α j

∂α j

∂θt

)
(17)

and

Ω3 = Ω2−∑
j 6=i

∂ 2d̄ jt

∂Q∗∗∗2t
< 0. (18)

We note that ∂ 2uit
∂ z∗∗∗it ∂ ū jt

> 0 and ∂ 2uit
∂x∗∗∗it ∂ ū jt

> 0 across all individuals j as a reflection of individual i’s altruism,

and ∂ ū jt
∂β

z
j

∂β
z
j

∂θt
≤ 0, which reflects the fact that before any given yellow air day advisory individuals j are

assumed to have optimally set their respective β
z
j (θt) parameter values.

Comparing (10)–(12) with (16)–(18) leads to a sufficient condition governing the relationship between

∂q∗∗∗it /∂θt and ∂q∗∗it /∂θt across all i, j = 1, ..., I, and t = 1, ...,T ,45

∂q∗∗∗it

∂θt
<

∂q∗∗it
∂θt

if ∑
j 6=i

(
∂ 2d̄ jt

∂Q∗∗∗t ∂α j

∂α j

∂θt

)
>

∑
j 6=i

(
∂ 2uit

∂ z∗∗∗it ∂ ū jt

∂ ū jt

∂β
z
j

∂β
z
j

∂θt

∂ z∗∗∗it

∂q∗∗∗it

)
−∑

j 6=i

(
∂ 2uit

∂x∗∗∗it ∂ ū jt

∂ ū jt

∂β
z
j

∂β
z
j

∂θt

(
pz

t
∂ z∗∗∗it

∂q∗∗∗it
+ pq

t

))
. (19)

The left-hand side of the second inequality in (19) represents the change in individual i’s perceived

marginal damage associated with the added aggregate damage suffered by individuals j 6= i (from their

vehicle trips) brought about by the respective changes in their information-conditioned parameters α j as a

result of the issuance of a yellow air day advisory (i.e., change in θt). The right-hand side of the second

inequality represents the corresponding change in i’s perceived marginal benefit associated with the added

aggregate benefit obtained by individuals j 6= i brought about by the respective changes in their information-

conditioned parameters β
z
j .

Similarly, comparing (5)–(7) with (16)–(18) leads to a sufficient condition governing the relationship

between ∂q∗∗∗it /∂θt and ∂q∗it/∂θt across all i, j = 1, ..., I, and t = 1, ...,T ,

∂q∗∗∗it

∂θt
<

∂q∗it
∂θt

if
∂ 2d̄it

∂Q∗∗∗t ∂αi

∂α j

∂θt
+∑

j 6=i

(
∂ 2d̄ jt

∂Q∗∗∗t ∂α j

∂α j

∂θt

)
>

45The corresponding necessary condition for this result is less strict due to the inclusion of the term ∑ j 6=i
∂ 2d̄ jt

∂Q∗∗∗2t
in the denominator

of the expression for ∂q∗∗∗it /∂θt in (16), i.e., in Ω3.
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∑
j 6=i

(
∂ 2uit

∂ z∗∗∗it ∂ ū jt

∂ ū jt

∂β
z
j

∂β
z
j

∂θt

∂ z∗∗∗it

∂q∗∗∗it

)
−∑

j 6=i

(
∂ 2uit

∂x∗∗∗it ∂ ū jt

∂ ū jt

∂β
z
j

∂β
z
j

∂θt

(
pz

t
∂ z∗∗∗it

∂q∗∗∗it
+ pq

t

))
, (20)

where the left-hand and right-hand sides of the second inequality in (20) have the same interpretations

as those in the second inequality in equation (19). However, in this case the sufficient condition is now

more likely to hold because of the addition of the ∂ 2d̄it
∂Q∗∗∗t ∂αi

∂α j
∂θt

> 0 term on the left-hand side of the second

inequality.

B Appendix for Section 6.3

1. Identification of YellowAdvisory (Probit Model).

Dependent Variable:
Explanatory Variables YellowAdvisory

Constant -0.94***
(0.097)

YellowAdvisoryt−1 1.27***
(0.159)

D.VehicleTrips 0.000
(0.000)

D.TempDi f f 0.015
(0.011)

D.Humidity 0.04**
(0.016)

D.Wind 0.39
(0.246)

D.HumWind -0.005*
(0.003)

D.SnowFall 0.001
(0.003)

D.SnowDepth -0.009***
(0.003)

LRχ2(8) 88.97***
PseudoR2 0.19
N 378

*** Significant at 1% level, ** Significant at 5% level, * Significant

at 10% level.
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2. Instrumented Results for Ln(VehicleTrips).

Dependent Variable:
Explanatory Variablesa Ln(VehicleTrips)
Constant 2.90***

(0.799)

YellowAdvisoryt−1
b 0.17

(0.108)

NotSunday 0.61***
(0.022)

Holiday -0.10**
(0.041)

Year2007 0.09**
(0.039)

Year2008 0.14***
(0.039)

Year2009 0.17**
(0.075)

Year2010 0.05
(.054)

Year2011 0.23***
(0.057)

Year2012 0.21***
(0.042)

Wald χ2(13) 2,228.86***
R2 0.81
N 348

a Robust standard errors in parentheses (Huber, 1967; White 1980, 1982).

b Instrumented with lagged, first-differenced weather variables from Table

2. *** Significant at 1% level, ** Significant at 5% level, * Significant at

10% level.
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Figure 1: Location of Cache Valley, Utah

Source: https://onlinelibrary.utah.gov/utah/counties/

and https://www.freeworldmaps.net/united-states/utah/location.html.
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Figure 2: Average Monthly PM2.5 Concentrations in Cache Valley, Utah.

Source: Moscardini and Caplan (2017)
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Figure 3: Annual distributions of PM2.5 concentrations in Cache Valley, Utah, 2003-2007.

Source: Moscardini and Caplan (2017)
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Figure 4: Locations of Automatic Traffic Recorder (ATR) stations in Cache Valley, Utah

Source: Moscardini and Caplan (2017).
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Figure 5: Daily averages for vehicle trips, red air days, and yellow air day advisories.
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Table 1: Yellow air day advisories.

Inversion Season % Advisories # Episodes Avg. Episode Lgth. (SD) % Preceed Red Air Episode
(# of days) (# of days) (# days)

2002-2003 38 9 3.8 (3.9) 33

2003-2004 20 10 1.8 (1.1) 60

2004-2005 30 13 2.1 (1.1) 62

2005-2006 30 10 2.7 (1.9) 40

2006-2007 34 10 3.1 (2.2) 40

2007-2008 27 11 2.2 (1.8) 18

2008-2009 24 9 2.4 (1.9) 33

2009-2010 40 9 4.0 (2.7) 89

2010-2011 20 7 2.6 (1.4) 29

2011-2012 24 5 4.4 (4.9) 0
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Table 2: Variable names, descriptions, and summary statistics.

Variable Description Mean (St. Dev.)

VehicleTrips Daily trip count (# of vehicle trips). 43,261 (14,928)

PM2.5 Average daily PM2.5 concentration (µg/m3). 19.56 (19.39)

TempDi f f Temperature gradient between Logan Peak and valley floor
(◦F).

-7.29 (10.24)

PM2.5|TempDi f f>0 Average daily PM2.5 concentration given winter-inversion
conditions (µg/m3).

39.47 (27.80)

YellowAdvisory =1 if yellow air day advisory is issued, 0 otherwise. 0.32 (0.47)

Humidity Daily humidity level (%). 82.66 (8.78)

Wind Daily wind speed (miles/hour). 3.03 (2.67)

HumWind Humidity∗Wind. 243.74 (203.89)

Pressure Daily atmospheric pressure (p.s.i.). 30.19 (0.27)

SnowFall Daily snowfall level (mm). 14.45 (37.54)

SnowDepth Daily snow depth (mm). 127.26 (115.87)

Holiday =1 if day before, day after, or day of Christmas, New Years
Day, Martin Luther King Jr. Day, or Presidents Day holidays,
0 otherwise.

0.13 (0.34)

NotSunday =1 if not Sunday, 0 otherwise. (?) (?)
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Table 3: Controlling potential autocorrelation in VehicleTrips and Ln(VehicleTrips).

Dependent Variable:
Explanatory Variables VehicleTrips Ln(VehicleTrips)
Constant 7,524.65*** 2.10***

(1,540.802) (0.399)

VehicleTripst−1 0.52*** —
(0.041)

VehicleTripst−2 -0.09* —
(0.046)

VehicleTripst−3 0.25*** —
(0.046)

VehicleTripst−4 0.14*** —
(0.042)

Ln(VehicleTrips)t−1 — 0.43***
(0.041)

Ln(VehicleTrips)t−2 — -0.01
(0.044)

Ln(VehicleTrips)t−3 — 0.21***
(0.044)

Ln(VehicleTrips)t−4 — 0.17***
(0.042)

F(27,378) 165.79*** 122.30***
Ad j.R2 0.53 0.45
Cumby-Huizinga χ2 1.394 1.576
Modified Ljung-Box χ2 1.846 1.628
Durbin χ2 1.383 1.565
N 594 594

*** Significant at 1% level, ** Significant at 5% level, * Significant

at 10% level.
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Table 4: Baseline regression results for VehicleTrips and Ln(VehicleTrips).a

Dependent Variable:
Explanatory Variables VehicleTrips Ln(VehicleTrips)

Constant -6,459.01*** 3.21***
(2,063.97) (0.485)

YellowAdvisory -1,407.67 0.002
(1,478.12) (0.029)

YellowAdvisoryt−1 4,085.61** 0.09**
(1,825.69) (0.038)

NotSunday 20,487.62*** 0.58***
(965.09) (0.017)

YellowAdvisory x NotSunday 1,810.39 0.02
(1,560.47) (0.030)

[YellowAdvisory x NotSunday]t−1 -4,226.90** -0.09**
(1,846.39) (0.040)

Holiday -4,481.26*** -0.11***
(1,405.04) (0.036)

YellowAdvisory x Holiday 1,429.71 0.02
(2,121.36) (0.052)

[YellowAdvisory x Holiday]t−1 -411.11 -0.002
(2,186.60) (0.052)

Year2007 3,963.85*** 0.11***
(805.16) (0.020)

Year2008 4,429.69*** 0.12***
(1,083.56) (0.026)

Year2009 7,854.87*** 0.19***
(2,010.60) (0.047)

Year2010 2,338.49* 0.06*
(1,355.46) (0.032)

Year2011 9,159.68*** 0.22***
(1,638.39) (0.034)

Year2012 7,446.30*** 0.19***
(1,388.49) (0.031)

F(18,503) 145.49*** 276.79***
Ad j.R2 0.82 0.86
N 537 522

a Robust standard errors in parentheses (Huber, 1967; White 1980,

1982). *** Significant at 1% level, ** Significant at 5% level, *

Significant at 10% level.
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Table 5: Disaggregated regression results for VehicleTrips and Ln(VehicleTrips).a

Dependent Variable:
Explanatory Variables VehicleTrips Ln(VehicleTrips)

Constant -8,401.84*** 1.70***
(1996.72) (0.612)

YellowAdvisory -3,370.21** -0.02
(1,613.19) (0.033)

YellowAdvisoryt−1 825.45 0.01
(612.48) (0.014)

Holiday -3,811.17*** -0.09***
(1,348.71) (0.035)

YellowAdvisory x Holiday 2,847.50* 0.05
(1,774.03) (0.048)

[YellowAdvisory x Holiday]t−1 -1,106.42 -0.01
(1,862.83) (0.049)

YellowAdvisory x Monday 1,754.70 0.01
(1814.94) (0.031)

YellowAdvisory x Tuesday 1,665.07 0.01
(1,468.49) (0.029)

YellowAdvisory x Wednesday 4,494.90** 0.07
(2,008.36) (0.044)

YellowAdvisory x T hursday 3,111.26 0.06
(2,273.50) (0.030)

YellowAdvisory x Friday 3,219.62* 0.04
(1,657.01) (0.029)

YellowAdvisory x Saturday 2,391.73 0.03
(1,629.99) (0.032)

YellowAdvisory x 2007 1,046.64 0.01
(933.31) (0.022)

YellowAdvisory x 2008 3,646.29** 0.05
(1,756.27) (0.038)

YellowAdvisory x 2009 -1,050.14 -0.06
(2,387.35) (0.061)

YellowAdvisory x 2010 4,706.17* 0.08
(2,424.06) (0.055)

YellowAdvisory x 2011 -500.01 -0.02
(1,460.05) (0.027)

YellowAdvisory x 2012 1,078.93 0.00
(1,588.79) (0.034)

F(37,484) 144.70*** 249.43***
Ad j.R2 0.88 0.90
N 522 522

a Robust standard errors in parentheses (Huber, 1967; White 1980,

1982). *** Significant at 1% level, ** Significant at 5% level, *

Significant at 10% level.
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Table 6: Controlling potential autocorrelation in YellowAdvisory.

Dependent Variable:
Explanatory Variables YellowAdvisory
Constant 0.18***

(0.021)
YellowAdvisoryt−1 0.42***

(0.036)
F(1,638) 137.85***
Ad j.R2 0.18
Cumby-Huizinga χ2 0.088
Modified Ljung-Box χ2 0.018
Durbin χ2 0.087
N 640

*** Significant at 1% level, ** Significant at 5% level, * Significant

at 10% level.
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Table 7: Identification of YellowAdvisory.

Dependent Variable:
Explanatory Variables YellowAdvisory

Constant 0.19***
(0.025)

YellowAdvisoryt−1 0.43***
(0.051)

D.VehicleTrips -0.00
(0.00)

D.TempDi f f 0.005*
(0.003)

D.Humidity 0.009**
(0.004)

D.Wind 0.098**
(0.048)

D.HumWind -0.001**
(0.0006)

D.SnowFall 0.003
(0.005)

D.SnowDepth -0.002***
(0.0006)

F(8,369) 14.52***
Ad j.R2 0.22
N 378

*** Significant at 1% level, ** Significant at 5% level, * Significant

at 10% level.
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Table 8: Testing for the Presence of Omitted Variable Bias in VehicleTrips and Ln(VehicleTrips).a

Dependent Variable:
Explanatory Variables VehicleTrips Ln(VehicleTrips)
Constant 5,788.50*** 1.51***

(1,821.305) (0.466)

D.TempDi f f 86.58 0.003
(70.24) (0.002)

D.Humidity -142.03 -0.002
(103.96) (0.003)

D.Wind -497.43 0.01
(1,869.40) (0.046)

D.Humwind 0.46 -0.0003
(23.01) (0.0006)

D.SnowFall -13.72 -0.0004
(13.13) (0.0003)

D.SnowDepth -42.27*** -0.001***
(15.36) (0.0004)

F(10,365) 69.27*** 51.58***
Ad j.R2 0.58 0.51
N 376 376

a Robust standard errors in parentheses (Huber, 1967; White 1980,

1982). *** Significant at 1% level, ** Significant at 5% level, *

Significant at 10% level.
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