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ABSTRACT 

Estimating R2 Shrinkage in Multiple Regression : 

A Comparison of Different Analytical Methods 

by 

Ping Yin, Master of Science 

Utah State University, 1999 

Major Professor : Xitao Fan, Ph.D. 
Department : Psychology 

11 

This study investigated the effectiveness of various analytical methods used for 

estimating R2 shrinkage in multiple regression analysis. Two categories of analytical 

formulae were identified: estimators of the population squared multiple correlation 

coefficient (p2
) , and estimators of the population cross-validity coefficient (p/ ). To avoid 

possible confounding factors that might be associated with a real data set such as data 

nonnormality, lack of precise population parameters, different degrees of multicollinearity 

among the predictor variables, and so forth, the Monte Carlo method was used to simulate 

multivariate normal sample data, with prespecified population parameters such as the 

squared multiple correlation coefficient (p2
), number of predictors, different sample sizes, 

known degree of multicollinearity, and controlled data normality conditions. Five hundred 

replicates were simulated within each cell of the sampling conditions. Various analytical 

formulae were applied to the simulated data in each sampling condition, and the "adjusted" 



coefficients were obtained and then compared to their corresponding population 

parameters (p2 and p/) . 

111 

Analysis of the results indicates that the currently most widely used (in both SAS 

and SPSS) "Wherry" formula is probably not the most effective analytical formula in 

estimating p2
. Instead, the Pratt formula appeared to outperform other analytical formulae 

across most of these sampling conditions. Among the analytical formulae designed to 

estimate p/ , the Browne formula appeared to be the most effective and stable in 

minimizing statistical bias across different sampling conditions. The study also concludes 

that it is the nip ( sample size/number of predictor variables) ratio that affects the 

performances of these analytical formulae the most; different degrees of multicollinearity 

among predictor variables do not have dramatic influence on the performances of these 

analytical formulae. Further replications on both real and simulated data are still needed to 

investigate the effectiveness of these analytical formulae. 

(136 pages) 
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CHAPTER I 

INTRODUCTION AND PROBLEM STATEMENT 

To answer many research questions in the social and behavioral sciences, it is 

often useful to examine the relationship between a dependent (or criterion) variable and a 

set of independent ( or predictor) variables at the same time. Statistically , with multiple 

regression , a dependent variable can be predicted from a set of independent variables . To 

do so, a linear combination of the independent variables is maximally correlated with the 

dependent variable. Ordinary least squares (OLS) is a method widely used to minimize 

the sum of squared errors of prediction , which is equivalent to maximizing the correlation 

between the observed and the predicted dependent variable . The maximized Pearson 

correlation coefficient between the dependent variable and the set of independent variables 

is called the multiple R (Stevens, 1996, p. 72). 

In the process of optimizing the weighting of the independent variables for a 

sample , sampling chance or random error tends to be capitalized. This optimizing 

process from which the multiple regression equation is derived causes the sample multiple 

correlation coefficient (R) to be systemically higher than the corresponding population 

parameter p. When the equation is applied to an independent sample other than the one 

from which the equation is obtained (i.e., cross-validation), the predictive power drops 

off This phenomenon is what the term "statistical bias" in multiple regression refers to 

(Glass & Hopkins, 1996; Stevens, 1996). The smaller the sample size and the more 

independent or predictor variables used, the greater the shrinkage in sample multiple R 

when applied to a new sample (Cohen & Cohen, 1983; Stevens, 1996). 
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To determine the generalizability or the predictive power of a sample regression 

equation, different approaches of model validation have been developed (Cohen & Cohen, 

1983; Darlington, 1968; Herzberg, 1969). There are two major categories : empirical 

methods and analytical methods. The empirical methods usually involve the estimation of 

average predictive power of a sample regression equation on other samples ( cross­

validation). Typical empirical methods for this purpose are data splitting, multicross­

validation, jackknife, and bootstrap methods (Ayabe, 1985; Cummings, 1982; Kromrey & 

Hines, 1995; Krus & Fuller, 1982). Analytical methods include several analytical 

correction formulae for adjusting the statistical bias and yield corrected R2
. Some major 

correction formulae designed for this purpose are the Smith formula (presented by 

Ezekiel, 1929), the Ezekiel formula (Ezekiel, 1929), the Darlington/Stein formula 

(Darlington, 1968; Stein, 1960), the Browne formula ( 1975), the Olkin/Pratt formula 

(1958), the Nicholson/Lord formula (Lord, 1950; Nicholson, 1960), and the Wherry 

formula (1931) . 

However , there is little consensus in the literature on which method is most 

appropriate under what circumstances for estimating "statistical bias" in multiple 

regression. Some studies suggest that the Browne formula may be superior to other 

estimates for estimating shrinkage in multiple regression (Kromrey & Hines, 1996), while 

other studies suggest that both the Nicholson/Lord formula and the Olkin/Pratt formula 

work equally well (Huberty & Mourad, 1980). Also, there are studies suggesting 

multicross validation "to be the method of choice" (Ayabe, 1985, p. 450) . Few studies 

had specifically investigated these inconsistencies. 



Several factors contribute to the inconsistent findings. In the literature, 

considerable confusion exists over various analytical formulae. For example, in several 
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studies the Ezekiel formula was mistakenly cited as the Wherry formula (Ayabe, 1985; 

Kennedy, 1988; Krus & Fuller, 1982; Schmitt, 1982; Stevens, 1996). In other studies, 

authors failed to distinguish between p2 (the population squared multiple correlation 

coefficient, or the population coefficient of determination) and p/ (the population squared 

multiple correlation coefficient obtained with a specific sample equation, or the coefficient 

of cross-validation) . Such distinction between the two parameters is important because an 

analytical method for shrinkage estimate of one of the two parameters might not be an 

accurate estimate for the other . 

Beyond those discrepancies, there are some problematic methodological issues for 

estimating statistical bias in multiple regression. One problematic issue is that different 

studies have employed different types of shrinkage estimates: one study only used 

analytical formulae (Uhl & Eisenberg, 1970), while other studies used both analytical and 

empirical methods (Claudy, 1978; Huberty & Mourad, 1980; Kromrey & Hines, 1996). 

Different conclusions might have been drawn due to the limited shrinkage estimates that 

an individual study utilized. Another problematic issue concerns using real data to 

evaluate the performance of different estimating methods. One major limitation with real 

data set is that there might be a combination of confounding factors that the researcher 

could not control, such as different forms of data nonnormality, lack of precise population 

parameters, different degrees of multicollinearity among the predictor variables, and so 

forth. Therefore, a better assessment of the performance of different analytical methods 



would be to use simulated data with prespecified parameters, known degree of 

multicollinearity, and controlled data normality conditions. 
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Because of time constraints and project manageability, the present study focused 

on comparing the effectiveness of different analytical formulae in estimating shrinkage in 

multiple regression analysis. More specifically, the objectives in the present study were : 

l. To compare the accuracy and usefulness of various analytical formulae for 

estimating p2 (the population squared multiple correlation coefficient). 

2. To compare the accuracy and usefulness of various analytical formulae for 

estimating p/ (the population squared coefficient of cross-validation) . 

3. To assess the effects of sample size (n) , number of predictor variables (p), the 

nip ratio, and the degree of multicollinearity among the predictors on the accuracy and 

variability of the performances of the analytical formulae in estimating R2 shrinkage. 
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CHAPTER II 

LITERATURE REVIEW 

Multiple Regression 

In multiple regression, the linear relationship between one dependent variable and a 

set of independent variables is being modeled. The general multiple regression model with 

p independent variables could be explained as: 

+ p X + E, p p 
[l] 

where p stands for the number of predictors, Po is the regression constant, p1, .. . , PP are 

population regression weights to be estimated, and E; is the error of prediction . 

In the model above, the criterion of least squares is used to establish the regression 

line, in which the sample regression parameter estimates (b0 and b1, .. . , bp) are selected so 

that the sum of squared residuals ( e; ), that is, the sample counterpart of the population 

error term E; , is as small as possible. Such a procedure minimizes the sum of squared 

errors of prediction , which is equivalent to maximizing the correlation between the 

observed dependent variable ( Y, ) and the predicted value Y, (Stevens , 1996). The 

multiple R is a measure of association between the dependent variable and a set of two or 

more independent variables. The coefficient of determination (R2
) measures the 

proportion of total variance in the predicted variable that is associated with the set of 

predictor variables in the regression model (Stevens, 1996). 
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Statistical Bias 

There are two major reasons for researchers to apply the multiple regression 

procedure (Claudy, 1978): (a) to estimate the population multiple correlation coefficient 

from a sample and (b) to predict the same criterion variable for new samples from the 

same population other than the one from which the regression weights are derived. It has 

long been recognized by quantitative researchers that when a multiple correlation 

coefficient is derived from a given sample, its value tends to be "deceptively" large, and it 

is a "positively biased" estimate of the population multiple correlation coefficient (Cohen 

& Cohen, 1983; Larson, 193 1) Furthermore, when such a multiple regression equation is 

applied to an independent sample other than the original one, it usually would not fit a new 

sample as well as it did for the sample from which it was derived (Cohen & Cohen, 1983; 

Larson, 1931; Stevens, 1996). If the regression equation from a sample could neither 

estimate the population parameter accurately nor predict well when applied to other 

samples, the purposes of multiple regression are not fulfilled. Corresponding to the two 

research purposes of multiple regression, there are also two types of "shrunken R"s 

discussed in the literature . These two types will be described in the following section. 

Estimates of Population Multiple 
Correlation Coefficient ( p) 

One type of shrinkage occurs when estimating the population p2 from a sample R2
. 

For this purpose of multiple regression, a linear model is utilized to model the relationship 

between a dependent variable Y and the optimal linear composite of p independent 
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variables X1, X2, ... , ~' (which could also be represented by the vector variate X) in the 

population as a whole. Matrix algebra gives a compact explanation of multiple regression 

model (Stevens, 1996): 

Y = XP + E 
(2) 

where Y is the vector of the criterion variable, X is the 11 x ( p + 1) matrix, with one 

intercept and p independent variables, P is the vector of regression weights, and E is the 

vector of errors . 

OLS is the statistical principle widely used to model the linear relationship between 

the dependent variable and the set of independent variables. One of the basic assumptions 

of the multiple regression model is that the values of the independent variables are known 

constants and fixed by the researcher prior to the experiment. Only the dependent variable 

is free to vary from sample to sample. Residuals in the regression model are assumed to 

be i.i.d.: (a) identically distributed with mean of zero and equal variance, (b) independent 

to each other, and (c) normally distributed (Hamilton, 1991 ). This widely used regression 

model is also called the fixed linear regression model (Cohen & Cohen, 1983; Park & 

Dudycha, 1974). 

However, in applied situations in social and behavioral sciences, those assumptions 

are rarely met completely: the values of independent variables are rarely fixed by the 

researchers, and they are also subject to random errors. Therefore, Park and Dudycha 

(1974) suggested a second regression model for applications in the behavioral sciences, 

which is called the random model (or correction model). In this model, the independent 

variables are allowed to vary freely, and the joint distribution of both dependent and 
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independent variables is multivariate normal. However, this random model is so complex 

that more research is needed before it can be accepted as the commonly used fixed linear 

regression model. Therefore , the fixed model is usually applied even if the assumptions 

are not met completely (Claudy , 1978). Such applications of the fixed regression model 

with assumptions violated would cause "over-fitting " because of the random error 

introduced from the less-than-perfect data . Also, the sample multiple correlation 

coefficient obtained this way would tend to overestimate the real population multiple 

correlation (Claudy, 1978; Cohen & Cohen, 1983; Cummings, 1982). 

Estimates of Coefficient of Cross-Validation (pj 

The second type of shrinkage occurs when we want to predict the criterion 

variable for new samples from the same population, but other than the one from which the 

regression weights are derived . The cross-validity of the population Pc is defined as the 

population multiple correlation coefficient obtained with a specific sample equation . 

When the regression weights derived from one sample are applied to a new sample from 

the same population, a multiple correlation coefficient is obtained, and it is called Rc- Re is 

the validity estimate of the original sample regression equation in another sample, and it is 

an estimator of the population cross-validity coefficient Pc· The expected value of Re [E 

(Re)] over many samples would approach or equal Pc [E (Re)~ Pel (Claudy, 1978; 

Cummings, 1982; Herzberg , 1969). 

Because the population regression equation in the population will usually function 

better than the sample regression equation in the population, the value of p would tend to 
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be greater than Pc (Pc < p ). Also, the sample multiple correlation coefficient is a 

positively biased estimator of the population multiple correlation coefficient (p < R ). 

Thus, the relationship between values of the two population parameters (p and pc) and 

two sample estimates R and Re) could be summarized as (Claudy, 1978; Cummings, 1982; 

Herzberg, 1969): 

As it is generally known, the sample multiple correlation coefficient R is used as 

the estimator for both Pc and p, but it is actually larger than either Pc or p. Risa positively 

biased estimator of p, and an even more positively biased estimator of Pc (Cummings, 

1982). Therefore , the estimator R must be "shrunken" or "corrected " to adjust for the 

positive bias for estimating either parameter in multiple regression analysis. 

Estimating R2 Shrinkage in 
Multiple Regression 

Estimating RY shrinkage and correcting for the statistical bias in sample multiple 

regression have been suggested in many studies (Browne, 1975; Cohen & Cohen, 1983; 

Huberty & Mourad, 1980; Krus & Fuller, 1982; Larson , 1931; Stevens, 1996; Wherry, 

1931 ). These methods could be classified into two categories : empirical methods and 

analytical methods (Kromrey & Hines, 1995) 

A review of literature located 1 1 such studies involving applications of the 

empirical and/or the analytical methods in estimating R2 shrinkage in multiple regression . 

The following two major study characteristics were identified for these studies : 

1. Estimating methods: studies may have used empirical (cross-validation, double 



cross-validation, multicross-validation, jackknife, bootstrap) and/or analytical (formula) 

methods; and 

2. Validation methods : studies may differ in terms of method used, data set 

selection, sample size, number of predictor variables used, and population parameters. 

Estimating Methods 

Empirical Methods 

Empirical methods for correcting statistical bias for sample multiple R in multiple 

regression include the following approaches : cross-validation , double cross-validation, 

multicross-validation, jackknife, and bootstrap . All these approaches share the logic of 

cross-validation; that is, to estimate the shrinkage by applying the regression equation 

derived from one sample to new data in the same population . For these approaches, 

usually the squared population cross-validity coefficient (p/) is what is being estimated. 

10 

Cross-validation . In cross-validation, the regression weights generated in one 

sample (derivation or screening sample) are used to predict values for the same dependent 

variable in another sample (validation or calibration sample). A cross-validation multiple 

Rc could thus be computed in the validation sample by correlating the observed dependent 

variable (Y) with the predicted dependent variable ( .Y) obtained . It is important to note 

this cross-validated Rc is not an estimator of the population multiple correlation coefficient 

p, but rather the "cross-validated" Pc that tends to be smaller than p (Huberty & Mourad, 

1980; Kromrey & Hines, 1995). 

Cross-validation requires two equivalent samples (derivation and validation 
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samples) that come from the same population. However, in applied situations usually only 

one sample is available for the researchers. In order to apply the cross-validation 

approach, it had been suggested that the sample be split into two subsamples, and one 

subsample of the data would be held in reserve while deriving the regression equation 

from the other subsample. Cross-validity could be estimated by applying the regression 

weights to the reserved subsample and calculate the cross-validation multiple Re 

(Cummings, 1982). Typically, the reserved data is one third or one half of the total 

sample (Cummings, 1982) 

It has been noted that the major problem associated with such cross-validation 

method is that the splitting of the data into two parts requires that some of the data be 

withheld from the derivation of the regression equation . The regression weights are, 

therefore, based upon part of the available data . It is well-known that the stability of the 

regression weights would tend to decrease as the ratio of the sample size to the number of 

variables decreases. Thus, not including all the available data in deriving a multiple 

regression equation would probably lead to a significant loss of information, and, 

therefore, introduce more instability into the regression equation (Huberty & Mourad, 

1980; Newman, McNeil, Garver, & Seymour, 1979). The application of cross-validation 

is restricted especially when the sample size is small. 

Of the previous studies reviewed, four studies used the cross-validation procedure 

in estimating population cross-validity coefficient (Cummings, 1982; Kromrey & Hines, 

1995, 1996; Newman et al., I 979) Cummings ( I 982) indicated that the use of the cross­

validation procedure tended to underestimate the population cross-validity coefficient p/_ 



Newman et al. (1979) concluded that cross-validation method "forces one to split the 

sample in half which tends to produce less stability than one would get using the entire 

sample", and the results from cross-validation "shows no advantage over analytical 

methods " (p. 11). It was also not recommended as a reliable estimate by Kromrey and 

Hines (1995, 1996). 
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Double cross-validation. Double cross-validation was first developed by Mosier 

(1951) to address the instability in simple cross-validation while deriving multiple 

regression equations from only part of the available sample. In Mosier ' s double cross­

validation , the available sample is first split in half and the regression equations are 

calculated for both halves of the sample. The regression equation derived from one half of 

the sample is then applied to the other half, and the cross-validation multiple Re is 

calculated . The same procedure is repeated for the other half Thus, two subsample 

cross-validation multiple Res are then obtained . The double cross-validation coefficient 

could then be calculated by averaging the two cross-validation multiple Res· The formula 

can be stated as: 

[3] 

where Rei and Rc2 stand for the cross-validation multiple Rc5 for both halves of the sample, 

and Pc stands for the estimation of Pc . 

Claudy ( 1978) also developed a new double cross-validation procedure based on 

the Mosier's double cross-validation method. In Claudy's double cross-validation, first 

the regression equation is calculated within one half sample and then apply to the other 

half sample, and vice versa . The difference is that both the two cross-validity indices (Re, 
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and Re;) and the two sample multiple correlation coefficients (R1 and R;) are averaged to 

provide an estimate of the population p. It is important to note that Claudy's procedure 

intends to estimate the population multiple correlation coefficient p, not the cross-validity 

coefficient Pc· The formula can be written as: 

[4] 

where R1 and R 2 stand for the two subsample multiple correlation coefficients, Ref and Rc2 

stand for the sample cross-validity coefficients for both halves of the sample, and stands 

for the estimation of p. 

Claudy also developed another variation of double cross-validation to estimate Pc, 

which was called "double shrinkage estimate" (Claudy, 1978) 

R, + R2 + Rc1 + R 
, c2 - R Pc= 

2 

[5] 

where R1 and R 2 stand for the two subsample multiple correlation coefficients, Rei and Rc2 

stand for the sample cross-validity coefficients for both halves of the sample, R is the 

sample multiple regression coefficient, andf\ stands for the estimation of Pc . 

Of the previous studies reviewed, three studies used a double cross-validation 

procedure (Claudy, 1978; Cummings, 1982; Kennedy, 1988). Claudy' s study showed that 

the Claudy's double cross-validation procedure yielded more accurate estimates than the 

analytical formulae for estimating the population multiple correlation p (Claudy, 1978). In 

Cummings' study, Mosier's double cross-validation was found to underestimate p/, and 

the estimation also appeared to have excessive amount of variation (Cummings, 1982). 



Also, Claudy's double cross-validation procedure showed no advantage over analytical 

methods in estimating p. Finally in Kennedy's study, no advantage was found for 

Mosier's double cross-validation over analytical methods (Kennedy, 1988). 
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Multicross-validati on. Krus and Fuller ( 1982) first introduced multicross 

validation as an extension of Mosier ' s double cross-validation. The technique is based on 

repeated double cross-validations to select subsamples of the data randomly. Regression 

weights are then calculated in each subsample and used for predicting the criterion variable 

of the other subsample. Cross-validated multiple Res are then computed between the 

actual and the predicted values of the criterion variable in each subsamples. 

The cross-validated multiple Res are then normalized through Fisher-Z 

transformation : 

Z = tanh -1 R 
C 

[6] 

After each iteration, the mean of the Fisher Z-transformed cross-validated multiple Re and 

its corresponding standard error are computed . The procedure is repeated until a 

prespecified number of iterations is reached, or after the mean of the cross-validated Res 

appears to converge; that is, the difference between consecutive normalized cross­

validated multiple Res is less than an arbitrarily selected constant used as the criterion for 

convergence . 

At the termination of the iteration process, the resulting normalized cross-validated 

multiple Re is transformed back to its original correlation scale as: 

Re = tanh Z 
[7] 

The mean of cross-validated Res at convergence or after the last iteration is defined as the 
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multicross-validated Re (Krus & Fuller, 1982) 

The multicross-validation approach gives more analytical power to the researcher 

with small data set, although this technique usually requires a large amount of computing. 

Of the previous studies reviewed, four studies included the multicross validation 

procedure (Ayabe, 1985; Kromrey & Hines, 1995, 1996; Krus & Fuller, 1982). Krus and 

Fuller ( 1982) suggested that for random data sets, the multicross validation procedure 

gave a more accurate estimate of the population multiple correlation coefficient p than 

analytical formulae . They further suggested that an empirical rather than an analytical 

approach should be used when data sets are small. Ayabe (1985) confirmed the findings 

by Krus and Fuller, and suggested that the multicross validation method produced 

"comparable or superior estimates of the analytical formula methods" (Ayabe, 1985, p. 

449). And the multicross validation method also performed better than the jackknife 

method . In the study by Kromrey and Hines ( 1995), the only condition that the 

performance of multicross validation was superior to both jackknife and bootstrap method 

is when the population squared multiple correlation coefficient p2 is very small (0.04). 

Otherwise , both jackknife and bootstrap methods performed better than the multicross 

validation procedure . In their 1996 study, there was no obvious advantage found for 

multicross validation over the Browne formula, and it was found to be more difficult to 

compute a multicross validity coefficient than to use the Browne formula. 

Jackknife procedure. The jackknife procedure, first introduced by Quenouille 

(I 949), is a technique to reduce bias in estimation and to assess the stability or accuracy of 

an empirically estimated parameter . The jackknife procedure first estimates the cross-
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validity coefficient Re by splitting the sample into two subsamples, where one of the 

subsamples usually contains only one individual observation. The regression equation is 

derived in the large sample which has n-1 subjects, and the regression weights are 

applied to the sample with one observation to yield a predicted value . The procedure is 

repeated n times with the exclusion of one different observation for each time to obtain 

the regression weights and to calculate the predicted value for that observation. Thus 

each observation has a predicted value on the criterion variable based on the regression 

equation derived from the remaining n-1 subjects . A correlation coefficient between the 

original criterion variable and the predicted values for the criterion variables is then 

calculated . The cross-validity coefficient can then be calculated by either averaging the n 

obtained coefficients , or by using the same Fisher-Z transformation in the multicross 

validation method (Kromrey & Hines, 1995). Another name for the jackknife technique 

was descriptively termed as the "leave-one-out " method (Huberty & Mourad , 1980). 

One variation of the jackknife method is called predicted residual/error sum of 

squares (PRESS), that was discussed by Stevens (1996), to assess the external 

predictive power in multiple regression. However , no empirical study utilizing the PRESS 

method for estimating cross-validity _was found in the literature . Like jackknife, the 

PRESS first predicts each subject's criterion score based on the regression equation 

generated from the other n-1 observations (Stevens, 1996). Then the PRESS residuals 

are calculated using the following formula : 

ec - i) = Y; - Ye - i) [8] 

where Yc-o is the predicted value for subject i, when that subject is not used in the 
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derivation of the regression equation. 

The PRESS statistic can be calculated using the following formula : 

[9] 

This PRESS value is a R2-like statistic that estimates the squared population cross-validity 

coefficient p/ (Stevens, 1996). 

The jackknife procedure can be applied to a variety of situations including small 

sample size, and this procedure is also highly dependent on intensive computation. Of the 

previous studies reviewed, four studies included the jackknife procedure in estimating 

shrinkage in multiple regression (Ayabe, 1985; Huberty & Mourad , 1982; Kromrey & 

Hines, 1995, 1996). The results in Ayabe's study showed that the jackknife method did 

not perform as well as multicross validation. The reason for this was jackknife's 

"inadequacy in handling outliers" (Ayabe, 1985, p. 449) . In Huberty and Mourad's study, 

the "leave-one-out" method was used (Huberty & Mourad, 1982). This method was 

found to be equally accurate to the Nicholson/Lord formula and the Darlington formula in 

estimating p/, but tended to overestimate shrinkage slightly. Such a method was also 

found to be very difficult to calculate in practice, and "leave-one-out" was suggested to be 

"tentatively dropped as an estimator of p/" (Huberty & Mourad, 1982, p. 108). In the 

study by Kromrey and Hines (1995), the normalized or transformed jackknife was shown 

to provide the best estimate when the sample size was relatively large (> 100). In their 

1996 study, the jackknife performed less well than analytical formulae, and the normalized 

jackknife tended to overestimate p/_ 
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Bootstrap method. The bootstrap method was developed by Efron (1979). This 

method is designed to assess the statistical accuracy or stability from an empirically 

derived estimation of a population parameter . In the bootstrap method , many random 

samples of sample size n are repeatedly drawn with replacement from the original sample 

(Fan & Wang, 1996). Because of sampling with replacement, a typical bootstrap sample 

could leave out some cases from the original data and include other cases more than once . 

According to Kromrey and Hines (1995 , 1996), to implement the bootstrap method in 

estimating the cross-validity coefficient in multiple regression , for each random bootstrap 

sample , the regression equation is computed and then applied to the original sample to 

yield the predicted values for the criterion variable . A standard Pearson correlation 

coefficient is then computed between the original and predicted values of the criterion 

variable. The process is repeated for each bootstrap sample to generate a distribution of 

the coefficients obtained from all the bootstrap samples, and the mean of the distribution of 

all the bootstrap estimates is defined as the bootstrap multiple Re (Kromrey & Hines, 1995, 

1996). 

Of the previous studies reviewed, only two studies included bootstrap in estimating 

shrinkage in multiple regression (Kromrey & Hines , 1995, 1996). In their 1995 study, the 

bootstrap method only yielded acceptable estimate when sample size was relatively large 

(> 100). In their 1996 study, the bootstrap performed less well than analytical formulae, 

and it also tended (o overestimate p/_ 
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Analytical Methods 

An alternative to the empirical approach is the analytical approach represented by 

various "shrinkage" formulae. All of these mathematical formulae are based on the entire 

sample so that they would provide more stable results compared to those methods that are 

only based on part of the sample (e.g., cross-validation). Different shrinkage formulae 

have been proposed to estimate either p2 (the population squared multiple correlation 

coefficient) or p/ (the population squared coefficient of cross-validation) . 

In the literature, there has been some confusion about both the origins and the 

purposes of these different fonnulae (Cummings, 1982; Huberty & Mourad, 1980; 

Kromrey & Hines, 1996; Newman et al. , 1979). For example, the popular "Wherry 

formula" actually was not proposed by Wherry himself (Wherry, 1931 ). Also in some 

studies, the Ezekiel formula was mistakenly cited as the Wherry formula (Ayabe, 1985; 

Kennedy, 1988; Krus & Fuller, 1982; Schmitt, 1982; Stevens, 1996). 

The present review of literature has identified 14 such shrinkage formulae . These 

formulae have been categorized into two groups: estimator of p2 and Pc 2 
. 

Estimator of p2
: (a) the Smith formula (Wherry, 1931); (b) the Wherry formula-I 

( 1931 ); ( c) the Wherry formula-2 ( 1931 ); ( d) the Olkin and Pratt formula ( 1958); ( e) the 

Pratt formula (cited in Claudy, 1978); and (f) the Claudy-3 formula (1978) . 

Estimator of p/ or Pc: (a) the Lord formula-I (1950); (b) the Lord formula -2 

(1950); (c) the Burket formula (1964); (d) the Darlington formula (1968); (e) the Browne 

formula (1975); (e) the Claudy formula-I (1978); (f) the Claudy formula-2 (1978); (g) the 

Rozeboom formula-I (1981 ); and (h) the Rozeboom formula-2 (1978). 
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These formulae are presented and reviewed based on the parameters they are 

estimating. In the following presentation of these analytical formulae, N is the sample size; 

R is the sample multiple correlation coefficient; pis the number of predictor variables; pis 

the population multiple correlation coefficient; Pc is the population cross-validity 

coefficient; and R is the "corrected" R obtained from the analytical formula. 

Estimator of (T. The Smith formula takes the form: 

/? 2 = ] - N ( 1 - R 2) 
N- P 

[ 1 OJ 

The formula was originally developed by Smith, and presented by Ezekiel in 1928 

(Wherry, 1931 ). Larson ( 193 I) empirically tested the formula on real data . The 

regression equation derived from one group of subjects was used to predict the criterion 

scores of a second group . However , the results indicated that the Smith formula tended to 

result in greater shrinkage. Because the formula was originally proposed as an estimator 

of p2
, the Larson study was actually cross-validation that was estimating p/ instead. This 

probably could explain why the Smith formula showed greater shrinkages in Larson's 

study. 

Of the previous studies reviewed, only one study included this formula in 

estimating shrinkage in multiple regression. In Cummings' study ( 1982), no advantage 

was found for the Smith formula over other analytical methods in estimating shrinkage in 

multiple regression. 

The Wherry formula- I ( 193 I) - estimator of p2, can be stated as: 
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R 2 = 1 - N - I ( 1 - R 2) 
N-P-I 

[ 11] 

The formula was actually proposed by Ezekiel as an estimator of p2 (Ayabe, 1985; 

Cohen & Cohen, 1983; Cummings, 1982; Huberty & Mourad , 1980; Kromrey & Hines, 

1996; Newman et al., 1979). However , in the literature , it has been cited widely with 

different names, mostly as the Wherry formula (Ayabe, 1985; Kennedy, 1988; Krus & 

Fuller , 1982; Schmitt, 1982; Stevens, 1996), secondly as the Ezekiel formula (Huberty & 

Mourad , 1980; Kromrey & Hines, 1996), the Wherry/McNemer formula (Newman et al., 

1979), and, finally, the Cohen/Cohen formula (Kennedy , 1988) It was also cited in one 

study as estimator for cross-validation (Kennedy , 1988) One study mistakenly cited this 

formula as "the analytical formula used in the most popular statistical programs (SPSS, 

SAS, BrvIDP) to correct sample bias" (Kromrey & Hines, 1996, p. 242) . However, this is 

not the analytical formula used in both SAS and SPSS . 

This formula is the most frequently used analytical method in the studies reviewed. 

However , none of the studies recommended it as the most effective method in estimating 

p2 in multiple regression . Kennedy ( 1988) found that the formula gave the most biased 

estimate in most situations . Cummings ( 1982) found it tended to overestimate p2 but was 

less variable. Only Huberty and Mourad ( 1980) and Kromrey and Hines ( 1996) suggested 

that it gave a reasonable estimate of p2
. 

The Wherry formula-2 ( 1931) - estimator of p2
, can be stated as: 

I? i = I - N - 1 ( 1 - R 2) 
N-P 

[ 12] 



22 

This formula is actually currently being implemented by both SAS and SPSS for 

computing the adjusted R2 in multiple regression procedures (SAS/STAT User's Guide, 

1990, p. 13 54 ). This formula was presented by Wherry (Wherry, 1931 ), but it was cited 

in one study as the McNemer formula (Newman et al., 1979) . In the literature, it is 

usually confused with the Wherry formula- I (formula [ 11]) above. Few studies have 

correctly cited it as the Wherry formula (Cummings, I 982; Huberty & Mourad, 1980; 

Kromrey & Hines, 1996 ; Uhl & Eisenberg, 1970) . The formula was also developed as an 

estimator of p2
. 

Of the previous studies reviewed , three studies included this formula in estimating 

p2 in multiple regression It was found to be less accurate than other analytical methods in 

two of the studies (Cummings, I 982; Uhl & Eisenberg , I 970) . Newman et al. (1979), 

however, found it to be a relatively stable estimate for p2 

The Olkin and Pratt Formula (1958) - estimator of p2 is: 

R.2 = R2 _ P - 2 (I _ R2) _ 2(N - 3) (l _ R2)2 (13-1] 
N - p - 1 (N - P - 1 )(N - p + 1) 

or R.2 = I _ (N - 3)(1 - R 2) 2(N - 3)(1 - R 2)2 
(N - p - I) (N - p - 1 )(N - p + l) 

(13-2] 

or f? = l _ (N - 3)(1 - R
2

){ 1 + 2(1 - R
2

)} 

(N - P - l) N - p + l 
(13-3] 

Equation (13-1], (13-2], and (13-3] are basically the same equation in different 

forms, and they are all approximations of the Olkin and Pratt's (1958) unbiased estimate 

of the squared multiple correlation p2
. The original formula for the unbiased estimate 
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developed by Olkin and Pratt ( l 958) is: 

, 2 = l _ (N - 3)( 1 - R 2
) . N - p + 1 .1 _ R 2) R -----F(l,1,-~-, 

(N - p - 1) 2 [13-4] 

where F is the hypergeometric function : 

F( 
n . . )=;, f(a + k)f(P + k)f(y)x k 

a ,1-1,Y ,x t... 
k =O r(a)f(P)f(y + k)kl 

Formulae [13-1] to [13-3] have been cited as the Olkin and Pratt formula in 

several studies (Ayabe, 1985; Claudy, 1978; Huberty & Mourad, 1980; Krus & Fuller, 

1982) and erroneously cited as Herzberg formula in one study (Cummings, 1982). 

Of the previous studies reviewed, five studies used formula [13] in estimating p2 in 

multiple regression (Ayabe, 1985; Claudy, 1978; Cummings, 1982; Huberty& Mourad , 

1980; Krus & Fuller, 1982) In two of these studies, results from this formula were found 

to be less accurate than multicross validation (Ayabe, 1985; Krus & Fuller, 1982). In 

Huberty and Mourad's study (1980) , the formula was found to be accurate in estimating 

The Pratt formula ( I 964) - estimator of p2, another approximation of the unbiased 

estimate has been used in two studies (Claudy, 1978; Cummings, 1982): 

J?.2 = 1 _ (N - 3 )( 1 - R 
2
) {l + 2( l - R 

2
) } 

(N - P - l) N - p - 2.3 

[ 14] 

Of the previous studies reviewed, two studies included this formula in estimating 

p2 in multiple regression (Claudy, 1978; Cummings, 1982). Both of these studies showed 

that this formula gave the most accurate estimate for p2 in multiple regression . 
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The Claudy formula-3 was introduced in Claudy's study (Claudy, 1978). 

~2 (N - 4Xl - R 2
){ 2(1 - R2

)} R=l-------1+ 
(N - P - 1) N - p + 1 

[ 15] 

This formula was very similar to the Pratt approximation of the Olkin and Pratt formula 

(formula (13-3]), except for some differences in the second term . 

Of the previous studies reviewed, only one study used this formula in estimating 

p2 in multiple regression. Claudy ( 1978) suggested that this formula gave a better 

estimation of the population multiple correlation coefficient than both the Pratt and the 

Herzberg approximations of the Olkin and Pratt formula for estimating p2
. 

Estimator of p/ or Pc- The Lord formula- I (1950) can be represented as: 

if= 1 - N + p + l (1 - R 2) 

N - P - 1 

[16] 

This formula was developed to estimate the population cross-validity coefficient 

p/ (Newman et al., 1979; Uhl & Eisenberg, 1970). It had been cited mostly as the Lord 

formula (Newman et al., 1979; Uhl & Eisenberg, 1970); however, in one study it was 

referred to as the Uhl and Eisenberg formula (Cummings, 1982). 

From the previous studies reviewed, three studies included this formula in 

estimating p/ in multiple regression (Cummings, 1982; Newman et al., 1979; Uhl & 

Eisenberg, 1970). All three studies found that it usually gave an accurate estimate of p/ 

The Lord formula -2 (1950) - estimator of p/ 

f?.2 = 1 _ (N + p + lXN - l)(l _ R2) 
(N - P - l)N 

[17] 
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was developed by both Lord and Nicholson independently, and it had been cited as 

either the Lord formula (Kennedy, 1988; Newman et al., 1979) or the Nicholson formula 

(Schmitt , 1982). It was also erroneously cited as the Herzberg formula in one study 

(Cummings , 1982). This formula was developed also as an estimator for the populat ion 

cross-validity coefficient p/ . 

Of the previous studies reviewed, six studies employed this method in estimating 

p/ in multiple regression (Claudy, 1978; Cummings , 1982; Huberty & Mourad, 1980; 

Kennedy, 1988; Newman et al., 1979; Schmitt , 1982). Schmitt (1982) found that it did 

not provide an accurate estimate when the squared population multiple correlation 

coefficient (p2
) is less than .6. Huberty and Mourad (1980) found that it was one of the 

most accurate estimates for p/, but it tended to overestimate shrinkage . The other four 

studies showed that its performance was neither excellent nor poor (Claudy, 1978; 

Cummings , 1982; Kennedy, 1988; Newman et al., 1979). 

The Burket formula ( 1964 )- estimator of Pc follows: 

NR 2 - p 
R = ------=;.... 

[18] 

~N - p) 

This formula was first presented by Burket ( 1964) as a direct estimate of the population 

validity coefficient rather than the squared population cross validity coefficient p/ The 

formula was also called "weight validity ." 

Of the previous studies reviewed , two studies employed this formula in estimating 

Pc in multiple regression. (Claudy, 1978; Cummings, 1982). No significant advantage was 

found for this formula than other analytical methods in estimating Pc in multiple regression . 



26 

The Darlington ( 1968) or Stein formula ( 1960) - estimator of p/ is: 

f? = 1 _ ( N - 1 l ( N - 2 l ( N + l l ( 1 _ R 2) 
N-P-1 N-p-2 N 

[ 19] 

The formula was developed as an estimator of cross-validation coefficient p/ and 

it has been referred to as either the Darlington formula or the Stein formula (Cummings, 

1982; Huberty & Mourad , 1980; Kennedy, 1988; Kromrey & Hines, 1996; Newman et al., 

1979; Schmitt, 1982; Stevens , 1996). 

Six studies employed this formula in estimating p/ in multiple regression 

(Cummings , 1982; Hubert y & Mourad , 1980; Kromrey & Hines, 1995, 1996; Newman et 

al., 1979; Schmitt, 1982). Newman et al. ( 1979) found it to be a "fairly decent estimate of 

the population p2, but tends to underestim ate the population parameter" (p. l 0) . Kennedy 

( 1988) found that it yielded the best estimate of p/ Huberty and Mourad (1980) also 

noticed that it tended to slightly overestim ate shrinkage. Schmitt ( 1982) found that it 

failed to give accurate shrinkage estimates for low levels of multiple correlation (R1 < .6). 

Kromrey and Hines ( 1996) did not find any advantage of this formula over other analytical 

methods. 

The Browne formula (1975) can be stated as: 

R 2 = (N - p - 3)p4 + p2 

(N - 2p - 2)p 2 + p [20] 

where p2 is the squared population multiple correlation coefficient. It was suggested that 
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p2 to be estimated by either the Wherry formula-l(formula [11]), or the Olkin and Pratt 

formula (formula [13]; Schmitt, 1982). 

Compared to the original Browne formula, only the first part of the original formula 

was used here (Browne, 1975). The original Browne formula is lengthy and complicated : 

Z'(w2) = (N-p-3)p4+p2 

(N-2p - 2)p2 +p 

2(N-p-2)(N-2p-6)(p-l)p4(1-p 2)2 + o({N-p} - ') 

(N -p - 4){(N-2p-2)p 2 +p3
}
3 

[21] 

It was noted by Cattin ( 1980) that the second part of the formula only yields 

negligible values compared to the first part, and Darlington ( 1968) also stated that the first 

part is more valuable when the sample is small, which is applicable in social and 

behavioral sciences . 

The Browne formula was developed as an estimator for cross-validity coefficient 

p/_ It has been cited as the Browne formula with only the first part in two studies 

(Kennedy, 1988; Kromrey & Hines, 1996), as the Cattin formula in one study (Schmitt, 

1982), and as the Browne formula as the original form (formula [21]) in the same study 

(Schmitt, 1982). 

Of the previous studies reviewed, three studies employed this formula in estimating 

p/ in multiple regression. Both Schmitt (1982) and Kromrey and Hines (1996) concluded 

that this formula was the most appropriate estimator of Pc2 with the Wherry formula-I as 

the estimator for p2
. Kromrey and Hines (1996) also noted that the performance of the 

Browne formula was excellent when sample size was relatively large(> 100). On the 

contrary, Kennedy (1988) did not find that the Browne formula yielded estimates as 
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accurate as that of the Darlington formula. No advantage was found for the original 

Browne formula (formula [21) over the commonly used Browne formula (formula [20]) in 

estimating p/ (Schmitt, 1982). 

The Claudy formula -1 ( 1978) - estimators of p/ is shown below. Claudy (1978) 

proposed three different formulae for estimating either the population p2 or p/_ The 

Claudy formula- I takes the form: 

~ 2 
R = (2p - R)2 [22] 

The formula was first introduced by Claudy as an estimator of p/ (Claudy, 1978). 

It was also suggested that p be estimated by the Wherry formula- I (formula [ 11]) 

(Cummings, 1982). 

Of the previous studies reviewed, only one study employed this formula in 

estimating p/ in multiple regression . Cummings ( 1982) found that it was the most 

accurate and least variable estimate of p/ with the Wherry formula-I as the estimator of p . 

However , it had a slight tendency to overestimate p/ 

The Claudy formula -2 ( 1978) - estimators of p/ is shown below. In the same 

study, Claudy proposed another formula for estimating either the population p/_ 

R.2 = 1 -( N-1 )( N-2 )(~)(1-R2) 
N-P-1 N-p-2 N [23] 

In the original study, this formula was presented as "the Darlington formula" (Claudy, 

1978). Compared to the original formula in Darlington's study and several other similar 

studies ( equation [ 19]), the only difference between equation [23] and [ 19] is the minus 

1(-)1 or plus l(+)I sign in the second part. It is very likely such difference is due to either 
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misprint or miscitation. 

Two studies used this Claudy formula-2 in estimating p/ in multiple regression . 

Claudy (1978) concluded that this formula yielded the most accurate estimate of Pc· 

Kennedy (1988), however, did not find that it yielded an estimate as accurate as that of the 

Darlington formula. 

In the literature, there are two forms of the Rozeboom formula which were 

developed as estimators of cross-validity coefficient p/ The Rozeboom formula-I (1981) 

takes the form: 

f? 2 = I - N + p ( l -- R 2) 

N-P 

[24] 

Of the previous studies reviewed, 2 studies used this formula in estimating Pc 2 in 

multiple regression. Kennedy ( I 988) found that it did not yield estimate as accurate as 

that of the Darlington formula. Huberty and Mourad ( 1980) concluded it gave an estimate 

as precise as the Darlington formula. 

The Rozeboom formula-2 ( 1978) takes the form: 

( l 
-I 

'2 l - 2 
R = p2 l + ( p ) _P_ 

N-P-2 p2 

[25] 

Of the previous studies reviewed, only one study used the Rozeboom formula-2 in 

estimating p/ in multiple regression (Schmitt, 1982) However, it was found to be less 

satisfactory than the Browne formula. 

After reviewing those various analytical formulae for correcting the statistical bias, 

there are two possible reasons for the confusion in the literature about different analytical 
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formulae. The first reason is the large number of correction formulae and the names 

associated with them. There are 14 formulae reviewed in the present study. For some of 

those formulae, more than one name was found to be associated with the same formula in 

the literature and more than one formula was associated with the same name. The second 

reason is that some of the formulae are developed as the estimate of p2, and some of them 

are developed as the estimate of p/ But the distinction, however, is sometimes not 

clearly made. 

Validation Methods 

Statishcal Methods and Data Set Selection 

Five of the studies reviewed utilized the Monte Carlo technique in the validation 

procedure (Claudy, 1978; Kennedy, 1979; Kromrey & Hines, 1995, 1996; Newman et al., 

1979), and the remainder of the studies did not use the Monte Carlo method in the 

validation procedure . However, suggestions for future Monte Carlo simulation studies 

had been explicitly made in two such studies (Ayabe, 1985; Huberty & Mourad , 1980). 

Three studies used simulated data for the estimating purpose (Claudy, 1978; 

Kennedy, 1988; Newman et al., 1979). Four studies utilized real data (Cummings, 1982; 

Huberty & Mourad, 1989; Kromrey & Hines, I 996; Uhl & Eisenberg, 1970). Two studies 

used both prestructured data (adapted from other studies) and random data (simulated) 

(Ayabe, 1985; Krus & Fuller, 1982) One study did not specify the origin of 

the data set (Schmitt, 1982). 
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Sample Size 

Sample sizes range from 14 to 325 in the studies reviewed . In most of the studies, 

the number of the sample size was within 200. Sample sizes of 20, 40 or 60 or 80, 100, 

and 200 were the commonly selected sample sizes in most of the studies reviewed, and 

such a sample size was selected to be reasonably representative of sample sizes in current 

applied multiple regression research (Kromrey & Hines, 1995, 1996; Schmitt, 1982). 

Of the studies reviewed, Kromrey and Hines concluded that the estimation of p/ 

was very poor for any of the analytical methods utilized in their study when the sample 

size was smaller than l 00 (Kromrey & Hines, 1996) Kennedy ( 1988) also concluded that 

sample size was a primary factor, rather than the number of predictor variables, that 

influenced R2 shrinkage in multiple regression the most. On the contrary, Newman et al. 

( 1979) did not find the association between large sample size and better estimate. 

Population Squared Multiple 
Correlation Coeffic ient 

The population squared multiple correlation coefficients vary from .02 to .9, which 

covers almost the entire possible range of the coefficient. In most of the studies, the 

population squared multiple correlation coefficients were quite small, mostly lower than . 5 

(Kromrey & Hines, 1995, 1996; Newman et al., 1979) . Results from Kromrey and Hines' 

study ( 1996) showed that as the population p2 increases, more estimating methods gave 

better estimates for the population parameters . 
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Number of Predictors 

The number of predictors in multiple regression ranged from 2 to 25, and most of 

the studies included fewer than 10 predictors . In the field of psychological and 

educational research, 2 , 3, 4, and 5 were shown to be representative of the number of 

predictors for real data (Claudy, 1978) No specific conclusion was found in the previous 

studies on the implications of the number of the predictor variables on the performance of 

these estimating methods in multiple regression analysis. 

M11lticollinearity 

Collinearity refers to the linear correlation between two independent variables. 

Multicollinearity, a more general term, refers to linear relationships between two or more 

independent variables. In the presence of strong multicollinearity, the regression weights 

from multiple regression are less useful in prediction because a strong relationship implies 

redundancy . Stevens ( 1996) summarized three major problems with multicollinearity for 

the researchers : (a) it limits the range of multiple correlation coefficient; (b) it confounds 

the importance of a given independent variable; and ( c) it increases the variances of the 

regression coefficients. 

Moderate to high multicollinearity among independent variables is not uncommon 

in social and behavioral sciences. However, only two of the studies reviewed investigated 

the performance of those analytical methods under the influence of multicollinearity. One 

study did indicate that the intercorrelation among the independent variables in the 

psychological and educational literature ranged from .01 to .65, but the effects of different 
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degrees of multicollinearity on the performance of these analytical formulae were not 

clearly discussed (Claudy, 1978). In the other study, multicollinearity r was selected to 

range from .13 to .82, with approximate .15 as the interval (Newman et al., 1979). The 

author later concluded that multicollinearity had almost no detectable effect on the 

accuracy of the shrinkage estimates (Newman et al. , 1979). 

Summary of Literature Review 

The study characteristics and conclusions for all the studies reviewed previously 

are summarized in Appendix A This literature review has revealed little consensus 

regarding which method is the most appropriate under what specific conditions for 

estimating statistical bias in multiple regression . The inconsistencies in the studies' results 

are possibly due to : (a) inconsistent terminology of analytical formulae, (b) lack of 

distinction of the two population parameter p2 and Pc 2 and their corresponding saniple 

estimates, and ( c) different characteristics of the real data sets utilized in individual study. 

Because of time constraints and project manageability, the present study only focused on 

the analytical methods for estimating the population squared correlation coefficient p2 

and the population cross-validity coefficient pt 
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METHODOLOGY AND PROCEDURE 

Analytical Formulae 
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To compare the effectiveness of different analytical formulae in estimating both the 

population squared correlation coefficient p2 and the population cross-validity coefficient 

p/ in multiple regression, the analytical formulae reviewed in previous chapters are 

categorized into two groups : estimators of p2 and p/ To avoid confusion associated with 

different names, the respective formula numbers in the present study are 

also provided in Table I . 

Validation Method 

The Monte Carlo simulation is a method widely used to evaluate substantive 

hypotheses and statistical estimators by: (a) developing a computer algorithm to simulate a 

statistical population with specified parameters, (b) drawing random samples from the 

population, and (c) evaluating the behaviors of the sample estimates for the population 

parameters (Johnson, 1987). 

One of the major features in the Monte Carlo procedure is the control of relevant 

population factors that includes the choice of population distributions and their 

parameters, sample sizes, and other related variables. This feature usually could not be 

easily obtained in real data sets because of the potential confounding effects from 



Table l 

Analytical Formulae Analyzed in the Present Study 

Estimator Analytical formulae 

I. the Smith formula 
2. the Wherry formula- I 

3. the Wherry formula-2 
4. the Olkin and Pratt formula 
5. the Pratt formula 
6. the Claudy-3 formula 

Formula number 

[IO] 
[ I I] 
[ I 2] 
[13-1], [13-2], [13-3] 
[ 14] 
[ 15] 

p/ or Pc [ I 6] I. the Lord formula- I 
2. 
, 
J . 

4. 
5. 
5. 
6. 
7. 
8. 

the Lord formula -2 
the Burket formula 
the Darlington formula 
the Browne formula- I " 
the Browne formula-2 " 
the Claudy formula- I 
the Claudy formula-2 
the Rozeboom formula- I 

[ I 7] 
[ 18] 
[ I 9] 
[20] 
[20] 
[22] 
[23] 
[24) 

9. the Rozeboom formula-2 [25) 

• The Browne formula with p2 being estimated by the Wherry formula- I (formula [ 11 ]) . 
b The Browne formula with p2 being estimated by the Olkin and Pratt formula (formula 

[15]). 

multiple extraneous factors (Johnson, 1987) One major limitation with real data is that 

there might be a combination of confounding factors the researcher cannot control, such 

as different forms of data nonnormality, lack of precise population parameters , different 

degrees of multicollinearity among the predictor variables, and so forth . Such 

confounding of multiple extraneous factors may make it very difficult, or nearly 

impossible, for the researcher to assess the performance of different analytical methods 

under different data conditions. 

For this reason, it is often easier to assess the effectiveness of different analytical 
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methods if simulated data are used that have prespecified population parameters, known 

degrees of multicollinearity, and controlled data normality conditions. Therefore, the 

Monte Carlo method is employed in this study to simulate statistical populations with 

prespecified parameters. Potential factors considered in the study include different 

population p2, sample sizes, number of predictor variables, and different conditions of 

multicollinearity among the predictor variables. 

Simulation Design of Population Parameters 

Squared Pop11!ation Correlation Coefftc ie11I {T, 

36 

From the literature reviewed for this study, the possible range of p" has been from 

.1 to . 9 in previous studies. The squared population correlation coefficient p2, or what is 

also called the coefficient of determination, can also be interpreted as a measure of 

strength or the magnitude of the relationships between the dependent and predictor 

variables. That is, it can also be considered as a measure of effect size. According to 

Cohen' s specification of small, medium, and large effect sizes in the form of squared 

correlation coefficient based on typical findings in social and behavioral research studies, 

.1 is usually considered to be small, .25 (2 to .3) is considered to be medium, and .5 is 

considered to be relatively large (Cohen, 1988). In the present study, the squared 

population multiple correlation coefficients were selected to be .2, .5, and .8 to represent 

what is considered to be the magnitude of between small and medium, relatively large, and 

very large in the areas of social and behavioral research. 



Number of Independent Variables (p) 

From the literature reviewed for this study, most studies included fewer than I 0 

predictors in the regression analyses. Also with respect to representativeness of the real 

data and the project manageability, in the present study, the numbers of independent 

variables were selected to be 2, 4, and 8. 

Sample Size (n) 
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From the previous studies reviewed, the size of most samples selected was within 

200 . It was also noted that , in social and behavioral sciences, many applied studies that 

utilized multiple regression analysis used relatively small samples (Claudy, 1978). Based 

on the previous studies, and to represent the research characteristics as reported in the 

psychological and educational literature , samples with sample sizes of 20, 40, 60, 100, and 

200 were randomly selected from the simulated populations . Sample size (11), number of 

predictor variables (p) , and the n/p ratio to be simulated are summarized in Table 2. 

M11lticollinearity 

From the literature reviewed, the typical intercorrelation among the independent 

variables in the psychological and educational literature ranged from .01 to .65 (Claudy, 

1978). As can be suspected, most of the independent variables in the regression analysis 

in education and psychological research are related in a variety of ways to different 

degrees. However, because of time constraints and project manageability, in the present 

study, three conditions of intercorrelation among the independent variables (. 1, .3, .5) 



Table 2 

Summary of Sample Size (n), Number of Predictor Variables (n), and nip Ratio 

Number 

of predictors (p) 

2 

4 

8 

20 

10 

5 

2.5 

Sample size (11) 

40 60 I 00 

20 30 50 

l O 15 25 

5 7.5 12.5 

200 

100 

50 

25 

were simulated to represent typical multicollinearity conditions in the real data. Also 

considering program manageability, the degree of multicollinearity among all the 

independent variables is specified to be equal; that is, the correlation coefficients among 

all the independent variables are the same. 

Replications 

From the previous studies that used simulated data, the number of replications 

were chosen to be l 00 (Kennedy, 1988; Newman et al., 1979) and 1000 (Kromrey & 

Hines, 1995, 1996). In order to obtain stable estimates of sample statistics, a certain 

number of replications are needed in the simulation process. In the present study, 500 

samples were drawn under each of the cell conditions, which will be discussed later in 

detail. 
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Simulation Design 

The fully crossed experimental design of three conditions of population squared 

multipfe correlation coefficients (p2= .2, . 5, 8), three conditions of predictor numbers (p= 

2, 4, 8), five conditions of sample sizes (n= 20, 40, 60, I 00, 200), and three conditions of 

multicollinearity ( .1, J, .5) entails 135 cell conditions (3 x3 x5x3) Within each cell 

condition , 500 samples were randomly drawn . This makes the total number of replications 

in the study 67,500 [ (3 >-:3 x5 x3)x 500]. 

The simulation design for one of the three multicollinearity conditions is 

graphically illustrated in Figure I . 
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Figure 1. Simulation design for one of the three multicollinearity conditions. 



Generating Correlated Multivariate 
Normal Data 

Data Generation 
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Matrix decomposition procedure is used to generate correlated multivariate normal 

data (Kaiser & Dickman, 1962) Using matrix decomposition , a specified correlation 

matrix can be imposed on a set of random normal variables to yield correlated multivariate 

normal data . In the present study, to generate multivariate normal data within each cell 

condition, the following steps were implemented 

First, for each of the three multicollinearity situations ( 1, .3, .5), the population 

correlation coefficients among the independent variables were set to be either .1, .3, or .5. 

Next, the correlation coefficients among the dependent variable and independent variables 

were chosen to yield the desired population squared multiple correlation coefficient p2 (2, 

.5, .8). In total, 27 population intercorrelation matrices (3 x3 x3), three multicollinearity 

conditions, three conditions of predictor number, and three population squared multiple 

correlation coefficients were obtained . The SAS program files included the population 

intercorrelation matrices and the output of the squared multiple correlation coefficients p2 

are listed in Appendix B. 

Second, within each cell condition, uncorrelated random normal variables for the 

required number of independent variables and required sample sizes were generated. The 

SAS pseudorandom number generator (rannor) and the SAS MACRO language were used 

for this purpose . This procedure was conducted through the !ML (Interactive Matrix 

Language) software of SAS (SAS/IML, 1990) . 
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Third, premultiply the uncorrelated data matrix generated in step 2 with the 

principal component loadings matrix, which was obtained by applying the principal 

component factorization to the population intercorrelation matrix obtained in step 1. The 

resultant data matrix became a matrix of correlated multivariate normal data, which was 

equivalent to data randomly sampled from a population with specified intercorrelation 

patterns (Kaiser & Dickman, 1962) This procedure was also conducted through the IML 

software of SAS (SAS/IML, l 990) The SAS program files for step 2 and step 3 are 

selectively listed in Appendix C. 

Estimating the Population Cross-Validity p} 

Although the desired populc1tion sciuared multiple correlation coefficient p2 can be 

prespecified, the population cross-validity coefficient p/ is always unknown . As a result, 

it can only be empirically estimated through repeated sampling from a prespecified 

statistical population. In this study, the population cross-validity coefficient p/ was 

estimated through the procedure similar to double cross-validation (Mosier, 1951). 

Cross-validation needs two eciuivalent samples that came from the same population, and 

the regression eciuation derived from one sample was applied to the other sample to 

predict the dependent variable, and· obtained a sample cross-validity coefficient. To 

implement the estimation procedure through repeated sampling, the following steps were 

followed . 

First, the steps for generating correlated multivariate normal data with the matrix 

decomposition procedure described above were followed to generate random samples of 
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correlated multivariate data. 

Second, within each cell condition (shown in Figure 1), 500 random samples were 

drawn from the corresponding simulated population with specified population parameters . 

Third, the 500 random samples were randomly assigned into 250 pairs of random 

samples. For each pair of random samples, regression analysis was conducted in each 

sample and the sample regression weights were obtained. 

Fourth, for each pair of random samples, the sample regression weights obtained 

from one sample were then applied to the other sample to predict the corresponding 

dependent variable, and vice versa. 

Fifth, for each pair of random samples, Pearson correlation coefficients between 

the predicted values obtained in step 4 above and the actual values of the dependent 

variable were calculated for the two samples as the sample cross-validity coefficient. Two 

Pearson correlation coefficients were obtained for each pair of these random samples. The 

250 pairs of random samples yielded 500 such sample cross-validity coefficients. 

Sixth, the obtained sample cross-validity coefficients were squared. The average 

of these squared coefficients was the estimate of the population squared cross-validity 

coefficient Pc 2
. 

The procedure was also conducted through the SAS/IML software (SAS/IML, 

1990). The SAS program files for estimating the population squared cross-validity 

coefficient (p/) are selectively listed in Appendix D. 
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Obtaining Sample AdjustedP
2 

and p~ 

Estimator of the Population p2 

Six analytical formulae were designed to estimate the squared population 

correlation coefficient p2
. These analytical formulae were applied to the multivariate 

normal data generated with known population parameters (p2
, number of predictors, 

sample sizes, multicollinearity among predictors) . The corrected or adjusted R 2s based on 

each of these six formulae were then obtained. The procedure was also conducted 

through the SAS system, and the SAS program files for calculating the corrected R 2 

estimate p2 are listed in Appendix E. 

Estimator of the Population p/ 

Nine analytical formulae were designed to estimate the squared population cross 

validity coefficient Pc 2. These analytical formulae are also applied to the simulated data 

with known population parameters (p2
, number of predictors, sample sizes, 

multicollinearity among predictors) and the corrected or adjusted Rc2s based on these 

formulae were obtained. The procedure was also conducted through the SAS system, 

and the SAS program files for calculating corrected R/ are listed in Appendix E. 



CHAPTER IV 

RESULTS 

Descriptive Statistics 
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Means and standard deviations of the 500 replicates for the sample adjusted R2 

based on these six analytical formulae for estimating p2
, and the sample adjusted R/ based 

on the 10 analytical formulae for estimating p/ in all the specified sampling conditions 

(i.e., population squared correlation coefficient, number of predictors, different degree of 

multicollinearity, and sample sizes) are obtained. To save space, means obtained from the 

16 analytical formulae (for the 15 nip ratio conditions across the three conditions of 

multicollinearity), together with the population p2 and estimated population p/, are 

summarized in Tables 3, 4, and 5. 

Estimating Statistical Bias 

To guide the evaluation of the estimates of statistical bias, an unbiased estimate 

was operationally defined as having means based on the 500 replicates to be within ±.01 of 

the corresponding population parameters (Kromrey & Hines, 1996). 

Population p2 and Unadjusted Sample R2 

The bias in the unadjusted sample R2 across the 13 5 sampling conditions was 

obvious, especially when nip ratio was small. The sample R2 was almost always 

consistently larger than the corresponding population p2 Only 2 out of 13 5 conditions 



Table 3 

. 2 2( 1· Jr . -Summary of Means of the Ad1usted R and Rc Mu t1co meanty r - 1) 

···- ---

Nip p n p' R' 1 2 3 4 s 6 p,' 7 8 9 10 II 12 13 14 IS 16 

2.S 8 20 .2 .530 .216 .187 .2SS .215 .195 .261 .119 -.241 -.179 ,190 -.536 .127 .145 ,165 -390 -.098 .119 

.s .693 .494 .476 .519 .sos .496 .543 .315 .200 .240 .378 .008 .318 .347 .340 .103 .292 .296 

.8 .874 .790 ,783 .801 .801 .800 .812 .681 .668 .685 .717 .589 .666 .691 ,698 .628 ,706 .649 

s 4 20 .2 .354 .193 .182 .233 .209 .195 .256 .159 -.076 -.022 ,180 -.104 .152 .172 .162 .001 .032 .142 

.S .594 .493 .486 .SIB .SIS .509 .544 ,408 .324 .358 .421 .307 .415 ,445 ,407 373 .392 391 

.8 .829 ,786 .7S4 .797 .802 ,800 .813 .767 ,715 ,729 ,747 .708 .742 .763 .740 .736 .744 .728 

s 8 40 .2 .358 .197 .192 .217 .202 ,199 .223 .120 -.016 ,010 .134 -.049 .126 .135 .125 .002 .036 .117 

.s .S9S .494 .491 .S07 .sos .503 .SIS ,414 361 .377 .414 ,339 .402 .417 .399 .372 393 .390 

.8 ,833 .791 .790 .796 .798 .798 .804 .749 .736 .743 .752 ,727 .744 .7SS .748 .740 .749 .738 

7 .S 8 60 .2 .298 .190 .188 .203 .194 .193 .208 .141 .oso ,066 .130 .042 .130 .136 .120 .074 .819 .122 

.s .S64 .496 .495 .sos .504 .503 .513 ,449 .409 ,419 ,438 .405 .436 ,445 .432 .424 .429 .427 

.8 .823 .796 ,795 .799 .801 ,800 ,804 ,772 .761 .765 .770 .759 .768 .774 .768 .767 .769 .764 

10 2 20 .2 .266 .IS4 .179 .225 .207 .194 .253 .205 ,007 .056 .171 .031 .166 .188 .166 .123 .103 .IS2 

.s .S42 .491 .488 .517 .518 .512 ,546 .481 ,381 ,412 .448 .396 .462 .492 .443 .453 .440 .436 

.8 .805 .7S4 .782 .794 ,801 .800 .812 .780 .737 .750 ,763 .743 .no .789 .760 .767 .762 .756 

10 4 40 .2 .278 .198 .196 .218 .206 .203 .228 .153 ,072 .095 .151 .079 ,156 .166 .146 .123 .118 .143 
.S .540 .489 .488 .502 .SOI .soo .SIS .449 .409 .424 .444 .413 ,449 .463 .439 .442 ,438 .436 
.8 ,811 .790 .790 .795 .798 ,798 .804 .781 ,757 ,763 .770 .159 .772 .781 .768 .771 .769 .766 

. -- ----- . ---- -- ·---- ·-- -. ·- -
12.S 8 100 .2 .263 .199 .198 .207 .202 .201 .210 .160 .117 .126 .153 .118 .lSS .158 .146 .136 .135 .149 

.S .536 .495 .49S .soo .500 .500 .sos .466 .444 .449 .458 ,445 .459 .46S .456 .456 .4SS .454 

.8 .813 .797 ,797 .799 ' .800 .800 .802 .785 .776 .778 .781 .776 .781 .785 .780 781 .781 .779 --
IS 4 60 .2 .253 .200 .198 .213 .205 .204 .219 .168 .117 .132 .161 .125 .167 .174 .156 .153 .146 .157 

.S .523 .488 .488 .497 .497 .496 .sos .471 .436 .445 ,457 .441 .462 .47! .454 .459 .452 .4S3 

.8 .81 J .798 .797 .801 .803 ,803 .806 .7S4 ,777 .780 .7S4 .779 .786 .792 ,7S4 .786 ,7S4 ,783 
20 2 

... 
40 .2 .233 .192 .191 . 212 .202 .199 .223 .183 

. 
.108 .131 .165 .l2S .s .514 .489 .488 .502 

.176 .187 .166 .168 .IS2 .161 .502 .500 .SIS .487 .436 .450 ,465 .446 .475 .489 .8 .810 ,800 .799 .805 .808 .807 
.463 .473 .463 .462 

.813 .787 .779 .7S4 .790 .783 .794 ,802 
25 4 100 .2 .228 ·---·-· - --- ---- .789 .793 .790 .788 

.196 .196 .204 .199 .199 .207 .183 ,147 .ISS .169 .153 .174 .178 .s .509 .489 .489 .494 .494 
,166 .170 .164 .167 

.494 .499 .488 .458 .463 .469 .461 .463 
.8 .805 .797 

.478 .468 .472 .468 .468 .797 ,799 .800 .800 .802 .790 .784 .786 .789 .786 
25 8 

. --- .790 .794 .788 .790 .789 .788 200 .2 .227 .19S .195 .199 .197 . !96 .201 .176 .154 .158 .168 .157 .170 .172 .s .517 .497 .497 .499 .499 .499 
.165 .165 .163 .166 .502 .482 .472 .474 .478 .473 

.8 .806 .798 .798 .799 .800 .800 .800 
.479 .482 .477 .478 .477 .477 

- --· - ----- -···-- . ··- · - ····- .790 .788 .789 .790 .788 .791 .792 .790 .790 
30 2 60 .2 .226 

.790 .790 
.199 .198 .212 .205 .204 

- - --·--·--- - ·· ·-
.219 .194 .144 .158 .177 .156 ,S .SIO .493 .493 .502 .502 .501 .510 

.187 .193 .174 .184 .172 .175 

.8 .798 .791 
.493 .458 .467 .477 .466 .4S4 .493 .476 .483 .476 .475 .791 .795 .797 .797 .800 .795 .777 .781 .784 .780 .788 .793 .784 .787 .784 .784 

- ---- -· ·---

(t..ahk continues) +so, 
VI 



Nip p 

so 2 

50 4 

100 2 

Note. 

n p' R' I 2 3 4 5 6 p/ 7 8 9 10 II 12 13 14 IS 16 

100 .2 .201 .192 .192 .200 .196 .195 .204 .195 .159 .168 .178 .167 .184 .188 .177 .183 .176 .177 .s .506 .496 .496 .SOI .SOI .SOI .506 .497 .475 .480 .486 .480 .490 .496 .485 .490 .486 .485 
.8 .799 .795 .795 .797 .799 .799 .801 ,796 .787 ,789 .791 ,789 .793 .797 .791 .793 .791 .791 

200 .2 .213 .197 .197 .201 .199 .199 .203 .191 .173 .177 ,182 .176 .186 .187 .182 .185 .181 .182 .5 .501 .497 ,496 .499 .499 .499 .502 .492 .481 .484 .487 .484 .489 .491 .486 .489 .486 .486 ,8 .800 .796 .796 .797 .798 .798 .799 .798 .790 ,791 .792 .791 .793 .795 .792 .793 .792 .192 ----- ----- - -
200 .2 .208 .200 .200 .204 .201 .201 ,205 .196 .184 .188 .192 .187 .196 .197 .192 .196 .192 .192 .5 .502 .497 .497 .500 .500 .500 .503 ,498 .487 .490 .492 .490 .495 .497 .492 .495 .492 .492 ,8 .800 .798 .798 .799 .799 .799 .800 .797 .794 .795 .796 .795 ,797 .798 .796 .797 .796 .796 

Nip: Nip Ratio . p: Number of predictor variables. n: Sample size . p2
: Squared population multiple correlation 

coefficient. R1
: Sample R1 without adjustment. I: the Smith formula . 2: the Wherry formula- I. 3: the Wherry 

formula-2. 4: the Olkin and Pratt formula. 5: the Pratt estimation of the Olkin and Pratt fonnula. 6: the Claudy-3 
formula. p/ (Estimated) population squared cross-validity coefficient. 7: the Lord formula- I 8: the Lord 
formula-2. 9: the Burket formula. I 0: the Darlington formula. 11: the Browne formula- I with p2 estimated by 
the Wherry-I formula. 12: the Browne formula-2 with p2 estimated by the Olkin and Pratt formula . 13: the 
Claudy formula- I. 14: the Claudy forrnula-2. 15: the Rozeboom formula- I . 16: the Rozeboom forrnula-2. 

~ 
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Table 4 

SummaQ'. o[Mi:ans o[thi: Ad.ii1sti:d B.2 and ~/ _(M~tlticQ!lini:arit:i r == 3} 

Nip p n p' R' I 2 3 4 s 6 p; 7 8 9 JO 11 12 13 14 IS 16 

2.S 8 20 .2 .532 .221 .193 .260 .220 .20) .266 .121 -.232 -.170 .183 -.526 .128 .145 .I SS -.380 -.090 .118 
.s .700 .soo .481 .524 .SI I .502 .539 .322 .208 .248 .383 .0 19 .323 ,353 .344 .113 .299 .301 
.8 .877 .795 .787 .805 .805 .803 .8 I 6 .680 .675 .691 .723 .598 .672 .697 .704 .636 .712 .656 

-· -------. -- ·- --------·· 
s 4 20 .2 .367 .209 .198 .248 .226 .212 .271 .156 -.OSS -.002 .182 -.082 .163 .184 .179 .021 .OSI .IS2 

.s .S78 .472 .465 .499 .49S .489 .S2S .417 .296 .332 .396 .278 .390 .421 .381 .347 .367 .36S 
,8 .823 .803 .802 .813 .819 .818 .830 .7S2 .760 .772 .784 .766 .790 .808 ,782 .789 .784 .778 -- - -- -- .. -- - - ·--· -- ·-s 8 40 .2 .3S4 .193 .188 .312 .198 .195 .220 .125 -.021 .005 .130 .,oss .122 .131 .118 •,003 .032 .113 .s .598 .498 .494 .SIO ,508 .507 .521 .409 .365 .381 .417 .344 .406 .421 .403 '.376 .397 .393 
.8 .936 .795 .794 .800 .802 .802 .807 .753 .741 .747 .756 .732 .749 .759 .753 .74S .7S4 .742 -----· -

7 .5 8 60 .2 .299 .191 .189 .204 .19S .194 .209 .131 .OSI .067 .133 .043 .132 .138 .122 .07S .083 .124 .s .564 .497 .495 .sos .504 .S04 .513 .440 .410 .420 .439 .405 .436 .445 .432 .424 .430 .427 
.8 .822 .794 .794 .798 .799 .799 .803 .769 .759 .763 .768 .757 .766 .772 .766 .76S .767 .762 --- ------10 2 20 .2 .271 .190 .185 .231 .213 .200 .2S9 .20S .014 .063 .012 .378 .174 .19S .171 .129 .109 .162 .s .S2S .473 .470 .499 .499 .494 .S28 .493 .358 .390 .429 .373 .443 .473 .421 .433 .420 .416 .8 .801 .779 .778 .790 .797 .796 .809 .780 .731 .74S .758 .738 .765 .784 .7SS .763 .757 .752 

10 4 40 .2 .270 .189 .187 .209 .197 .194 .219 .157 .062 .085 .148 .068 .I Si .161 .144 .114 .108 .140 .s .S39 .488 .487 .SOI .soo .499 .Sl3 .4S2 .408 .423 .443 .412 .448 .462 .438 .441 .437 .43S 
. - - --·- .8 .816 .806 .806 .811 .814 .814 .819 .77S .786 .791 .796 .790 .800 .809 .796 .800 .796 .795 

12.S 8 JOO .2 .262 .198 .197 .206 .201 .200 .209 .153 .I 16 .125 .IS2 .117 .IS4 . IS7 .144 .135 .134 .148 .s .S36 .49S .49S .soo .soo .soo .SOS .466 .444 .449 .4S8 .444 .4S9 .464 .456 .4SS .4SS AS-4 .8 .813 .797 .796 .799 · .800 .800 .802 .787 .776 .778 .781 .776 .781 
. ''~ ----.780 .780 .780 .779 

IS 4 60 .2 .2S3 .200 .199 .213 .206 .204 .219 .17S .I 18 .132 .162 .12S .168 .174 .156 .1S4 .1<47 .IS7 .s .S26 .492 .492 .SOI .soo .soo .509 .479 .440 .449 .461 .44S .466 .47S .4S9 .-463 .4S8 .4S7 .8 .806 .799 .799 .802 .sos .804 .808 .784 .785 .789 .793 .788 .796 .801 .792 .79S .793 .792 
20 2 40 .2 .238 .198 .197 .218 .208 .20S .229 .183 .115 .(31 .171 .131 .182 .193 .m .174 .158 .167 .s .Sl9 .494 .494 .S07 .507 .506 .520 .478 .442 .456 .471 .4S2 .480 .494 .468 .488 .469 .467 .8 .804 .793 .793 .798 .801 .801 .807 .797 .772 .777 .783 .776 .787 .796 .782 .787 .783 .782 lS 4 100 .2 .228 . 196 . 19S .204 . 199 . 199 .207 .178 .147 . 155 .169 .153 .174 .178 .166 .170 .164 .167 .s .SJ3 .493 .493 .498 .498 .498 .503 .480 .462 .468 .473 .466 .476 .483 .473 .477 .473 .472 .8 .803 .799 .799 .801 .802 .802 .804 .790 .791 .793 .795 .793 .797 .800 .79S .797 .79S .79S 
2S 8 200 .2 .229 . 197 .197 .201 .198 .)98 .202 .177 .156 .161 .170 .159 .172 .174 .167 .167 .16S .168 .5 .SJ7 .497 .497 .soo .499 .soo .502 .479 .472 .474 .478 .473 .479 .482 .477 .478 .477 .477 .8 .806 .798 .798 .799 .800 .800 .801 .793 .788 .789 .790 .789 .791 .792 .790 .791 .790 .790 .. ------ ,. ·----- - ·---30 2 60 .2 .217 .190 .190 .204 .196 .195 .210 .198 .135 .149 .168 .147 .178 .185 .168 .J7S .163 .167 .s .508 .491 .491 .soo .soo .499 .sos .497 .456 .465 .474 .464 .482 .491 .473 .481 .474 .473 .8 .806 .799 .799 .802 .804 .804 .808 .791 .785 .789 .792 .788 .795 .801 .792 .795 .792 .792 

(t.abk continues) ~ 
-.J 



Nip p 

so 2 

50 4 

100 2 

Note. 

n p' R' I 2 J 4 5 6 p; 7 8 9 10 11 12 13 14 15 16 

100 .2 .216 .200 .200 .208 .204 .203 .212 .201 .168 .176 .186 . 175 .192 .196 .185 .191 .184 .185 
.5 .501 .491 .490 .496 .496 .495 .501 .491 .470 .475 .481 .475 .485 .491 .480 .485 .480 .480 
.8 .800 .796 .796 .798 .799 .799 .801 .795 .787 .790 .792 .789 .794 .797 .792 .793 .792 .791 

- ·-

200 .2 .214 .198 .197 .202 .199 .199 .203 .198 .173 .177 .183 .177 .186 .188 .182 .185 .181 .182 
.s .SI I .SOI .SOI .503 .503 .503 .506 .496 .486 .488 .491 .488 .493 .496 .491 .-493 .491 .-491 
.8 .804 .802 .802 .803 .803 .803 .804 .797 .798 .799 .800 .799 .801 .802 .800 .801 .800 .800 -

200 .2 .206 .198 .198 .202 .200 .200 .204 .198 .182 .186 .190 .186 .194 .196 .190 .194 .190 .190 
.5 .506 .501 .501 .503 .503 .503 .506 .498 .490 .493 .496 .493 .498 .SOI .496 .-498 .496 .-495 
.8 .802 .800 .800 .801 .802 .802 .803 .798 .796 .797 .798 .797 .799 .801 ,798 .799 .798 .798 

Nip: Nip Ratio. p: Number of predictor variables. n: Sample size . p2
: Squared population multiple correlation 

coefficient. R1
: Sample R" without adjustment. 1: the Smith formula. 2: the Wherry formula- I . 3: the Wherry 

formula-2. 4: the Olkin and Pratt formula. 5: the Pratt estimation of the Olkin and Pratt formula . 6: the Claudy-3 
formula. p/: (Estimated) population squared cross-validity coefficient. 7: the Lord formula- I 8: the Lord 
formula-2 . 9: the Burket formula . 10: the Darlington formula. 11: the Browne formula- I with p2 estimated by 
the Wherry - I formula. 12: the Browne formula-2 with p2 estimated by the Olkin and Pratt formula. 13: the 
Claudy fommla-1. 14: the Claudy forrnula-2. 15: the Rozeboom formula-\ . 16: the Rozeboom forrnula-2 . 

~ 
00 



Table 5 

Summa()'. QfMeaos Qf tbe t\djl1st~d 8.2 and B./ (M~iltiQQllin!::arit)'.'. [ = ,5) 
- --

Nip p n p' R' I 2 3 4 s 6 p; 7 8 9 10 II 12 13 14 IS 16 

2.5 8 20 .2 .522 .203 .174 .243 .201 .181 .248 .109 -.261 -.198 .184 -.561 .123 .140 ,162 -.412 -.116 .I 16 
.s .698 .496 .478 .521 .507 .498 .536 .326 .203 .243 .383 .128 .324 .353 .357 .107 .294 .302 
.8 .874 .790 .782 .800 .800 .788 .812 ,673 .668 .684 .717 588 .666 ,691 ,698 .628 .706 .649 

s 4 20 · .2 .353 .192 .181 .232 .208 .194 .255 ,146 -.078 -.024 .166 -.106 .148 .168 .157 -.001 ,030 .137 
.s ,596 .495 .488 .520 ,517 .511 .546 .426 .326 .360 .422 .309 .415 .446 .404 .375 .394 390 
,8 ,829 .786 ,783 ,797 .801 .800 .813 . .763 .715 .729 ,746 ,707 ,741 .762 .739 .735 ,743 .727 

s 8 40 .2 .353 .191 .186 .212 .197 .193 .219 .133 -.022 .003 .131 -.056 .122 .131 .119 -.005 ,030 .113 
.s .592 .490 .487 .503 .500 .499 .514 ,407 .355 .371 .409 .334 398 .413 395 366 .388 .385 
.8 .834 .792 .791 .797 .799 .799 .805 .753 .727 ,744 .753 .728 .746 .756 .749 .741 .750 .739 

7.S 8 60 .2 .305 .198 .195 .211 .202 .201 .216 .130 ,059 .075 .137 .OSI .136 .142 .124 .082 .091 .128 
.S .567 .500 .499 .508 .508 .507 .516 .445 .414 .424 ,442 .409 .440 ,449 .436 .428 .433 .431 
.8 .823 ,796 .795 .799 .801 .801 .804 .769 .760 .764 ,769 .758 .768 .774 .768 .766 .768 .764 

10 4 40 .2 .267 .185 .183 .206 .194 .191 .215 .167 ,057 .081 .142 .064 .146 .156 .135 . liO .104 .134 .s .540 ,489 .488 502 .SOI .500 ,SI S ,463 .409 .424 .444 .413 ,449 .463 .439 .442 .438 .436 
.8 .812 ,791 .791 .796 .799 .799 .805 .772 .758 .764 .771 .760 .773 .782 .769 .772 .770 .767 

10 2 20 .2 .282 .202 .198 .242 .225 .213 .271 .180 .029 ,077 .223 .052 .182 .205 .174 .142 .122 .166 
.s ,532 .480 ,477 ,506 .507 .501 .536 .450 .367 .399 .437 .383 .451 .481 .432 .441 .428 .425 
,8 .801 .779 ,777 .790 .796 .795 ,808 .793 .730 --- ,744 .757 ,747 .764 .783 .754 .762 .756 .751 ---- - .... --. -- --- - ----- ---·--·-- -··----·-

12.5 8 100 .2 .264 .200 .199 .208 .203 .202 .211 .160 .118 .127 .154 .119 .156 .160 .147 .137 .136 .ISO 
.S .540 .500 .500 .sos .505 .sos .SIO .461 .449 .455 .464 .450 .464 .470 .461 .461 .460 .459 
.8 .814 .798 .798 ,800 .SOI .801 ,803 .787 .777 .779 ,782 .777 .782 .786 .781 .7112 .782 .780 --- --- ------IS 4 60 .2 .255 .202 .201 .215 .208 .206 .222 .173 .120 .134 .164 .128 .170 .177 .159 .IS6 .149 .160 .s .527 .494 .493 .502 .502 .SOI .SI I .479 .442 .451 .462 .446 .467 .476 .460 .465 .460 .459 ,8 .804 .790 .790 .793 .795 .195 .799 .787 .768 .772 .776 770 .778 .784 .776 .m .776 .774 

20 2 40 .2 .221 .186 .185 .207 .196 .193 .218 .184 .102 .124 .158 .119 .170 .180 .157 .162 .146 .ISS .s .506 .480 .479 .493 .493 .491 .506 ,486 .426 .440 .455 .436 .466 .479 .453 .464 .454 .452 .8 .804 .794 .794 .800 .802 .802 .807 .792 .773 .778 .784 .777 .788 ,797 ,783 .71!8 .784 .783 -- -- ··· 
25 4 100 .2 .231 .198 .198 .206 .202 .201 .201 .180 .ISO .158 .172 .156 .177 .181 .170 .172 .166 .170 .S .518 .498 .498 .503 .503 .503 .508 .483 .468 .473 .479 .472 .483 .488 .478 .482 .478 .478 

.8 .805 .797 .797 .799 .800 ,800 .802 .791 .785 .787 .789 ,786 .790 .794 ,789 .790 .789 .788 
25 8 200 .2 .231 .199 .199 .203 .200 .200 .205 .176 .158 .163 .172 .161 .174 .176 .169, .169 .167 .170 .s .519 .499 .498 .SOI .SOI .SOI .503 .482 .473 .476 .480 .475 .481 .483 .479 ,480 .478 .478 .8 .806 .798 .798 .799 .799 .799 .800 .794 .788 .789 ,790 .788 .790 .792 .790 .790 .790 .789 - --- -----·-·· 
30 2 60 .2 .224 .197 .196 .210 .203 .202 .217 .191 .142 .156 .17S .154 .184 .191 .173 .182 .170 .173 .s .SIS .498 .498 .506 .506 .506 .SIS .488 .463 .472 .482 .471 .489 ,498 .481 .4SS .481 .480 ,8 .799 .792 .792 .795 ,797 .797 ,801 .792 .778 ,781 ,785 .781 .788 .794 .785 .787 .7&5 .784 

+:-
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Nip p n p' R' I 2 3 4 s 6 p/ 7 8 9 IQ II 12 13 14 IS 16 so 2 100 .2 .226 .211 .210 .218 .214 .214 .222 .195 .178 .187 .196 .186 .203 .207 .195 .202 .195 .195 .S .507 .497 .497 .502 .502 .502 .507 .493 .477 .482 .487 .482 .492 .497 .487 .492 .487 .487 .8 .802 .798 .798 .800 .801 .801 .803 .797 .790 .792 .794 .792 .i 96 .799 .794 .796 .794 .79S 
--· -· -- -· -- ·-·· ···--

so 4 200 .2 .214 .198 .198 .202 .199 .199 .203 .191 .173 .178 .183 .177 .186 .188 .182 .185 .182 .182 .s .509 .499 .499 .502 .502 .502 .504 .493 .484 .487 .489 .486 .492 .494 .489 .491 .489 .489 .8 .802 .798 .798 .799 .799 .799 .800 .797 .792 .793 .794 .793 .195 .796 .794 .79S .794 .794 100 2 200 .2 .20S .197 .197 .201 .199 .199 203 .196 .181 .185 .190 .185 .193 .195 .189 .193 .189 .189 
.s .sos .soo .soo .502 .502 .502 .sos .498 .490 .492 .494 .492 .497 .soo .495 .497 .495 .495 
.8 .801 .799 .799 .800 .800 .800 .801 .799 .795 .796 .797 .796 .798 .799 .797 .798 .797 .797 

Note . Nip : Nip Ratio. p: Number of predictor variables . n : Sample size. p2
: Squared population multiple correlation 

coefficient. R
1

: Sample R
1 

without adjustment. I : the Smith formula . 2: the Wheny formula-I . 3: the Wheny 
formula-2. 4: the Olkin and Pratt formula . 5: the Pratt estimation of the Olkin and Pratt formula . 6: the Claudy-3 
formula. Pt (Estimated) population squared cros s-validity coe fficient. 7: the Lord formul a- I 8: the Lord 
formula-2. 9: the Burket formula. 10: the Darlington formula . 11: the Browne formula- I with p2 estimated by 
the Wheny-1 formula. 12: the Browne formula-2 with p2 estimated by the Olkin and Pratt formula. 13: the 
Claudy formula-I. 14: the Claudy formula-2. 15: the Rozeboom formula- I . 16: the Rozeboom formula-2. 
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where the sample R2s were minimally smaller than the corresponding population p2 
: (a) 

multicollinearity r =. I, nip= 30 (p = 2, 11 = 60) , population p2 = .8, sample R2 = .798; 

and (b) multicollinearity r =. l, nip= 50 (p = 2, 11 = 100), population p2 = .8, sample 

R2 = . 799. From these results, it was obvious that the statistical bias in multiple regression 

was almost always positive, although not in every single case. Such results confirmed the 

common concept of positive bias from previous studies (Cummings, 1982; Huberty & 

Mourad, 1980; Kromrey & Hines, 1995), but differed in the sense that the "bias" was not 

always positive. 

Population p/ and Unadjusted Sample RJ 

From these tables, all the unadjusted sample RJs were greater than their 

corresponding estimated population cross-validity coefficient p/ across the 13 5 sampling 

conditions. Such results also confirmed the findings from previous numerous studies (e.g., 

Claudy, 1978; Cummings, 1982; Herzberg, 1969). 

Population p2 and Population p/ 

From these tables, it was also observed that the estimated population cross-validity 

coefficient Pc 2 was almost consistently smaller than the corresponding population p2
. Only 

thre~ instances where the estimated population cross-validity coefficient Pc 2s were 

minimally greater than the corresponding population p2s: (a) for population p2 = .2, p/ = 

.205, while multicollinearity r = .I, and 11/p = IO (p = 2, 11 = 20); (b) for population p2 = 

.2, p/ = .205, while multicollinearity r = .3, and nip= 10 (p = 2, n = 20); and (c) for 

population p2 = .2, p/ = .20 I, while multicollinearity r = . l, and nip= 50 (p = 2, n = 100). 



Such results confirmed the results from the previous studies (Claudy, 1978; Cummings, 

1982; Herzberg, 1969), although Pc 2 maybe larger than p2 in a few rare cases. 

Overall Summary 
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To help evaluate the performance of individual formula under different sampling 

conditions, summary of frequencies of each analytical formula as an "unbiased estimate" 

across different degrees of multicollinearity, population p2, and nip ratio are listed in Table 

6. Because there were too many nip ratio conditions, for the sake of clarity, only 5 nip 

ratio conditions (5, 10, 25, 50, and I 00) are presented in this table. 

Best Estimator(s) of the Population fT 

Based on Table 6 and the relative rankings of percentages of unbiased estimates, 

for the six analytical formulae estimating the population p2
, several observations are made: 

1. Across the three different conditions of multicollinearity, approximately 91 % to 

98% of the time the Pratt formula gave unbiased estimates of the population p2 that gave 

the best performance among the six analytical formulae. 

2. Across the three different conditions of population p2
, approximately 93% to 

96% of the time the Pratt formula gave unbiased estimates of population p2
. Still, its 

performance was the best among the six analytical formulae. 

3. Across the five different conditions of nip ratio, approximately 83% to 100% of 

the time both the Pratt formula gave unbiased estimates of population p2
. Again the 

performance of the Pratt formula was the best among the six analytical formulae. 



Table 6 

Percentages of Cell Conditions in Which Unbiased Estimates Are Observed Across Multicollinearity Conditions, Population p 2
, and 

n/p Ratio--Estimators of p2 

Multicollinearity Population p2 njJ Ratio 

Formula Rank lb .1 .3 .5 Rank 2c .2 .5 .8 Rank3d 5 10 25 50 100 

Smith 3 82.22 86.67 82.22 3 84.44 77.78 88.89 3 100 38.89 94.44 94.44 100 

Wherry-I 5 62 .22 77.78 68 .89 4 66.67 62.22 80.00 5 66.67 27.78 94.44 l 00 100 

Wherry-2 4 71.11 80.00 80.00 5 53.33 86.67 93.33 4 66.67 66 .67 100 94.44 100 

Olkin/Pratt 2a 93.33 86.67 93.33 2a 91.11 91.11 95.56 2a 100 77.78 100 94.44 100 

Pratt 1· 97 .78 91.1 l 91.11 1a 95.56 93.33 93.33 18 100 83.33 100 94.44 100 

Claudy-3 6 57.78 60.00 57.78 6 42.22 53.33 80.00 6 33.33 22.22 100 89.89 100 

• Indicates the best two rankings . 
b Rank 1: performance ranking of the analytical formulae across different conditions of multicollinearity; lower ranking indicates better 

performances . 
c Rank2: performance ranking of the analytical formulae across different conditions of population p2

; lower ranking indicates better 
performances . 

d Rank3 : performance ranking of the analytical formulae across different n/p ratio ; lower ranking indicates better performances. 

VI 
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Table 7 

ren;entages of Cell Conditions in Which Unbiased Estimates Are Observed Acro ss Multicollinearity Conditions, Population p2
, and nip 

~atio -- Estimators of p/ 

Multicollinearity Population p2 nip Ratio 

Formula Rank lh . I .3 .5 Rank 2c .2 .5 .8 Rank3d 5 10 25 50 100 

Lord-I 9 22 .22 82 .89 24.44 10 0 20 .00 51.11 10 0 0 50.00 44.44 66 .67 
Lord-2 8 28 .89 26.67 31.11 8 2.22 22 .22 60.00 7 ....,..., ........ 5.56 55.56 55.56 77.78 _, _, . _, _, 

Burket 5 44.44 57 .78 21.11 3 44.44 57.78 64 .44 " 77.78 22.22 88 .89 77.78 100 _, 

Darlington IO 24.44 22 .22 22.22 9 4.44 20 .00 44 .44 9 0 0 50 .00 55 .56 77.78 
Browne-I I" 73 .33 77 .78 77 .78 I' 75.56 71 . 11 80.00 I' 77.78 50.00 94.44 88.89 100 
Browne-2 2' 71. 11 75 .56 75.56 2' 66 .67 71.11 84.44 2" 55.56 50.00 100 94 .44 100 
Claudy-1 4 44.44 51.11 57.78 5 40 .00 46.67 64.44 4 66.67 22 .22 77.78 72 .22 100 
Claudy-2 " 48 .89 46 .67 57.78 6 31.11 46 .67 73.33 5 22 .22 22 .22 83.33 89 .89 100 _, 

Rozeboom-I 7 3 I. 11 35 .56 48 .89 7 15.56 33 .33 66 .67 6 33.33 5.56 66 .67 72 .22 100 
Rozeboom-2 6 37 .78 44.44 57.78 4 42 .22 33.33 60.00 8 11.11 1 1. 1 1 83 .33 61.11 100 

• Indicates the best two rankings . 
b Rank I : performance ranking of the analytical formulae across different conditions of multicollinearity; lower ranking indicates better 

performances . 
c Rank2 : performance ranking of the analytical formulae across different conditions of populat ion p2; lower ranking indicates better 

performances . 
d Rank3: performance ranking of the analytical formulae across different nip ratio ; lower ranking indicates better performances . 

V, 
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The overall performance of the most commonly used (in both SPSS and SAS) Wherry-2 

formula was approximately the fourth or the fifth best among the six analytical formulae. 

The Pratt formula, Olkin and Pratt formula, and the Smith formula all outperformed the 

Wherry-2 formula. Based on the results obtained for estimating the population p2, the 

Wherry-2 formula did not demonstrate any advantage over those formulae mentioned 

above. 

Best Estimator(s) of the Pop11/atio11 Cross­
Validity Coefficient p/ 

From Table 7 and the relative rankings of percentages of unbiased estimates, for 

the nine analytical formulae estimating population cross-validity coefficient p/, the 

following observations were made: 

55 

1. Across the three different degrees of multicollinearity, approximately 73% to 

78% of the time the Browne formula (with p2 estimated by the Wherry formula-I) gave an 

unbiased estimate of the population cross-validity coefficient p/ that gave the best 

performance among the nine analytical formulae. 

2. Across the three different conditions of population p2
, approximately 76% to 

80% of the time the Browne formula (with p2 estimated by the Wherry formula-I) gave an 

unbiased estimate of the population cross-validity coefficient p/ Still its performance 

was the best. 

3. Across the five different conditions of nip ratio, approximately 50% to I 00% of 

the time the Browne formula (with p2 estimated by either the Wherry formula- I or the 

Olkin\Pratt formula) gave an unbiased estimate of the population cross-validity coefficient 



p/ Again, the performance of the Browne formula is the best among the nine analytical 

formulae. 
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In all, the overall performance of the Pratt formula was the best among the six 

analytical formulae estimating the population p2 The Browne formula (with p2 estimated 

by either the Wherry formula- I or the Olkin/Pratt formula) was the most effective 

estimator of the population cross-validity coefficient p/_ 

Descriptive Statistics for the Bias 

Means and standard deviations for the biases from the 500 replicates across the 

specified sampling conditions (population p2, nip ratio, and multicollinearity ) were 

obtained . Because the amount of information obtained was large, these descriptive 

statistics are presented in Appendix F, rather than in a table in the body of the text. 

From the tables in Appendix F, the biases for these analytical formulae were 

obvious, especially when the nip ratio was relatively small. And most of the time, means 

and standard deviations for the biases from the analytical formulae that estimated 

population p2 were much smaller than for those from the analytical formulae that 

estimated population cross-validity coefficient p/_ This indicated that the formulae 

estimating population p2 tended to give a better estimate than those that estimated 

population cross-validity coefficient p/ 

For an ideal analytical formula, the means of these biases approached zero 

(accuracy) and the standard deviations was the smallest (stable), if it was effective in 

adjusting for the R2 shrinkage in multiple regression. Across each of the sampling 
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conditions, frequencies for each analytical formula with mean bias closest to zero and the 

smallest standard deviation were recorded. The total frequencies for each analytical 

formula were then summarized. Based on the frequency rankings obtained, the best 

analytical formulae with means of bias closest to zero and the smallest bias standard 

deviations were selected as the "recommended formulae" and summarized across different 

sample sizes and number of predictor variable in Tables 8 and 9. The results indicated 

that the Pratt formula was the best estimate among the analytical formulae estimating 

population p2
, especially when the 11 p ratio was relatively small. Still the Browne 

formula gave the best estimate for the population cross-validity coefficient p/ across 

almost all these different nip ratio conditions. 

Also based on the means and standard deviations from the sample statistical biases 

obtained, analytical formulae with the largest mean biases and the largest bias standard 

deviations were selected as the worst formulae and summarized across different sample 

sizes and number of predictor variables in Tables IO and 11 The results indicated that 

the Claudy-3 formula was the least effective analytical formula estimating the population 

p2
, while the Darlington formula and Lord-1 formula performed the worst in estimating 

the population cross-validity coefficient p/_ Cautions should be warranted in using these 

analytical formulae estimating statistical bias, and preferably, using the most effect 

analytical formulae instead. 



Table 8 

Recommended Formulae for Estimatinc Population Q
2 across Different Sample Size (n) and Number of Predictor Variables <r) 

Number Sample size (n) 

of predictors (p) 20 40 60 100 200 

2 Pratt formula Pratt fonnula Pratt formula & Wheny-2 formula Smith formula & 
Claudy-3 formula Wheny- l formula 

4 Pratt formula Olkin/Pratt formula Wheny-1 formula Pratt formula Claudy-3 formula 

8 Pratt formula Olkin/Pratt formula Pratt formula Pratt formula Wheny-2 formula 
& Pratt fonnula 

Table 9 

Recommended Formulae for Estimating Population Cross-Validity Coefficient p..2 across Different Sample Size {n) and Number of 

Predictor Variables Cr) 

Number 

of predictors (p) 20 

Browne-2 formula 

Browne-2 formula 

Sample size (n) 

40 

Browne-2 formula 

Browne-2 formula 

60 

Browne-2 formula 

Browne-2 formula 

2 

4 

8 Browne- I formula Browne-2 formula Burket formula 
& Rozeboom-2 formula 

100 

Browne-2 formula 

Browne-2 formula 

Browne-2 formula 

200 -

Claudy-2 formula 

Browne-2 formula 

Browne-2 formula 

V. 
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Table 10 

Worst Formulae for Estimating p2 Across Different Sample Size (n) and Number of Predictor Variabks (n) 

Number Sample Size (n) 

of predictors (p) 20 40 60 100 

2 C'laudy-3 fonnula Claudy-3 fonnula C'laudy-3 fonnula Claudy-3 fonnula 

4 Claudy-3 fonnula Claudy-3 fonnula C'laudy-3 fonnula Claudy-3 formula 

8 Claudy-3 fonnula Wherry- I fonnula Claudy-3 formula Claudy-3 fonnula 

Table 11 

Worst Fonnulae for Estimating p,.2 Across Different Sample Size (n) and Number of Predictor Variables (p} 

Nwnber Sample Size (n) 

of predictors (p) 20 40 60 100 

2 Lord- I fonnula Lord- I fonnula Lord- I fonnula Lord- I formula 

4 Darlington fonnula Lord-1 fonnula Lord-1 formula Lord- I fonnula 

8 Darlington fonnula Darlington fonnula Darlington fonnula Lord- I fo1mula 

200 

Claudy-3 fon1111la 

Claudy-3 fom1ula 

Smith fom1ula & 
When-y-1 fonnula 

200 

Lord- I fonnula 

Lord- I fonnula 

Lord- I formula 

VI 
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Visual Representat ion--Boxplots 
of the Estimates 

60 

Visual representation (side-by-side modified boxplots) comparing all the analytical 

formulae across the 500 replicates were produced using the GPLOT option in the SAS 

graphic procedure. The boxplot was chosen because it provided distributional information 

of sample estimates . For the boxplot presented in the study, the box length equaled IQR 

(Interquartile Range), with the lower end equal to the first quartile (25th percentile) and 

the upper ends equal to the third quartile (75th percentile). The two lines (whiskers) 

outside the box extend to l .SxIQR beyond the quartiles, and any observations beyond the 

range of these whiskers were considered outliers, and were plotted as individual dots 

(Moore, 1993). In the boxplots shown in Figure 2, population parameters were indicated 

by the horizontal lines. 

Estimators of the I'op11/atio11 p-' 

One hundred thirty-five box plots ,,vere produced for the six analytical formulae 

estimating population p2 across different conditions of multicollinearity, population p2
, 

and nip ratio. Again, for the sake of clarity, only three n/p ratio conditions (5, 25, and 50) 

are selectively presented in Figure 2. The numbers of sample size to the numbers of 

predictor variables are 20/4, I 00/4, and 200/4, respectively. 

From these boxplots, it is obvious that the sample multiple /f was almost 

consistently greater than the corresponding population p2
. This was shown from these 

graphs that the third quartiles were almost always higher than the horizontal lines. Several 

observations were made from these boxplots: 
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1. Across the three different conditions of II p ratio, as nip ratio increased (from 5 

to 50), the IQRs for the six estimates decreased , which indicated that their performances 

became more stable . 

2. Across the three different conditions of population p2, the performances of 

these formulae were comparable when p2 was either small (.2) or moderate (.5) . When p2 

was relatively large (.8), the TQRs for the six estimates were the smallest, which indicated 

that the performances were the most stable. 

3. Across the three different conditions of multicollinearity, all the boxplots were 

similar in shapes, which indicated that multicollinearity did not seem to have any 

significant effects on the distributions of these estimates . 

Estimator of the Pop11/atio11 Cmss -Va/idily 
Coefficient p/ 

One hundred thirty-five modified box plots were also produced for the I 0 

analytical formulae estimating the population cross-validity coefficient p/ across different 

conditions of multicollinearity, population p2
, and II p ratio. Again, for the sake of clarity, 

only three 11/p ratio conditions (5, 25, and 50) are selectively presented in Figure 3. The 

numbers of sample sizes to the numbers of predictor variables are 20/4, I 00/4, and 200/4 

respectively. 

1. Across the three different conditions of 11,p ratio , as the n 1p ratio increased 

(from 5 to 50), the IQ Rs for the IO estimates decreased, which indicated that their 

performances became more stable . 



2. Across the three different conditions of population p", the performances of 

these formulae were comparable when p2 was either small (.2) or moderate (.5). And 

when p2 was relatively large (.8), the IQRs for the six estimates were the smallest, which 

indicated that the performances were the most stable. 

69 

Note that when p2 was .2 and II iJ ratio was 5, all the outliers from these 

distributions were located at the upper end. This indicated when the population p2 and the 

11/p ratio were both relatively small, there was so111e tendency for these analytical formulae 

to overestimate the population cross-validity coefficient p/, Among the IO formulae, the 

Burket formula produced more extre111e large outliers 

When the population p2 is either .2 or 5, the 10 analytical formulae could be 

categorized into two groups overestinrntor and underestirnator of the population cross­

validity coefficient p/, For the overestimators, these formulae tended to have more large 

positive outliers; the upper whiskers were longer than the lower whiskers , and usually the 

75th percentiles were also larger than the population p/, The Browne formula, the Burket 

formula, and the Claudy formula- I all belong to this category. For the underestimators, 

these formulae tended to have more large negative outliers; the lower whiskers were 

sometimes longer than the upper whiskers, and sometimes the 75th percentiles are smaller 

than the population p/, The Claudy formula-2, the Darlington formula, the Lord formula­

! and -2, and the Rozeboom formula- I and -2 all belong to this category. Such a 

distinction cannot be clearly made when the population p2 is relatively large (.8). 
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3. Across the three different conditions of multicollinearity, the distributions for 

the 10 analytical formulae across different multicollinearity conditions were similar in 

shapes, which indicated that multicollinearity did not seem to have any dramatic effects 

on the performances of these estimates . 

Explaining the Variation s of Sample Estimate Biases 

77 

Bias is defined as the difference between the corrected !?.3 obtained by applying 

each analytical formula to the sample and the population parameters; that is, the 

population p2 or the population cross-validity coefficient p/ For the six analytical 

formulae designed for estimating the population p2, biases were calculated by subtracting 

the prespecified population p2 (2, 5, 8) from the corrected J( obtained from each 

formula. And for the IO analytical formulae designed for estimating the population cross­

validity coefficient p/, biases were calculated by subtracting the estimated population 

cross-validity coefficient Pc 2 from the corrected R/ 

Factors that might have influenced the biases of these analytical formulae were 

investigated using the analysis of variance (ANO VA) model to partition the variances of 

sample estimated biases to different sources . These factors included : sample size, 

population p2
, degree of multicollinearity among the predictor variables, and number of 

predictor variables. The two-way, three-way, and four-way interactions among these 

factors were also considered potential sources in the analysis. Tables 12 and 13 present 

the results of partitioning the variance of different sources of sample estimate biases for 

the analytical formulae for either the population p2 or for the population cross-validity 



Table 12 

Et.o..:..S.uuares for DilTcr~nt SQ~1rccs of Variance fQr the AnalJ'.tical FQrm~ilae F.stimaiin~ PQptil:iti~rn (/ 

Source Smith Wherry- I Wherry-2 Olkin\Pratt 

Sample size .061 .284 .335 .0602 
Population p~ 029 .010 .435 .0185 

Sample size x population p2 066 .019 .364 0482 

Multicollinearity 000 000 000 0003 

Sample size xmulticollincarity .020 .019 .020 .0191 
Population p! x multicollinearity .004 004 .003 .0034 

Sample size " population r! xmulticollincarity .03 I .031 .030 0302 

Number of predictors (11) 022 001 021 ooos 
Sample si/e ' / 1 062 003 05() 0027 
Population p ! ·· /' 003 006 00-1 UU5(1 

Sample si/e - populat i\)n r ! x 11 .019 014 019 0 I 3S 
Multicollinearity x I' .002 .002 001 (HJ I () 

Sample size " llHilticollinearity " I' 018 .018 .016 OISI 
Popubtion p! •:multicollinearity " 11 .011 .011 011 0109 
Sample size " population p! xmulticollincarity " I' .046 .046 .046 .0457 

Pratt 

.002 

.004 

.001 

.000 

.019 

.003 

.030 

.003 

.005 
009 
.01 S 
002 

.01 S 

.0 11 

.046 

Claudy-3 

1.322 

.475 

.410 

.000 
020 

.om 

.029 

.001 
002 
00() 

01·1 
001 
OIS 

.01 I 

.045 

....J 
00 



Table 13 

Eta-Squs1res for Different Sources of Variance for Analytical Formulae Estimating Population Cross-Validity Coeflicient re: 

Source Lord- I Lord-2 Burket Darlington Browne° Browneh Claucly 1 Claudy2 Rozeboom 1 Rozcboom2 

Sample size 6.593 3.991 .018 1. 183 .049 .163 .069 6.400 1.634 .373 
Population p~ 3.747 2 .737 .005 3.660 005 .006 .042 2073 1.761 .049 

Sample size "'population p! 3.300 2.544 .024 4.522 .046 .043 . 165 3. 159 1.732 .128 

Multicollinearity 001 .001 .003 .001 004 .004 .004 001 .00 1 .003 

Sample size xmulticollinearity 024 .026 .012 .016 .04S .047 060 020 .029 .0..JS 

Population p! " 111ulticollincarity 005 005 .007 .003 .00<) .009 0()<) .004 .005 .009 
Sample size , population p! x 0.:JS OSI 029 034 .074 073 077 .040 055 .074 

Multicollincari1 y 

Number of predictors (J>) . 182 . I 54 .002 2. 140 026 .027 .27 1 2 0S3 .070 .039 

Sample size , I' 1 <JI . I SO .007 4. IS6 .OS I 070 .619 3%1 041 .090 
Population p! ~ JJ 5() I SS5 .007 1.297 .016 00S 014 I -107 .553 .0~1 
Sample size " population p! x /> 777 802 030 

') .,,, 
- ·-'-- 031 023 .039 2.457 711 .041 

Multicollinearity x p 009 009 006 .007 .011 .012 .010 oos 010 .0 10 

Sample size ·<multicollinearityxf' 027 029 .025 .022 030 .031 .026 025 031 , .02S 

Population p! .:. multicollincarity x/J .012 .013 .014 .009 .017 017 .016 .011 .014 .016 

Sample size xpopulation p! x .055 .059 057 .040 082 .OS I .0S3 047 .064 .OS2 

Multicollinearity x I' 

·' The Browne formula with pi estimated by the Whcny formula- I . 

h The Browne formula with p2 estimated by the Olkin\Pratt formula . 

--..J 

'° 
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coefficient p/ In the tables , eta-square was used as the percentage of variation accounted 

for by a source , and the eta-square was obtained through : 

112 = [(sum of squares due to a source) /(toal sum of squares)] x 100 

From these tables , the amount that each source explained ranged from nearly zero 

(.0002% ) to 6.59% of the total variance in the sample estimate biases obtained from these 

analytical formulae . The overall small amount of variance accounted for by different 

sources in the model indicated that the variation of sample estimate biases was mainl y due 

to random variation. Factor( s) or interactions that accounted for less than . 1 % of the total 

variance were omitted from discussion because of the insignificant amount of variance 

explained by these factors in the model. 

Sample Si=e 

Sample size contributed the most to the variation of three out of six analytical 

formulae estimating population p2
, and 5 out of the 10 analytical formulae estimating the 

population cross-validity coefficient p/. The proportion of variance accounted for by 

sample size ranged from .06% to 1.32% for the formulae estimating population p2
, and 

from .16% to 6.59% for the formulae estimating the population cross-validity p/ It 

appeared that sample size might be of some importance to the total variation for the bias 

obtained from the Wherry formula-2, the Claudy formula-3, the Lord formula-I and -2, 

the Browne formula (with p2 estimated by the Olkin\Pratt formula) , the Claudy formula-

2, and the Rozeboom formula-2 . 
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Population rJ 

Variances accounted for by the population p2 ranged from .004% to .47% for the 

formulae estimating population p2
, and from .005% to 3.75% for the formulae estimating 

the population p/_ Among all the sources of variation, this factor contributed the most to 

the total variation for the Rozeboom formula- I ( 1. 76%) that estimated population cross­

validity p/_ 

The Interaction Between Sample 
Size and the Population p2 

Variances accounted for by the interaction term between sample size and the 

population p2 ranged from . 01 % to . 41 % for the formulae estimating population p2
, and 

from .04% to 4.52% for the formulae estimating the population p/_ Among all the sources 

of variation, this interaction term contributed the most to the total variation for the Smith 

formula (.07%) and to the Darlington formula (4.52%). For the six formulae estimating 

population p2
, it accounted for less than .4% of the total variation. For the Rozeboom-I 

and Rozeboom-2 formula that estimated population cross-validity coefficient p/, it 

contributed the second most to the total variation (1. 73% and .13%, respectively). 

Number of Predictors (p) 

The variances explained by the number of predictors accounted for less than .03% 

of the total variation for the six analytical formulae estimating population p2
. For the 10 

analytical formulae estimating population cross-validity coefficient p/, the variance 
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accounted for by this factor ranged from .002% to 2. 14% of the total variance. However, 

the amount of variation this factor explained was relatively small among all the other 

sources . 

The Interaction Beh11een Sample Size 
and Number of Predictors (p) 

The variances explained by the interaction term between sample size and number 

of predictors accounted for less than .06% of the total variation for the six analytical 

formulae estimating population p", and it ranged from .007% to 4.2% for the 10 analytical 

formulae estimating population cross-validity c-oefficient p/ The interaction term 

accounted the most for the total variation for the Claudy formula-! (62%) , and the 

second most for the Darlington formula (419 %) and the Claudy formula-2 (3 .96%). 

The Interaction Between 5'ample 
Size, the Population fT, and Number 
of Predictors (p) 

The three-way interaction term explained less than .02% of the total variance for 

the analytical formulae estimating population p2
, and it ranged from .02% to 2.46% for the 

analytical formulae estimating the population cross-validity coefficient p/ The effect of 

this interaction term might be more related to the analytical formulae estimating the 

population cross-validity coefficient p/ than for those estimating the population p2
. 

However, the overall percentage for this interaction term was relatively small, and no 

definite conclusion can be drawn from the results . 



CHAPTER V 

CONCLUSIONS 
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When estimating RJ shrinkage in multiple regression, there is considerable 

confusion and little consensus in the literature about which analytical formula should be 

utilized under what circumstances . The present study utilized a Monte Carlo simulation to 

generate correlated multivariate random data , and investigated the effectiveness of various 

analytical formulae designed to estimate R1 shrinkage in multiple regression under the 

influence of commonly encountered confounding factors such as different degrees of 

multicollinearity among the predictor variables, population squared multiple correlation 

conditions, number of predictors, and sample sizes. Five hundred replicates were 

simulated within each cell of the sampling conditions . Then analytical formulae were 

applied to the simulated data in each sampling condition, and the adjusted Ifs and R/s 

were obtained and then compared to their corresponding population parameters (p2 

and p/) . 

Discussion for Objective I 

The first objective of the stLidy was to compare the accuracy and usefulness of 

various analytical formulae for estimating the population p2 in the population from which 

the sample was drawn . Among the six analytical formulae designed to estimate the 

population p2
, the performances of the Pratt formula were found to be the most stable and 

satisfactory, especially when IIJJ ratio is relatively small. When 11/p ratio was relatively 
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large (e .g., l 00), almost all of the six analytical formulae gave unbiased estimates across 

all these sampling conditions . The commonly known Wherry formula (the Wherry-2 

formula in the present study), which is also the currently used "shrinkage formula" in both 

SAS and SPSS, only performed as well as other analytical formulae when the nip ratio 

was relatively large (e.g., 100). Small n 1p ratio is not uncommon in social and behavioral 

researches. The results indicated that it might need more consideration in choosing the 

most effective shrinkage formula for estimating J( shrinkage in multiple regression 

analysis, especially when there were relatively large numbers of predictor variables, and at 

the same time the sample size was relatively small. Practically, all these analytical 

formulae were relatively easy to calculate and straightforv1ard to apply. 

Discussion for Objective 2 

The second objective of this study was to compare the accuracy and usefulness of 

various analytical formulae for estimating}?-' shrinkage for cross-validation purpose in 

multiple regression. Among the l O analytical formulae designed to estimate the 

population cross-validity coefficient p/, the Browne formula (with p2 estimated either by 

the Olkin\Pratt formula or the Wherry formula- I) gave the best and most stable estimate 

across different conditions of population p2, multicollinearity, and n/p ratio. Biases 

obtained from the Browne formula with p2 estimated by Olkin/Pratt formula were slightly 

less than the Browne formula with p2 estimated by the Wherry formula- I . When nip ratio 

was relatively small or moderate, the Browne formula with p2 estimated by the Wherry 

formula-I gave a slightly better estimate than the Browne formula with p2 estimated by the 
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Olkin/Pratt formula. Such results supported the conclusions from studies by Schmitt 

(1982) and Kromrey and Hines (1996), that the Browne formula was the most appropriate 

estimator of p/ When nip ratio was relatively large (e.g., I 00), more analytical formulae 

gave unbiased estimates across all these sampling conditions. 

To calculate some of these analytical formulae (the Browne formula, the Claudy 

formula- I, and the Rozeboom fcrmu!a-2), two steps were needed, because there are 

requirements for obtaining the population p or p2 first. However , the overall application 

of these analytical formulae was also relatively simple and straightforward. 

Discussion for Objective 3 

The third objective of the study was to assess the effects of sample size, number of 

predictor variables, and degree of multicollinearity among the predictors on the accuracy 

and variability of the performances of the analytical formulae in estimating R2 shrinkage in 

multiple regression The results suggested that II p ratio, instead of either the number of 

predictors or the sample size alone, was the most influential factor that affected the 

performance of these analytical formulae . Both the accuracy and stability of these 

adjusted Rs increased as nip ratio increased, especially when II p ratio was relatively large 

(e.g., 100). Most of these analytical formulae give unbiased estimates across all these 

sampling conditions. 

Variance partitioning was performed for the sample biases obtained from these 

analytical formulae based on the factors considered in the study (e.g., sample size, number 

of predictors, degree of multicollinearity, and population p2
) Although sample size 
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seemed to be the most impo11ant factor in explaining the variation in the sample biases for 

most of these analytical formulae, the amount of variance accounted for by all these 

factors was relatively small, and thus no definite conclusio n can be drawn from the results. 

However, for those analytical formulae that performed relatively well across different 

sampling conditions (e g., the Olkin/Pratt formula and the Browne formula), the amount of 

variation each factor accounted for was much smaller than for those analytical formulae 

where performance was not very satisfactory (e.g., the Lord formula- I, the Lord formula-

2, and the Darlington formula) ft could be inferred that the performances of those 

analytical formulae such as the Lord-! and -2 formula might indeed be related, to some 

degree, to the confounding factors investigated in the study. Nevertheless, the greatest 

amount of variation accounted for by any factor was only 6. 59%. Random error 

appeared to account for the majority of the fluctuation in the performances of these 

analytical formulae . Results from both boxp!ots and variance partitioning analysis 

indicated that multicollinearity did not seem to play an important role in affecting the 

performances of these analytical formulae in the present study. 

Study Limitations 

One limitation of the present study is that only multivariate normal data were 

generated and analyzed, which might have simplified the usually nonnormal and more 

complex distributions that researchers usually expect from real data . fn the future, 

generating multivariate nonnormal distributions may provide data that could be more 

representative of real research data . Another limitation about the data generation design is 
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that only three of the simplest conditions of multicollinearity were simulated . Also, all 

possible correlations among independent variables were assumed to be equal. With real 

data, different degrees of correlations among different independent variables are more 

likely to be expected . In future studies, a more complex multicollinearity pattern may 

provide researchers with a better understanding of the influence of multicollinearity on the 

performance of these analytical methods . Besides , only three types of population p2 were 

generated in this study, which might only represent part of what .might be expected from 

the real data. Also the fixed linear regression model was used in the present study. As it 

is known, the assumptions of the fixed linear regression model usually cannot be met 

completely . In the future, more complex regression models will be useful in handling 

distributions for which these assumptions are not met, and providing researchers with 

more insights when working with real data. Another approach to deal with this issue is to 

replicate the study under different situations in which these assumptions are violated, and 

to investigate the robustness of the fix linear regression model under these conditions . 

Another limitation of this present study is that only analytical methods are 

investigated in estimating R2 shrinkage in multiple regression analysis due to time limit and 

project manageability . A comparative study of both the empirical and analytical methods 

will provide more comprehensive and complete information on all the available methods 

for estimating R2 shrinkage in multiple regression. Further replications on both real and 

simulated data are still needed to investigate the effectiveness of these analytical formulae . 
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Recommendations for Applications in Social and Behavioral Sciences 

Studies of relationships among variables are common in social and behavior 

sciences. Psychologists , educational researchers , and sociologists have been using 

multiple regression extensively to answer different research questions about relationships, 

with the ease and availability brought by the popular statistical software (e .g., SPSS and 

SAS; Cohen & Cohen, I 983; Huberty & Mourad, 1980) As mentioned earlier, there are 

two major reasons to apply the multiple regression procedure : to estimate the population 

multiple correlation coefficient from a sample, or to predict the same dependent variable 

for new samples from the same population but other than the one from which the 

regression weights are derived . From the results in this study, the following 

recommendations for applications in social and behavioral sciences can be made. 

l. The purpose of the application should be clearly defined before using the 

multiple regression procedure . Such a distinction is needed because each analytical 

formula is designed for only one of the two purposes. An effective analytical formula for 

one purpose might not be accurate for the other . 

2. The commonly used statistical software only provides an adjusted k! without 

distinction between the two parameters based upon the two research purposes. Also the 

currently used Wherry-2 formula for calculating the adjusted!?-' was not found to be the 

most effective analytical formula Therefore , it is recommended that to obtain a more 

accurate adjusted R~, instead of simply relying on the statistical software, researchers use 

the Pratt formula for the first purpose, the Browne formula for the second purpose, or 



refer to the more detailed "recommended formulae" across sample sizes and number of 

predictors in Tables 8 and 9 of the present study. 
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3. The ratio of sample size to the number of predictors appears to be a major 

factor that affects the performance of these analytical formulae Therefore, it is 

recommended that sufficient sample size and relatively few predictors be used in the 

multiple regression procedure in order to obtain<! relatively accurate and stable estimate of 

the population parameter . 



REFERENCES 

Ayabe, C. R. (1985). Multicrossvalidation and the Jackknife in the estimation 

of shrinkage of the multiple coefficient of correlation. Educational and 

Psychological Measurement, -15, 445 - 451. 

Browne, M. W. ( 1975). Predictive validity of a linear regression equation . British 

Journal of Mathematical and Statistical Psychology, 28, 79-87 . 

Burket, G. R. (1964 ). A study ofreduced rank models for multiple prediction. 

Psychometric Monograph (12, serial No. 65). 

90 

Cattin, P. (1980) . Estimation of the predictive power of a regression model. Journal of 

Applied Psychology, 65, 407-414 . 

. Claudy, J. G. (1978). Multiple regression and validity estimation in one sample . Applied 

Psychological Measurement, 2, 595-607 . 

Cohen, J. (1988) . Statistical power analysis for the behavioral sciences (2nd ed.). 

Hillsdale, NJ : Erlbaum . 

Cohen, J ., & Cohen, P. (1983). Applied multiple regression/correlation analysis/or 

the behavioral sciences. Hillsdale, NJ: Erlbaum. 

Cummings, C. C. (1982, March) . Estimates of multiple correlation coefficient 

shrinkage. Paper presented at the Annual Meeting of American Educational 

Research Association, New York. 

Darlington, R. B. ( 1968). Multiple regression in psychological research and practice. 

Psychological Bulletin, 69(3), 161-182. 



91 

Efron, B. ( 1979). Bootstrap method : Another look at the jackknife . The Annals of 

Statistics, 7, 1-26. 

Ezekiel, M. ( 1929). The application of the theory of error to multiple and curvilinear 

correlation. Proceeding Supplement, American Statistical Association 

Journal, 24, 99-104 . 

Fan, X., & Wang, L. (1996). Comparability of Jackknife and Bootstrap results : An 

investigation for a case of canonical correlation analysis. The Journal of 

Experimental Education, 64(2), 173-189 . 

Glass, G. V., & Hopkins, K. D. (1996). Statistical methods in education and 

psychology. Needham Height, MA : Allyn & Bacon. 

Hamilton, L. C. (1991) . Regression with graphics: A second course in applied 

statistics . Belmont, CA: Dubury Press. 

Herzberg, P . A ( 1969). The parameters of cross-validation. Psychometrika 

Monograph Supplements, 16, 1-10. 

Huberty, C. J., & Mourad , S. A ( 1980). Estimation in multiple correlation/prediction. 

Educational and Psychological Measurement, 40, 101-112. 

Johnson, M. E. (1987). Multivariate statistical simulation. New York: Wiley . 

Kaiser, H. F., & Dickman, K. (1962). Sample and population score matrices and sample 

correlation matrices from an arbitrary population correlation matrix . 

Psychometrika, 27, 179-182 . 

Kennedy, E. (1988). Estimation of the squared cross-validity coefficient in the context of 

best subset regression. Applied Psychological Measurement, I 2(3), 231-237. 



92 

Kromrey, J. D., & Hines, C. V. (1995) . Use of empirical estimates of shrinkage in 

multiple regression: A caution . Educational and Psychological Measurement, 

55(6), 901-925 . 

Kromrey , J. D., & Hines, C. V. (1996) . Estimating the coefficient of cross-validity in 

multiple regression: A comparison of analytical and empirical methods. The 

Journal of Experimental Education, 64(3), 240-266 . 

Krus, D. J., & Fuller , E. A. (1982) . Computer-assisted multicross-validation in regression 

analysis. Educational and Psychological Measurement, 40, 101-112. 

Larson, S. C. ( 1931 ). The shrinkage of the coefficient of multiple correlation . Journal of 

Educational Psychology, 22, 45-55 . 

Lord, F. M. ( 1950). Efficiency of prediction when a regression equation from one 

sample is used in a new sample. Princeton, NJ : Educational Testing Service. 

Mosier, C. I. ( 1951 ). Problems and designs of cross-validation . Educational and 

Psychological Measurement, I I, 1-11. 

Newman, I., McNeil, K., Garver, T., & Seymour, G. (1979, April). A Monte Carlo 

evaluation of estimated parameter of five shrinkage estimate formuli. Paper 

presented at the Annual Meeting of Americal Educational Research Association, 

San Francisco, CA. 

Nicholson, G. E. (1960). Prediction in future samples. In I. Olkin (Ed.), Contribution 

to probability and statistics (pp. 350). Stanford, CA: Stanford University Press . 

Olkin, E., & Pratt, J. W. (1958). Unbiased estimation of certain correlation coefficients. 

Annals of Mathematical Statistics, 29, 201-211. 



93 

Park, C. N., & Dudycha, A. L. (1974) . A cross-validation approach to sample size: 

determination for regression model. Journal of the American Statistical 

Association, 69, 214-218. 

Quenouille, M. H. ( 1949). Approximate test of correlation in the time-series. Journal 

of the Royal Statistical Society, 11 (Series B), 68-84. 

Rozeboom, W. W. (1978) . Estimation of cross-validated multiple correlation: a 

clarification . Psychological Bulletin, 85, 29, 201-211. 

Rozeboom, W.W. (1981). The cross-validational accuracy of sample regression . 

Journal of Educational Statistics, 6, 179-198. 

SAS/IML [Computer software] (1990). Usage and reference , Version 6, 1st ed . 

Cary, NC: SAS institute Inc. 

SAS/STAT. (1990). User's guide, Vol. 2 Cary, NC: SAS. 

Schmitt, N. (1982, August). Formula estimation of cross-validated multiple 

correlation. Paper presented at the Annual Meeting of the America} 

Psychological Association, Washington, DC. 

Stein, C. (1960). Multiple Regression In I. Olkin (Ed.) . Contributions to probability 

and statistics (pp. 264 - 305). Stanford, CA: Stanford University Press. 

Stevens, J. ( 1996). Applied multivariate statistics for the social sciences. Hillsdale, 

NJ: Erlbaum. 

Uhl, N., & Eisenberg, T. (1970) . Predicting shrinkage in the multiple correlation 

coefficient. Educational and Psychological Measurement, 30, 487-489 . 



94 

Wherry, R. J. ( 1931 ). A new formula for predicting the shrinkage of the coefficient of 

multiple correlation. Annals of Mathematical Statistics, 2, 440-457. 



95 

APPENDfCES 



96 

Appendix A 

Summary of Studies on Estimating R 2 Shrinkage in Multiple Regression Analysis 



. Summacy of Studies on Estimating R2 Shrinka~e in Multiple Regression Analysis 

Author/Year 

1. Uhl & Eisenberg 
(1970) 

2. Claudy (1978) 

3. Newman (1979) 

4. Huberty& 
Mourad (1980) 

Estimating Method 

Analytical methods (formula) 

1. Wherry 
2. Modified Wherry 
3. Lord-I 

1. Larson/ Smith/ Wherry 
2. Olkin /Pratt 
3. Pratt 
4. Hexzberg approximation 
4. Lord-2 /Nicholson 
5. Darlington 
6. Burket 
7. Claudy-3 

1. McNemar/Wherry 
2. Wherry/McNemer/Ezekiel 
3. Lord-1 
4. Darlington 
5. Lord-2 

1. Smith1 

2. &ekiel 
3.Wheny 
4. Olkin/ Pratt 
5. Nicholson/Lord-2 
6 .. Darlington/Stein 
7. Rozeboom-I 

Empirical methods 

None 

1. Mosier's Double cross­
validation 
2. Claudy's Double 
shrinkage estimate 

Cross-validation 

"Leave-one-out" 

Study Design 

Statistical methods 

Regression and Prediction 

Monte Carlo Study 

Monte Carlo Study 

Regressions and prediction 

Data set 

Test scores from Army 
Classification Battery and 
Navy General Classification 
Test 

Computer generated data with 
parameter chosen to be 
representative in social and 
behavioral sciences 

Artificially generated data set 
with known parameters 

Real data set from freshmen 
(A) and college students (B) 
at the University of Georgia in 
1968-69 

(to be continued) 
'° ....J 



Summary of Studies on Estimating R2 Shrinkage in Multiple Regression Analysis 

Author/Year 

1. Uhl & Eisenberg 
(1970) 

2. Claudy (1978) . 

Sample Size (N) 

50, 100,150,250, 
325 

20,40,80, 160 

3.Newman(1979) 14,30,50, 100 

4. Huberty & 50 
Mourad (1980) 

Study Design 

Population Parameters 

Calculate Composite R from 
sample 

16 independent multivariate 
normal population of 500 sets of 
observations with parameters 
similar to psychological and 
educational literature; with 400 
samples drawn for each sizes 

p/=.06, .07, .06, .08 
p22=.31, .32, .33, .34 
p3 2=.45, .47' .46, .55 
with 100 replications for each 
conditions 

Determined for the population 
(A), (B) 

Nwnber of Predictors (p) 

2 through 13 

2, 3,4, 5 

4 

(A) 9, 3 
(B) 4 

Results and Conclusions 

The Lord-I formula gave more accurate estimates 
of shrinkage during cross-validation, regardless of 
sample size and nwnber of predictors. 

l. To estimate p2, the double cross validity estimate 
was the most accurate in the empirical methods. 
The Herzberg approximation ofOlkin/Pratt 
formula performed almost equally well. 
2. To estimate p0

2
, the Darlington formula yielded 

the most accurate estimate. 

1. The McNernar/Wherry formula and the 
Wherry/McNemer/Ezekiel formula are more stable 
for different sample sizes. 
2. Cross-validation shows no advantage over 
analytical methods. 
3. The results might due to artificially generated 
data in the present Monte Carlo Study. 

1. The Ezekiel fonnula and the O lkin/ Pratt formula 
are almost equally accurate in estimating p2

• 

2. The Nicholson/Lord-2 fonnula, the Darlington/ 
Stein formula, and "Leave-one-out" method are 
nearly accurate in estimating p/. 
3. "Leave-one-out" method is less practically 
useful. 

\0 
00 



Summey of Studies on Estimating R2 Shrinkage in Multiple Regression Analysis 

Author/Year Estimating Method Study Design 

Analytical methods (formula) Empirical methods Statistical methods Data set 

5. Schmitt (1982) 1. Wherry/Ezekiel None Regression and prediction Not specified 
2. Nicholson/Lord-2 
3. Darlington 
4.Rozeboom-2 
5. Cattin/Browne 
6. Browne 

6i Cummings 1. Larson/Smith 1. Half-sample cross Regression and prediction Real data set from freshman at 
(1982) 2.Wherry validation a large university 

3. Ezekiel/Wheny 2. One-third 
4. Olkin/Pratt/Herzberg cross validation 
5. Pratt 3. Mosier's Double cross 
6. Barten validation 
7. Lord-2/Nicholson 4. Claudy's Double cross 
8. Darlington validation 
9. Uhl/Eisenberg/Lord-I 
10. Burket 
11. Claudy-1 
12. 1 and 10 
13. 2 and 10 
14. 3 and 10 
15. 4 and 10 
16. Sand 10 
17. 6 and 10 
18. 7 and 10 

7. Krus & Fuller 1. Wherry/Ezekiel Multicross validation Regression and prediction 1. Prestructured data set 
(1982) 2. Olkin/Pratt (Thurstone's box) 

2. Random data 

(tQ be cQntinyed) '° '° 



Summary of Studies on Estimatio~ R2 Shrinkage in Multiple Re~essioo Analysis 

Author/Year 

5. Schmitt (1982) 

6. Cummings 
(1982) 

7. Krus & Fuller 
(1982) 

Study Design 

Sample Size (N) Population Parameters Number of Predictors (p) 

40 to 240 (40, 80, .1 to .9 (.1, .2, .4, .6, .8, .9) 5 to 25 (5, 10, 25) 
240) 

30,60, 120 Calculated with BMDP and SPSS 4, 8 

Random data: 
100x20 matrix 
Tburstone's data: 
20x4 matrix 

1. Random data: p=.462 
2. Tburstone'sbox : p=.917 

1. Random data: not 
specified 
2. Thurstone' s box: 3 

Results and Conclusions 

1. When nip ratio increases, the estimations from 
those analytical formulae become less stable. 
2. The Browne formula is more appropriate for 
cross-validation purpose. 

1. Of the double cross-validation methods, 
Mosier's method is more accurate than Claudy's 
estimate. 
2. To estimate p/, for multiple regression, the 
combination of the Ezekiel formula and the Claudy-
1 formula is the most accurate; for stepwise 
regression, the combination of the Bnrten formula 
and the Claudy-1 formula is the most accurate. 
3. To estimate p1, for multiple regression, the 
Darlington formula is the most accurate~ for 
stepwise regression, the Smith formula, the 
Ezekiel formula, and the Barten formula are almost 
equally accurate, but all tend to over-estimate p1

. 

1. For Thurstone 's data set, both the analytical 
formulae and multicross-validation work almost 
equally well. 
2. For random data, rnulticross validation estimate 
is more accurate than the analytical methods. 

-0 
0 



Summary of Studies on Estimating R2 Shrinkage in Multiple Regression Analysis 

AuthorNear 

8. Ayabe (1985) 

9. Kennedy (1988) 

10. Kromrey & 
Hines (1995) 

11. Kromrey & 
Hines (1996) 

Estimating Method 

Analytical methods (formula) Empirical methods 

1. Wherry/Ezekiel 1. Jackknife 
2. Olkin/Pratt 2. Multicross validation 

1. Wherry/Ezekiel Double-cross validation 
2. Browne 
3. Claudy-2 
4. Lord-2/Nicholson 
5. Darlington/Stein 
6. Rozeboom-I 
7. Cohen/Cohen/Ezekiel 

None 1. Cross-validation 
2. Multicross validation 
3. Jackknife 
4. Bootstrap 

1. Browne 1. Cross-validation 
2. Darlington 2. Multicross validation 
3. Ezekiel 3. Jackknife 

4. Bootstrap 

Statistical methods 

Regression and prediction 

Monte Carlo Study 

Monte Carlo Study 

Monte Carlo Study 

Study Design 

Data set 

1. Prestructured data set 
(Thurstone's box) 
2. Random data 

Hypothetically generated data 
from a nationally 
representative sample of high 
school students 

Survey data from the National 
Educational Longitudinal 
Study 

Survey data from the National 
Educational Longitudinal 
Study 

(to be continued) -0 



Summary of Studies on Estimatin& R 2 Shrinkage in Multiple Regression Analysis 

Author/Year 

8. Ayabe (1985) 

9. Kennedy (1988) 

I 0. Kromrey & Hines 
(1995) 

11. Kromrey & Hines 
(1996) 

Sample Size (N) 

Random data: 
100x20 matrix 
Thurstone' s 
data: 20x4 
matrix 

30,70, 150 

20,40,60, 100, 
200 

20, 40, 60, 100, 
200 

Study Design 

Population Parameters 

1. Random data: p=.409 
2. Thurstone's box: 
p=.878 

2,000 simulated subjects 
for each conditions 
p/=.12 
p/=.20 
100 random samples for 
each conditions 

· p1=.04, .125, .25, .50 
I 000 random samples 
for each conditions 

p2=.04, .125, .25, .50 
1000 random samples 
for each conditions 

Number of Predictors (p) 

1. Random data: not specified 
2. Thurstone's box: 3 

7,6,5 

2, 4, 6, 8, 10 

2,4,6,8,10 

1 The fonnula is actually R. 2 = 
1 

_ N ( 
1 
-R 2) which is mistakenly used as the Smith fonnula. 

N-p-1 · 

Results and Conclusions 

1. Multicrossvalidation method produces comparable 
or superior estimates to the analytical fonnulae 
methods. 
2. Both the empirical and analytical methods show 
greater shrinkage for the random data than the 
prestructured data; multicross validation is better 
than the others for random data. 

l . The Ezekiel formula gives the most biased 
estimate in most situations. 
2. Toe Darlington/Stein fonnula perfonns better than 
the Browne formula. 
3. Sample size is a primary factor in shrinkage than 
the number of predictors. 

None of the empirical estimates consistently provide 
unbiased estimates and analytical methods thus 
recommended 

1. The Browne formula appears to provide the best 
estimate of p.2 compared to other methods. 
2. The Ezekiel formula is an effective estimate of p2, 
but not p/. 
3. The estimation of p.2 is very poor when sample 
size is less than 100 for both analytical and empirical 
methods. 

0 
N 
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Appendix B 

Population Correlation Matrices for Data Simulation 



Multicollinearity r-.1; Population p"-.2; 2 predictor variables 

SAS Program 
options linesize=80; 
libname lib 
'defdsk:[sas.monte) '; 
data a (typemcorr); 

type •'corr'; 
input-xl x2 y; 

cards; 
1.00 

. 10 1. 00 

. 3317 .3317 1.00; 
proc reg; 

model y=xl x2; 
run; 

Source DF 
Model 2 
Error 9997 
C Total 9999 

Root MSE 
Dep Mean 
c.v. 

Analysis of Variance 

Sum of Mean 
Squares Square 

2000.25250 1000 . 12625 
7998.74750 0.80011 
9999.00000 

0.89449 R-square 
0.00000 Adj R-sq 

Multicollinearity r- . 1; Population p"- . 5 ; 2 predictor variable• 

SAS Program • Output b 

1.00 R-square 0.5000 
. 10 1. 00 
.5244 . 5244 1.00; 

F Value 
1249.978 

0.2000 
0.1999 

Note. a. To avoid repetition, the rest of the programs are omitted from the table (the rest of Appendices B) . 
b. To avoid repetition, the rest of the outputs are omitted from the table (the rest of Appendices B). 

Multicollinearity r-.1; Population p"- . 8; 2 predictor variables 

SAS Program 
1. 00 

.10 1.00 

.66334 , 66334 1 . 00 ; 
R-square 0.8000 

Multicollinearity r- . 3 ; Population p.,_ . 2; 5 predictor variable• 

SAS Program 
1.00 

. 30 1.00 

. 3606 .3606 1.00 ; 
R-square 0 . 2000 

Multicollinearity r-.3; Population p"-.5 ; 2 predictor variable• 

SAS Program 
1.00 

. 30 1. 00 

.5701 .5701 1.00; 
R-square 0 . 5000 

Multicollinearity r-.3; Population p2- . 8; 2 predictor variable• 

SAS Program 
1.00 

. 30 1. 00 

.7211 . 7211 1.00; 
R-square 0.8000 

Multicollinearity r-.5; Population p'-.2; 2 predictor variable• 

SAS Program 
1.00 

. 50 1. 00 

.3873 .3873 1.00; 
R-square 0.2000 

104 

Prob>F 
0.0001 



Multicollinearity r-.5; Population p'-.5; 2 predictor variable• 

SAS Program 
1.00 

. 50 1.00 

.6124 .6124 1.00; 
R-square 0.5000 

Multicollinearity r-.5; Population p'-.8; 2 predictor variable• 

SAS Program 
1.00 

. 50 1. 00 

.7746 .7746 1.00; 
R-square 0 . 8000 

Multicollinearity r-.1; Population p'-.2; 4 predictor variable• 

SAS Program 
1.00 

. 1 

. 1 

.1 

.25495 

1.00 
.1 1.00 
. 1 .1 1 . 00 
.25495 .25495 . 25495 

R-square 

1.00; 

Multicollinearity r-.1; Population p'-.5; 4 predictor variable• 

SM Program 
1.00 

. 1 

.1 

.1 

. 4031 

1.00 
.1 1.00 
.1 .1 
.4031 .4031 

1.00 
.4031 1.00; 

Multicollinearity r-.1; Population 

SAS PrQ:SlrlY!I 
1.00 

.1 1.00 

. 1 . 1 1.00 

. 1 . 1 . 1 1.00 

.5099 .5099 . 5099 .5099 1.00; 

Multicollinearity r-.3; Population 

SAS Program 
1.00 

. 3 1.00 

. 3 . 3 1.00 

. 3 .3 . 3 1.00 

.3082 .3082 .3082 .3082 1.00; 

Multicollinearity r-.3; Population 

SAS Program 
1.00 

• 3 
.3 
. 3 
.48735 

1.00 
.3 1.00 
.3 .3 1.00 
.48735 .48735 .48735 1.00; 

R-square 

pZ... 8; 4 predictor variable• 

~ 

R-square 

p'- . 2; 4 predictor variable• 

~ 

R-square 

p"-.5; 4 predictor variable• 

R-square 
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0 . 2000 

0 .5 0 00 

0.8000 

0.2000 

0.5000 



Multicollinearity r-.3; Population p._,8; 4 predictor variable• 

SM Program 
1.00 

.3 

.3 

.3 

.61645 

1.00 
.3 1.00 
.3 .3 1.00 
.61645 .61645 .61645 

R-square 

1.00; 

Multicollinearity r-.5; Population p._,2; 4 predictor variable• 

SAS Program 
1.00 

.5 

.5 

.5 

.35355 

1.00 
.5 1.00 
. 5 .5 
.35355 .35355 

R-square 

1.00 
.35355 1 . 00 

Multicollinearity r-.5; Population p._,5; 4 predictor variable• 

SAS Program 
1.00 

.5 

.5 

.5 

.559 

1.00 
.5 1.00 
.5 .5 1.00 
.5 59 .559 .559 1.00; 

R-square 

Multicollinearity r-.5; Population p._,8; 4 predictor variable• 

SAS .Ersxrnm 
1.00 

. 5 
• 5 
• 5 

1.00 
.5 
.5 

1.00 
.5 1.00 

.7071 .7071 .7071 .7 071 1.00 

R-square 

Multicollinearity r- . 1; Population p._ . 2; 8 predictor variable 

SAS Proqr;ug 
1.00 

. 1 

.1 

.1 

.1 

. 1 

. 1 

.1 

.20615 

1.00 
. 1 
.1 
.1 
.1 
.1 
.1 
.20615 

1.00 
.1 
.1 
. 1 
.1 
.1 
.20615 

1.00 
.1 
.1 
.1 
. 1 
.20615 

1.00 
.1 
.1 
.1 
.20615 

1.00 
.1 1.00 
.1 .1 1 . 00 
.20615 .20615 .20615 1.00; 

Multicollinearity r-.1; Population p._,5; 8 predictor variable• 

SAS Frsxrram 
1.00 

.1 

.1 

.1 

.1 

.1 

.1 

.1 

.32595 

1.00 
.1 
.1 
.1 
.1 
.1 
.1 
.32595 

1.00 
.1 
.1 
.1 
.1 
.1 
.32595 

1.00 
. 1 
.1 
.1 
.1 
.32595 

1.00 
.1 
.1 
.1 
.32595 

1.00 
.1 1.00 
.1 .1 1.00 
.32595 .32595 .32595 1.00; 

0.8000 

0.2000 

0.5000 

0 . 8000 

R-square 
0.2000 

R-square 
0.5000 
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Multicollinearity r-.1; Population p'-.8; 8 predictor variable• 

8AS frogrg 
1.00 

.1 1.00 

.1 .1 1.00 

.1 .1 .1 1.00 

.1 .1 .1 .1 1.00 

.1 .1 .1 .1 .1 1.00 

.1 .1 .1 .1 .1 .1 1.00 

.1 .1 .1 .1 . 1 .1 .1 1.00 

.4123 .4123 .4123 .4123 .4123 .4123 .4123 . 4123 1.00; 

Multicollinearity r-.3; Population p'-.2; 8 predictor variable• 

SAS Program 
1.00 

• 3 
.3 
.3 
. 3 
• 3 
.3 
. 3 
.2784 

1.00 
. 3 
• 3 
.3 
. 3 
. 3 
. 3 
. 2784 

1.00 
.3 
. 3 
.3 
• 3 
.3 
.2784 

1.00 
. 3 
.3 
.3 
.3 
.2784 

1.00 
.3 
. 3 
. 3 
. 2784 

1.00 
.3 1.00 
. 3 .3 1.00 
.2784 .2784 .2784 1.00; 

Multicollinearity r-.3; Population p .... 5; 8 predictor variable• 

SAS Program 
1.00 

• 3 
• 3 
• 3 
• 3 
• 3 
. 3 
. 3 
. 44019 

1.00 
• 3 
. 3 
.3 
• 3 
• 3 
.3 
.44019 

1.00 
• 3 
• 3 
• 3 
• 3 
. 3 
.44019 

1.00 
.3 
• 3 
. 3 
.3 
. 44019 

1.00 
.3 
.3 
.3 
. 44 019 

1.00 
.3 1.00 
.3 . 3 1. 00 
.44019 .44019 .44019 1.00; 

Multicollinearity r-.3; Population p'-.8; 8 predictor variable• 

SAS Program 
1.00 

.3 

.3 
• 3 
.3 
.3 
.3 
. 3 
.55678 

1.00 
. 3 
.3 
.3 
.3 
.3 
.3 
.55678 

1.00 
. 3 
• 3 
.3 
.3 
.3 
.55678 

1.00 
. 3 
.3 
. 3 
.3 
.55678 

1.00 
. 3 
.3 
.3 
.55678 

1.00 
. 3 1.00 
.3 .3 1.00 
.55678 .55678 .55678 1.00; 

Multicollinearity r-.5; Population p'-.2; 8 predictor variable• 

SM Program 
1.00 

.5 

.5 

.5 
• 5 
.5 
.5 
. 5 
.3354 

1.00 
.5 
.5 
.5 
. 5 
.5 
.5 
.3354 

1.00 
.5 
.5 
.5 
• 5 
.5 
.3354 

1.00 
.5 
.5 
.5 
.5 
.3354 

1.00 
.5 
.5 
• 5 
.3354 

1.00 
.5 1.00 
.5 .5 
. 3354 . 3354 

1.00 
.3354 1.00; 

~ 

R-square 
0.8000 

R-square 
0.2000 

R-square 
0.5 00 0 

R-square 
0.8000 

R-square 
0.2000 
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Multicollinearity r-.5; Population p'-.5; 8 predictor variable• 

Program 
1.00 

.5 

.5 

.5 

.5 

.5 

.5 

.5 

.53035 

1.00 
• 5 
.5 
.5 
. 5 
.5 
.5 
. 53035 

1.00 
.5 
. 5 
.5 
.5 
.5 
.53035 

1.00 
. 5 
• 5 
.5 
.5 
.53035 

1.00 
.5 1.00 
.5 .5 1.00 
.5 .5 .5 1.00 
.53035 .53035 .53035 .53035 1. 00; 

Multicollinearity r-.5; Population p2-.8; 8 predictor variable• 

MS Program 
1.00 

. 5 
• 5 
• 5 
• 5 
.5 
.5 
. 5 
. 6708 

1.00 
. 5 
• 5 
• 5 
.5 
.5 
.5 
. 6708 

1.00 
• 5 
.5 
.5 
• 5 
. 5 
.670 8 

1.00 
.5 
• 5 
.5 
• 5 
. 6708 

R-square 

1.00 
. 5 1.00 
. 5 . 5 1.00 
. 5 . 5 .5 1.00 
. 6708 .6708 . 6708 .6708 1.00; 

R-square 
0.5000 

0.8000 
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Basic SAS Progrnrn for Sirnulating Sample Data 
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Multicollinea.rity r- .1; Population p"-.2, .5, .B; 2 predictor variable• 

options linesize=80 nonumber nodate; 
libname lib 'c:\ping\sas\formula'; 
proc printto log='c:\ping\sas\formula\logfile.tmp'; 

/* Monte Carlo simulation for 2 predictors conditions*/ 
/* A22, A52, A82; population r quare•.2, .5, .8; p•2; coll r-.1 */ 
/* n~20, 40, 60, 100, 200; replicate=500 */ 

data t (type=corr); 
type ='corr'; 

input-xl x2 y; 

cards; 

Insert the intercorrelation matrices 
from Appendix A 

/*Generate factor pattern*/ 
proc factor n=3 outstat-FACOUT; 
data pattern; 
set FACOUT ; 

if TYPE ='PATTERN'; 
drop _TYPE __ NAME; 

run; 

/*start regress module*/ 
proc iml; 
start regress; 

%macro a22; 
%let N=500; 

%do b=l %to 5; 
Hf &b=l %then %do; %let 
%if &b=2 %then %do; %let 
Hf &b=3 %then %do; %let 
Hf &b=4 %then %do; %let 
Hf &b-5 %then %do; %let 

%do I=l %to &N; 

smpln=20; 
smpln=40; 
smpln=60; 
smpln=l00; 
smpln•200; 

%end; 
%end; 
%end; 
%end; 
%end; 

/*Define necessary variables for analysis*/ 
nov=3; 
mcol=.l; 

square*/ 

/*Population p'=.2*/ 
pmr=.2; 

smpsize=&smpln; 

/*Population p 1=.5*/ 
pmr•.5; 

NAMES=(rsq smpsize nov mcol pmr}; 
con-j(&smpln,1,1); 

/*Generate data*/ 
use pattern; 

read ALL VAR NUM INTO F; 
F=F '; 
data=rannor(j(&smpln, 3, 0)); 
data=data'; 
Z=F*data; 
Z=Z'; 
Z=conl I Z; 

x=Z [, ( 1 2 3} J; 
y=Z [, 4); 

/*Number of variables*/ 
/*Multicollinearity r */ 
/*Population multiple R 

/*Population p2= . 8*/ 
pmr-. 8; 



/•Calculate sample R square•/ 
b-inv(x'•x)•x'•y; 
yhat-x•b; 
r=y-yhat; 
sse=ssq(r); 
dfe-nrow(x)-ncol(x); 
mse-sse/dfe; 
cssy-ssq(y-sum(y)/&smpln); 
rsq-(cssy-sse)/cssy; 

/•Generate output matrix*/ 
tempdata=rsql lsmpsizel lnovl lmcoll lprnr; 

if &b=l & &i=l then outp=tempdata; 
else outp-outp//tempdata; 

lend; 
lend; 
lmend a22; 
la22; 

/*Create SAS data file•/ 
/*lib.a22, lib.a52, lib.a82*/ 
create lib.a22 from outp [colname=NAMES]; 
append from outp; 

/•finish regress module•/ 
finish; 
run regress; 
quit; • 

Note. a. To avoid repetition, the rest of the programs are omitted from the table. 

I I I 
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;\p pencli, D 

Basic SAS Program for Estimating Population Cross-Validity Coefficient (p/) 
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Multicollinearity r-.1; Population pZ...2, .5, .8; 2 predictor variable• 
options llneslze=80 nonumber nodate; 
libname lib 'c:\ping\sas\cross'; 
proc printto log='c:\ping\sas\cross\cv2abc.tmp'; 

/*Cross-validation with 2 indepent samples*/ 
/* CVA22, CVA:J2, CVA82; population r quare-.2, .5, .8; p-2; coll r-.1 */ 
/* n-20, 40, 60, 100, 200; replicate-500 */ 

data t (type-corr); 
type -•corr'; 

input-xl x2 y; 

cards; 

Insert the intercorrelation matrices 
from Appendix A 

/*Generate factor pattern*/ 
proc factor n=3 outstat=FACOUT; 
data pattern; 
set FACOUT; 

if TYPE - 'PATTERN'; 
drop _ TYPE __ NAME_; 

run; 

/*start regress module*/ 
proc iml; 
start regress; 

%macro cva22; 
%let N=250; 

%do b=l Ito 5; 
%if &b=l %then %do; %let 
%if &b=2 %then %do; %let 
Hf &b=3 %then %do; %let 
%if &b=4 %then %do; %let 
Hf &b=5 %then %do; Uet 

%do 1-1 Ito &N; 

smpln=20; 
smpln=40; 
smpln=60; 
smpln=lOO; 
smpln~200; 

%end; 
lend; 
%end; 
lend; 
%end; 

/*Define necessary variables for analysis*/ 
nov=3; 
mcol=.l; 

square*/ 

/*Population p'=.2 '•; 
pmr=.2; 

smpsize=&smpln; 

/*create intercept matrix*/ 
con=j(&smpln,1,1); 

/*create sample size matrix*/ 
smpsize=smpsize#con; 

/*Population p'=.5*/ 
pmr=.5; 

/*generate 2 groups of random data*/ 
use pattern; 
read ALL VAR NUM INTO F; 
F=F'; 
datal=rannor(j(&smpln, 3, O)); 
data2=rannor(j(&smpln, 3, 0)); 

datal=datal · ; 
data2=data2'; 

Zl=F*datal; 

/*Number of variables*/ 
/*Multicollinearity r */ 
/*Population multiple R 

/*Population p'=.8*/ 
pmr=.8; 



Z2=F*data2; 
Zl=Zl'; 
Z2=Z2'; 

/*add intercept*/ 
Zl=con I I Zl; 
Z2-cont IZ2; 

/*define dependent and independent variables*/ 
xl~Zl(,{1 2 3)]; 
yl=Zl[,4); 
x2=Z2[, (1 2 3)); 
y2=Z2[,4); 

/*calculate regression weights for each groups*/ 
bl=inv(xl'*xl)*xl ' *yl; 
b2=inv(x2'*x2)*x2'*y2; 

/*apply regression weights from one sample to another*/ 
/*calculate predicted y*/ 
/*yhatl2=predicted yl from regression weights derived from sample 2*/ 
/*yhat2l=predicted y2 from regression weights derived from sample l*/ 
yhatl2=xl*b2; 
yhat2l=x2*bl; 

/*generate output matrices with predicted and original dependent variable*/ 
outp=yhatl21 tyll lyhat211 I Y2 1 lsmpsize; 
n=nrow(outp); 

/*calculate sum of cross-product of y and predicted y */ 
yhat l 2yl=yhatl2#yl; 
sumyyl=yhatl2yl(+,J; 
yhat2ly2=yhat2l#y2; 
sumyy2=yhat2ly2(+,J; 

/*calculate sum of each column*/ 
s=outp(+,]; 
suml=s(,l]; 
sum2=s[,2); 
sum3=s(,3]; 
sum4=s(,4]; 

/*calculate sum of squares, standard deviations*/ 
ss=outp [ ##,) ; 
sq=(s##2)/n; 
ssq=ss-sg; 
v=ssq/(n-1); 
sd~sqrt (v); 
syhatl2=sd[,l]; 
syl=sd[,2); 
syhat2l=sd[,3); 
sy2=sd[,4]; 

/*calculate correlation coefficient*/ 
ssyyl=sumyyl-suml*sum2/n; 
ssyy2=sumyy2-sum3*sum4/n; 
rl=ssyyl/((n-l)*syhatl2*syl); 
r2=ssyy2/((n-l)*syhat2l*sy2); 

/*square correlation coefficient*/ 
rsql=rl# #2; 
rsq2=r2 ##2; 

/*calculate the average r square*/ 
rsqbar=(rsql+rsq2)/2; 

smpsize=&smpln; 
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nov=3; 
mcol=.l; 

/*Number of variables*/ 
/*Multicollinearity r */ 
/*Population multiple R 

square*/ 



/*Population p'-.2*/ 
pmra.2; 

/*Population p1=.5*/ 
pmr=.5; 

/*Population p'-.8*/ 
pmr=.8; 

/*create output matrix with estimated cross validity r square*/ 
tempr 2 rsqll lrsq21 lrsqbarl lsmpsizel lnovl Jmcoll lpmr; 

if &b2 l & &i=l then out=tempr; 
ei'se out=out//tempr; 

%end; 
%end; 
%mend cva22; 
%cva22; 

/*Create SAS data file*/ 
/*lib.cva22, lib.cva52, lib.cva82*/ 
create lib.cva22 from out(colname={rsql rsq2 rsqbar smpsize r.ov mcol pmr)J; 
append from out; 

/*finish regress module*/ 
finish; 
run regress; 
quit; • 

Note. a. To avoid repetition, the rest of the programs arc omitted from the table. 
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Calculating Adjusted R2 and R, 2 with Analytical Formulae with SAS 
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Multicollinearity r-.1; Population p"-.2, .5, .8; 2 predictor variable• 
;wapply correction formulas to different sample conditions 1 7 
options linesize-80; 
libname lib 'c:\ping\sas\data'; 
data lib.outa22; set lib.a22; 
/*define necessary variables*/ 
R=l-RSQ; 
N=SMPSIZE; 
P=NOV-1; 
mcol-.1; 
pmr•.2; 

/*apply analytical formulae•/ 
RSMITH-1-N*R/(N-P); 
REZEK-1-(N-l)*R/(N-P-l); 
RWHERRY-1-(N-l)*R/(N-P); 
RLORDl~l-(N+P+l)*R/(N-P-1); 
RLORD2=1-(N+P+l)*(N-l)*R/((N-P-l)*N); 
ROLKIN=l-(N-3)*R*(l+2*R/(N-P+l))/(N-P-l); 
RPAATT=l-(N-3)*R*(l+2*R/(N-P-2.3))/(N-P-l); 
RBURKET= ((N*RSQ-P)/(sqrt(rsq)*(N-P)))**2; 
RDARLIN=l-(N-l)*(N-2)*(N+l)*R/( (N-P-l)*(N-P-2)*N); 
RBROWNE1-((N-P-3)*REZEK**2+REZEK)/((N-2*P-2)*REZEK+P); 
RBROWNE2=((N-P-3)*ROLKIN**2+ROLKIN)/((N-2*P-2)*ROLKIN+P); 
RCLAUDY1=(2*sqrt(REZEK)-sqrt(RSQ))**2; 
RCLAUDY2-l-(N-l)*(N-2)*(N-l)*R/((N-P-l)*(N-P-2)*N); 
RCLAUDY3=1-(N-4)*R*(l+2*R/(N-P+l))/(N-P-l); 
RROZEl=l-(N+P)*R/(N-P); 
RROZE2=REZEK*(l+P*(l-REZEK)/((N-P-2)*REZEK))**-1; 

data lib.outa221; 

set lib.outa22; 
if smpsize-20; 
proc means data-lib.outa221; run; 

data lib.outa222; 

set lib.outa22; 
if smpsize=40; 
proc means data=lib.outa222; run; 

data lib.outa223; 

set lib.outa22; 
if smpsize=60; 
proc means data=lib.outa223; run; 

data lib.outa224; 

set lib.outa22; 
if smpsize•lOO; 
proc means data=lib.outa224; run; 

data lib.outa225; 

set lib.outa22; 
if smpsize=200; 
proc means data=lib.outa225; run; 

/*the Smith formula */ 
/*the Ezekiel formula*/ 
/*the Wherry formula*/ 
/*the Lord-1 formula*/ 
/*the Lord-2 formula•/ 
/*the Olkin formula */ 
/*the Pratt formula */ 
/*the Burket formula*/ 
/*the Darlington form*/ 
/~the Browne+Ezekiel */ 
/*the Browne+Olkin •/ 
/*the claudyl formula*/ 
/*the Claudy2 formula*/ 
/*the Claudy3 formula*/ 
/*the Rozebooml formu•/ 
/*the Rozeboom2 formu*/ 

/*output n=20 
*/ 

/*output n=40 
*/ 

/*output n=60 
*/ 

/*output n-100 
*/ 

/*output n=200 
•/ 
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App endix F 

Means and Standard Deviations of Bias Obt ained from Analytical Formulae 



Me11ns and Standard DeviatiQns Qfthe Bias Obtained frQm Anal:;{tical FQrmulae (MulticQllinearit)'.'. r =, 1) 

Nip p n pl Bsm Bue Bwh Bollc Bpra BclJ p/ Biol Blo2 Bbur Bdar Bbrl Bbr2 Bell Bcl2 Bro! Bro2 

2.5 8 20 .2 x .0158 -.0128 .0550 .0146 -.0051 .0608 .1192 -.3598 -.2977 .0701 -.6553 .0079 .0253 .0460 -.5090 -.2172 -.ocxn 
sd .2540 .2633 .2413 .2703 .2822 .2544 .1089 .4162 .3968 .2740 .5092 .1816 .1901 .1989 ·.4630 .3718 .1760 

.5 .R -.0060 -.0244 .0193 .0052 -.0035 .0343 .3165 -.1151 -.0751 .0638 -.3058 .0034 .0326 .0271 -.0211 -.0231 -.0191 
sd .2073 .2149 .1970 .2129 .2199 .2003 .1561 .3789 .3640 .2801 .4514 .2619 · .2654 .2742 .4153 .3449 .2607 

.8 x -.0098 -.0175 .0007 .0007 -.0009 .0124 .6806 -.0125 .0041 .0368 -.0916 -.0146 .0108 .0179 -.0524 .0257 -.0312 
sd .1062 .1100 .1009 .1036 .1053 .0975 .1096 .1992 .1923 .1729 .2337 .1834 .1783 .1816 .2164 .1834 .1879 

5 4 20 .2 x -.0071 -.0178 .0333 .0092 -.0051 .0557 .1592 -.2353 -.1815 .0209 -.2632 -.0069 .0126 .0003 -.1581 -.1277 -.1069 
sd .2029 .2056 .1928 .2112 .2177 .1987 .1251 .3006 .2884 .2450 .3070 .1999 .2077 .2069 .2831 .2762 .1948 

.5 ll -.0069 -.0137 .0184 .0153 .0092 .0438 .4083 -.0842 -.0504 .0125 -.1017 .0064 .0367 -.0015 -.0357 -.0166 -.0175 
sd .1936 .1961 .1839 .1939 .1984 .1825 .1590 .2987 .2879 .2508 .3044 .2504 .2508 .2546 .2832 .2772 .2516 

.8 ll -.0136 -.0164 -.0029 .0016 .0005 .0133 .7667 •.0516 -.0373 -.0201 -.0580 -.0251 -.0039 -.0270 -.0311 -.0231 -.0390 
sd .0988 .1001 .0938 . .0940 .0950 .0884 .0839 .1526 .1471 .1392 .1554 :1403 .1350 .1423 .1448 .1418 .1448 

5 8 40 .2 ll -.0031 -.0083 .0170 .0023 -.0011 .2390 .1199 -.1354 •.1100 .0143 -.1693 .0064 .0150 .0052 -.1181 .0836 -.0030 
sd .1451 .1460 .1414 .1492 .1504 .1451 .0870 .2098 .2057 .1526 .2155 .1465 .1501 .1474 .2071 .2014 .1435 

.5 ll -.0056 -.0089 .0070 .0047 .0033 .0180 .4137 -.0531 -.0371 -.0004 -.0744 -.0114 .0034 -.0144 -.0422 -.0205 -.0240 
sd .1235 .1243 .1204 .1239 .1245 , .1205 .1029 .1815 .1783 .1641 .1858 .1638 .1641 .1688 .1793 .1750 .1649 

.8 ll -.0088 -.0102 -.0036 -.0016 -.0019 .0038 .7493 -.0134 •.0068 .0025 -.0222 -.0049 .0054 -.0013 -.0089 .0001 -.0113 
sd .0653 .0658 .0637 .0638 .0639 .0620 .0606 .1031 .1014 .0984 .1053 .0998 .0980 .0996 .1019 .0997 .1012 - --

7.5 8 60 .2 .R -.OIOI -.0122 .0034 -.0058 -.0072 .0083 .1407 -.0910 -.0751 -.0107 •.0990 -.0112 -.0055 -.0211 -.0676 -.0592 -.0195 
sd .1047 .1049 .1030 .1067 .1071 .1048 .0763 .1422 .1405 .1168 .1431 .1159 .! 177 .1168 .1397 .1388 .1145 

.5 ll -.0036 -.0049 .0048 .0038 .0033 .0125 .4495 -.0400 -.0302 ·.Olli -.0450 -.0139 -.0044 -.0177 -.0254 -.0203 -.0223 
sd .0983 .0985 .0966 .0985 .0987 .0968 .0885 .1463 .1448 .1389 .1471 .1388 .1389 .1410 .1441 .1433 .1396 

.8 x -.0041 -.0046 -.0007 .0009 , .0008 .0044 .7722 -.0115 -.0075 -.0025 -.0135 -.0042 .0020 -.0041 -.0056 -.0035 -.00&2 

sd .0512 .0513 .0503 .0503 .0504 .0494 .0429 .0751 .0743 .0730 .0755 .0732 .0724 .0734 .0074 .0734 .0740 

JO 2 20 .2 x •.0157 -.0205 .0250 .0067 -.0057 .0534 .2051 -.1984 -.1487 -.0340 · .1743 -.0392 -.0172 -.0337 -.0820 -.1024 -.0528 
sd .1660 .1670 .1577 .1716 .1763 .1615 .1278 .2478 .2392 .2023 .2437 .2005 .2089 .1950 .2279 .2313 .1901 

.5 ll •.0087 -.0117 .0167 .0176 .0125 .0460 .4812 -.1007 -.0697 -.0328 -.0857 -.0190 .0113 -.0389 -.0281 -.0408 -.0450 
sd .1705 .1715 .1620 .1693 .1726 .1593 .1252 .2386 .2299 .2142 .2343 .2120 .2109 .2157 .2183 .2183 .2155 

.8 ll -.0163 -.0176 -.0055 .0005 -.0005 .0123 .7805 -.0439 -.0308 -.0177 -.0376 -.0111 .0081 -.0206 -.0131 -.0185 -.0241 
sd .0935 .0941 .0889 .0883 .0892 .0831 .0764 .1381 .1334 .1284 .1358 .1262 .1215 .1296 .1272 .1291 .1305 

(to be continued) -
'° 



Nip p n p1 Bsm Bzec Bwh Bolk Bpra Bc13 P,1 Biol Blo2 Bbur Bdtr Bbrl Bbr2 Bell Bcl2 Brol Bro2 

10 4 40 .2 .R -.0021 -.0044 .0180 .0064 .0034 .0278 .1534 -.0816 -.0584 -.0025 -.0749 .0030 .0129 •.0058 -.0300 -.0357 •. 0101 
sd .1244 .1248 .1213 .1273 .1282 .1238 .0940 .1676 .1646 .1436 .1667 .1443 .1470 .1423 .1610 .1617 .1421 

.5 .R -.0108 -.0122 .0020 .0013 .0001 .0148 .4486 •.0396 ·.0248 •.0044 -.0354 .0002 .0144 -.0098 -.0067 -.0104 -.0129 
sci .1212 .1216 .1182 .1213 .1219 .1181 .1013 .1767 .1738 .1674 .1758 .1665 .1665 .1693 .1703 .1710 .1681 

.8 .R -.0098· •.0104 -.0045 -.0018 -.002 .0036 .7815 -.0243 -.0182 -.0116 -.0225 -.0098 -.0005 -.0131 -.QI08 -.0123 •.0158 
sd .0621 .o6n .0605 .0604 .0605 .0588 .0515 .0864 .0850 .0833 .0860 .0828 .0813 .0837 .0833 .0836 .0841 

12.5 8 100 .2 .R -.0011 -.0018 .0069 .0019 .0014 .otOI .1601 -.0429 -.0341 -.0070 -.0419 -.0052 -.0017 -.0148 -.0244 •.0253 •.0114 
sd .0753 .0753 .0745 .0761 .0762 .0753 .0564 .0984 .0977 .0900 .0983 .0898 .0906 .0917 .0970 .0971 .0895 

.5 .R -.0046 -.0051 .0004 .0001 •.0001 .0053 .4656 -.0127 -.0161 -.0073 -.0211 -.0064 -.0010 .0097 -.0101 -.0106 -.0115 
sd .0726 .0727 .0189 .0727 .0727 .0719 .0553 .0974 .0967 .0949 .0973 .0978 .0948 .0955 .0960 .0961 .0953 

.8 JI •.0032 -.0034 -.0012 -.0001 -.0001 .0019 .7847 -.0086 -.0064 -.0038 -.00&4 -.0035 .0000 -.0043 ·.0039 -.0042 -.0057 
sd .0374 .0374 .0370 .0370 .0370 .0366 .0187 .0501 .0498 .0494 .OSOi .0493 .0489 .0495 .0494 .0495 .0496 

IS 4 60 .2 JI -.0006 •.0016 .0127 .0050 .0037 .0189 .1682 -.0513 -.0366 -.0072 -.0435 -.0009 .0055 -.0123 •.0148 -.0222 -.0113 · 
sd .0992 .0993 .0975 .1008 .1011 .0991 .0773 .1370 .1355 .1261 .1362 .1263 .1279 .1268 .1333 .1340 .1256 

.5 Jt -.0116 -.0122 -.0031 -.0034 -.0040 .0054 .4709 -.0352 -.0258 -.0140 -.0302 -.0092 -.0003 -.0164 -.0012 •.0166 -.0179 
sd .0969 .0970 .0953 .0970 .0972 .0953 .0689 .1314 .1299 .1272 .1306 .1265 .1265 .1279 .1277 .1284 .1276 

.8 Jt -.0024 -.0027 .0010 .0028 .0028 .0063 .7837 -.0070 -.0033 .0006 -.0050 .0026 .00&4 .0000 .0022 .0004 -.0011 
sd .0472 .0473 .0464 .0463 .0463 .0455 .0366 .0652 .0644 .0636 .0648 .0633 .0625 .0638 .0634 .0638 .0640 

20 2 40 .2 Jt •.0077 · -.0088 .0125 .0019 -.0010 .0234 .1830 .0747 -.0524 -.0177 -.0580 -.0067 .0036 -.0167 •.0154 -.0311 -.0216 
sd .1142 .1144 .1114 .I 168 .I 176 .I 137 .0844 .1470 .1444 .1325 .1451 .1345 .1370 .1320 .1402 .1420 .1322 

.5 .R •.01 i2 -.0119 .0016 · .0016 .0005 .0151 .4873 -.0507 -.0375 -.0224 -.0411 •.0214 .0014 -.0245 -.0141 -.0240 -.0256 
sd .1184 .1186 .1155 .1183 .1189 .1151 .0849 .1557 .1529 .1493 .1536 .1477 .1475 .1500 .1484 .1503 .1498 

.8 .R -.0004 -.0007 .0046 .0076 .0074 .0128 .7869 -.0082 -.0026 .0028 -.0040 .0069 .0154 .0022 .0066 .0027 .0014 
sd .0558 .0559 .0544 .0541 .0542 .0527 .0458 .0763 .0751 .0739 .0754 .0730 .0716 .0740 .0731 .0739 .0742 

25 4 100 .2 .R -.0042 -.0046 .0038 -.0010 -.0014 .0073 .1829 -.0362 -.0277 -.0138 -.0301 -.0086 -.0049 -.0168 -.0133 -.0193 -.0156 
sd .0737 .0737 .0729 .0745 .0746 .0737 .0610 .0972 .0966 .0939 .0967 .0938 .0944 .0947 .0955 .0960 .0938 

.5 JI -.0112 -.0115 -.0061 -.0063 -.0065 -.0011 .4880 -.0304 -.0250 -.0188 -.0265 -.0150 ·.0097 -.0196 -.0159 -.0197 •.0102 
sd .0709 .0709 .0702 .0709 .0710 .0702 .0567 .0930 .0924 .0915 .0930 .0912 .0912 .0917 .0914 .0918 .0917 

.8 .R -.0034 -.0034 -.0013 -.0002 -.0002 .0019 .7901 -.0058 -.0037 -.0015 -.0043 .0001 .0035 -.0017 .0000 -.0016 -.0021 
sd .0381 .0381 .0377 .0377 .0377 .037~ .0293 .0492 .0489 .0485 .0490 .0483 .0480 .0486 .0484 .0486 .0486 

(to be continued) · l'-.l 
0 



Nip p n p' Bsm Bu:c Bwh Bolk Bpra Bcl3 p,' Biol Blo2 Bbur Bdar Bbrl Bbr2 Bell Bcl2 Bro! Bro2 

25 8 200 .2 .R -.0050 -.0051 -.0009 •.0035 -.0036 .0006 .1758 -.0214 •.0172 •.0080 -.0190 -.0058 -.0041 -.0106 -.0106 -.0130 -.0094 
sd .0518 .0518 .0515 .0521 .0521 .0518 .0410 .0683 .0681 .0665 .0682 .0665 .0667 .0671 .0677 .0679 .0665 

.5 J! -.0031 -.0032 -.0005 -.0006 •.0007 .0019 .4818 -.0102 -.0076 -.0041 -.0087 •. ()()27 · .0000 -.0047 ~.()()35 -.0049 -.0052 
sd .0500 .0500 .0498 .0500 .OSOi .0498 .0405 .0666 .0664 .0660 .0065 .0659 .0659 .0661 .0661 .0662 .0661 

.8 .R -.0021 -.0021 -.001 I -.0005 -.0005 .0005 .7904 -.0026 -.0016 -.0004 -.0020 .0002 .0018 -.0006 .0001 -.0005 -.0009 
sd .0263 .0263 .0262 .0262 .0262 .0261 .0195 .0328 .0326 .0325 .0327 . . 0325 .0323 .0325 .0325 .0325 .0326 -

· 30 2 60 .2 .R -.0012 -.0017 .0121 .0048 .0036 .0188 .1944 -.0505 -.0362 -.0176 -.0386 -.0078 -.0013 •.0197 -.0109 -.0"..24 -.0195 
sd .0964 .0965 .0948 .0980 .0983 .0963 .0733 .1266 .1252 .1211 .1254 .1211 .1224 .1215 .1227 .1238 .1210 

.s .R -.0069 -.0072 .ooi5 .0015 .0010 .0103 .4928 -.0344 -.0253 -.0159 -.0269 •.0087 .0002 -.0168 -.0094 -.0166 -.0174 
sd .0957 .0957 .0941 ·.0956 .0957 .0939 .0717 .1240 .1226 .1210 · .1228 .1200 .1198 .1212 .1202 " .1212 .1212 

.8 .R -.0086 -.0087 -.0051 •.0031 -.0032 .0004 .7950 -.0179 -.0105 -.0105 -.0148 •.0074 •.0017 -.0108 -.0076 -.0106 -.0111 
sd .0495 .0495 .0486 .0485 .0486 .0477 .0325 .0637 .0622 .0622 .0631 .0616 .0607 .0622 .0616 .0622 .0623 

so 2 100 .2 x -.0079 -.0081 .0002 -.0045 -.0049 .0038 .1953 -.0360 •.0276 -.0178 -.0285 -.0109 .0074 -.0184 •. 0120 -.0194 -.0185 
sd .0703 .0703 .0696 .0711 .0703 .0703 .0523 .0896 .0890 .0876 .0891 .0875 .0881 .0875 .0879 .0885 .0876 

.5 R -.0043 -.0044 .0007 .0007 .0005 .0059 .4968 •.0216 •.0164 -.0110 -.0169 -.0064 -.0011 -.0113 -.0066 -.0112 -.0115 
sd .0722 .0722 .0715 .0722 .0722 .0714 .0536 .0930 .0924 .0917 .0925 .0912 .0912 .0918 .0913 .0918 .0918· 

.8 J! -.0046 -.0046 -.0026 -.0013 -.0014 .0007 .7955 -.0085 -.0063 -.0042 -.0065 -.0023 .0010 -.0043 -.0024 •.0042 -.0044 
sd .0372 .0372 .0369 .0368 .0368 .0364 .0283 .0489 .0486 .0483 .0487 .0480 .0477 .0483 .0480 .0483 .0483 

so 4 200 .2 x -.0028 -.0029 .0012 -.0012 •.0013 .0029 .1910 -.0180 -.0139 -.0085 -.0145 -.0052 -.0035 -.0093 -.0063 -.0098 -.0090 
sd .0500 .0500 .0497 .0503 .0503 .0500 .0376 .0644 .0642 .0636 .0642 .0635 .0637 .0638 .0638 .0640 .0636 

.5 .R -.0035 -.0035 -.0009 -.0010 -.0010 .0016 .4920 -.0106 -.0080 -.0053 •.0084 -.0031 -.0050 -.0055 -.0033 -.0055 -.0056 
sd .0487 .0488 .0485 .0487 .0488 .0485 .0371 .0642 .064 .0637 .0640 .0635 .0635 .0637 .0636 .0638 .0637 

.8 J! -.0038 -.0038 -.0028 . -.0022 -.0022 -.0012 .7975 •.0075 -.0065 -.0054 •.0066 •.0045 -.0029 -.0055 -.0046 -.0054 •.0056 
sd .0265 .0265 .0264 .0263 .0263 .0262 .0181 .0318 .0317 .0315 .0317 .0315 .0313 .0316 .0315 .0316 .0316 

-
100 2 200 .2 .R -.0003 -.0003 .0037 .0014 .0013 .0054 .1964 -.0129 •.0088 -.0044 -.0090 -.0007 .0010 •.0046 -.0009 •.0047 -.0046 

sd .0513 .0513 .0510 .0516 .0516 .0513 .0367 .0646 .0644 .0641 .0644 .0639 .0642 .0642 .064 .0642 .0641 

.5 x -.0025 -.0026 .0000 .0000 -.0001 .0025 .4981 -.0107 -.0082 -.0056 -.0083 •.0032 -.0006 -.0057 -.0032 -.0056 -.0051 
sd .0498 .0498 .0498 .0496 .0498 .0496 .0346 .0616 .0613 .0611 .0614 .0609 .0609 .0611 .()609 .0611 .0611 

.8 J! -.0022 -.0022 -.0012 -.0006 -.0006 -.0004 .7970 -.0033 •.0022 -.0012 •.0023 -.0002 .0014 -.0012 -.0002 -.0012 -.0013 

sd .0267 .0267 .2656 .0265 .0265 .0264 .0183 .0321 .0312 .0319 · .0320 .0317 .0316 .0319 .0317 .0319 .0319 

-N 



M~ans and Standard Deviations of the Bias Obtained frQm Anal:ttical Formulae (Multicollinearit:t r = ,3) 

Nip p n p' Bsm Bzce Bwh Bolk Bpra Bcl3 p,' Biol Blo2 Bbur Bdar Bbrl Bbr2 Bell Bc12 Bro! Bro2 

2.5 8 20 .2 R .0211 •.0072 .0601 .0205 .0010 .0664 .1205 -.3525 -.2909 .0630 -.6461 .0072 .0249 .0347 -.5008 -.2109 -.0021 
sd .2499 .2590 .2374 .2659 .2776 .2503 .1009 .4028 .3937 .2065 .4945 .1675 .1760 .1833 .4490 .3590 .1612 

.5 R •.0007 -.0189 .0244 .0106 .0021 .0394 .3221 -.1141 -.0745 .0610 -.3028 .0013 .0306 .0227 -.2094 •.0231 •.0212 
sd .2071 .2147 .1968 .2124 .2194 .2000 .1508 .3565 .3417 .2505 .4285 .2435 .2467 .2591 .3926 .3228 .2427 

.8 .R -.0054 -.0129 .0049 .0050 .0034 .0165 .6798 -.0048 .0115 .0431 -.0822 ·.0077 .0174 .0246 •.0439 .0326 -.0241 
sd .1039 .1076 .0987 .1009 .1025 .0950 .1243 .2025 .1961 .!794 .2347 .1901 .1849 .1875 .2185 .1880 .1945 

5 4 20 .2 .R . .0089 •.0017 .0484 .0257 .0119 .0712 .1557 -.2106 •.1578 .0262 -.2380 .0077 .0281 .0220 -.1349 -.1051 •.0039 
sd .2063 .2091 .1960 .2146 .2212 .2019 .1291 .3011 .2887 .2116 .3076 .2002 .2086 .1993 .2834 .2765 .1929 

.5 .R -.0277 -.0347 -.0013 •.0049 •.0113 .0249 .4175 •.1210 -.0859 -.02'12 -.1393 -.0271 .0039 -.0372 -.0706 -.0507 •.0521 
- . . sd .1794 .1818 .1704 .! &00 .1841 .1694 .1541 .2820 .2721 .2387 .2872 .2378 · -·-.2386 .2429 .2678 .2623 .2389 

.8 ii -.0213 •.0243 •.0102 -.0058 -.0070 .0063 .7524 ·.0475 -.0328 -.0147 -.0552 -.0197 .0019 -.0219 -.0264 -.0180 -.0340 
sd .1062 .1076 .1009 .1015 .1027 .0956 .0884 .1669 .1610 .1516 .1701 .1527 .1474 .1552 .1584 .1551 .1573 

5 8 40 .2 .R .0070 -.0122 .0131 -.0017 -.0051 .0200 .1247 •.1453 -.1198 .0051 -.1793 •.0023 .0063 -.0063 · •· I 279 •.0932 -.0116 
sd .1423 .1432 .1387 .1463 .1475 .1424 .0876 .1984 .1944 .1405 .2038 .1371 .l405 .1388 .1957 .1902 .1343 

.5 .R -.0024 -.0056 .0102 .0080 .0066 .2123 .4009 -.0443 -.0284 .0082 -.0655 -.0032 .0116 -.0061 -.0334 -.0119 -.0158 
sd .1225 .1233 .1194 .1228 .1235 .I 195 .1058 .1881 .1849 .1712 .1924 .1710 .1712 .1758 .1859 .1816 .1722 

.8 .R •.0051 •.0064 .0000 .0020 .0018 , .0074 .7527 -.0120 •.0056 .0035 -.0207 -.0037 .0064 -.0002 -.0076 .0012 -.0101 
sd .0632 .0636 .0617 .0617 .0619 .0601 .0616 .1012 .0996 .0966 .1033 .0980 .o963 .0978 .1001 .0977 .0993 

7.5 8 60 .2 ii •.0091 -.0112 .0044 -.0048 -.0062 .0093 .1312 -.0799 -.0641 .0016 -.0879 .0006 .0063 -.0082 •.0565 •.0482 •.0076 
sd .1051 .1054 .1034 .1072 .1076 .1053 .0750 .1431 .1413 .l 144 .1439 .1138 .1156 .1127 .1405 .1396 .1122 

.5 ii -.0033 •.0047 .0050 .0041 .0036 .0128 .4398 -.0300 -.0202 -.0011 -.0350 •.0038 .0056 • .rxm -.0155 -.0103 •.0124 
sd .1001 .1003 .0984 .1003 .1005 .0985 .0788 .1399 .1383 .1323 .1407 .1322 .1323 .1344 .1375 .1367 .1330 

.8 .R •.0059 -.0065 -.0025 -.0009 -.0010 .0026 .7687 -.0101 -.0011 •. 0011 ·.0122 -.0028 .0<)35 •.0026 -.0042 •.0021 -.0067 
sd .0509 .0510 .0500 .0500 .0500 . . 0491 .0428 .0749 .0728 .0728 .0753 .0731 .0722 .0732 .0737 .0732 .0738 

10 2 20 .2 .R -.0098 •.0146 .0307 .0127 .0004 .0590 .2050 •.1910 ·.1417 .861 I -.1672 -.0311 • .Qloo -.0356 •.0755 •.0957 -.0427 
sd .1729 .1739 .1642 .1783 .1831 .1678 .1281 .2436 .2347 17.96 .2393 .1972 .2042 .1946 .2230 .2266 .1947 

.5 ii -.0274 -.0305 •.0010 -.0009 •.0064 .0286 .4971 -.1393 -.1072 •.0685 -.1237 -.0542 •.0238 -.0766 -.0641 -.0772 -.0809 
sd .1730 .1940 .1643 .1720 .1754 .1619 .1231 .2419 .2329 .2168 .2375 .2145 .2136 .2196 .2210 .2246 .2180 

.8 .R -.0206 -.0219 •.0095 -.0034 -.0045 .0085 .7800 •.0486 -.0352 -.0218 -.0421 -.0151 .0044 -.0248 -.0171 -.0226 -.0283 
sd .0946 .0952 .0900 .0900 .0906 .0843 .0728 .1303 .1256 .1204 .1280 .1182 .1138 .1216 .1193 .1212 .1224 

(tQ be continued) 
N 
l-0 



Nip p n pl Bsm Bz.cc Bwh Bolk Bpra Bcl3 p,1 Biol B!o2 Bbur Bdar Bbrl Bbr2 Bell Bcl2 Bro! Bro2 

10 4 40 .2 II •. 0110 •.0134 .0092 -.0028 •.0059 .0189 .1567 -.0952 -.0717 -.0087 •.0885 -.0053 .0043 -.0139 •.0430 -.0488 •.0170 
sd .1263 .1267 .1232 .1296 .1305 .1261 .0844 .1675 .1644 .1387 .1666 ,1387 .1419 .1384 .1605 .1613 .1359 

.s .R -.0117 •.0132 .0011 .0004 •.0009 .0139 .4519 •.0440 •.0292 -.0088 -.0398 -.0042 .0101 -.0142 .. om -.0148 •.0173 
sd .1201 .1205 .1171 .1202 .1208 .1170 .0980 .1711 .1682 .1621 .1702 .1612 .1612 .1639 .1648 .1655 .1629 

.8 .R -.0047 -.0053 .0004 .0031 .0029 .0084 .7745 -.0115 -.0055 .0008 -.0098 .0026 .0117 •.0006 .0017 .0002 •.0032 
sd .0589 .0591 .0574 .0573 .0574 .0551 .0481 .0831 .0317 .0801 .0827 .0797 .0781 .0805 .0801 .0804 .0810 

12.5 8 100 .2 II -.0021 -.0028 .0059 .0008 .0003 .0090 .1535 -.0374 -.0286 -.0014 •.0364 .0005 .0040 •.0094 •.0189 •.0198 •.0057 
sd .0795 .0195 .0787 .0804 .0805 .0795 .0594 .1048 .1041 .0965 .1047 .0963 .0970 .0982 .1033 .1033 .0960 

.5 .R -.0047 -.0052 .0003 .0000 -.0002 .0051 .4657 -.0219 -.0164 •.0076 -.0213 -.0067 -.0012 -.0100 •.0103 -.0108 -.0118 
sd .0713 .0713 - · -.0706 · .0713 .0714 .0706 ·.0586 .0963 · • .0962 · .0945 .0968 .0944 .0944 .0951 · .0955 · .0956 .0948 

.8 l! -.0035 · -.0037 •.0015 -.0004 -.0004 .0167 .7873 -.0115 •.0094 -.0068 -.0113 -.0065 -.0030 -.0073 •.0069 -.0071 -.0087 
sd .0405 .0405 .0401 .0401 .0401 .0396 .0318 .0524 .0520 .0516 .0523 .0515 .051 l .0517 .0516 .0517 .0518 

15 4 60 .2 JI .0008 -.0009 .1342 .0057 .0044 .0196 .1749 ·.0572 -.0425 -.0133 -.0495 -.0071 •.0006 -.0188 -.0208 -.0282 -.0175 
sd .0948 .0949 .0932 .0964 .0967 .0947 .0761 .1337 .1323 .1234 .1329 .1236 .1250 .1242 .1302 .1209 .1229 

.5 l! -.0077 -.0084 .0007 .0004 -.0001 .0092 .4788 -.0389 -.0296 -.0179 -.0339 . -.0131 -.0040 -.0203 -.0157 -.0204 -.0218 
sd .0938 .0939 .0922 .0938 .0940 .0921 .0749 .1298 .1284 .1260 .1291 .1253 .1253 .1266 .1264 .1271 .1264 

.8 x -.0080 -.0082 -.0045 -.0026 -.0027 .0009 .7838 -.0132 -.0093 -.0053 -.01 II -.0033 .0026 -.0060 •.0037 -.0056 -.0071 
sd .0519 .0519 .0510 .0509 .0510 .0500 .0383 .0696 .0688 .0679 .0692 .0675 .0666 .0680 .0676 .0680 .0682 

20 2 40 .2 l! -.0017 -,0028 .0183 .0079 .0051 .0293 .1828 -.0679 -.0458 -.0117 -.0514 -.0005 .0100 -.0106 •,0090 •.0246 •.0153 
sd .1198 .1200 .1168 .1225 .1233 .1192 .0830 .1587 .1559 .1438 .1566 .1456 .1482 .1249 .1512 .1532 .1434 

.5 R -.0058 -.0065 .0068 .0069 .0058 .0203 .4779 -.0364 -.0224 -.0074 -.0259 .0025 .0162 -.0095 .0008 -.0090 -.0106 
sd .1244 .1246 .1213 .1243 .1249 .1210 .0892 .1715 .1686 .1647 .1693 .1630 .1628 .1655 .1638 .1658 .1652 

.8 .R -.0067 -.0070 •.0015 .0015 .0013 .0068 .7973 -.0255 -.0198 .0142 -.0212 •.0099 •.0013 .0148 •.0103 •.0143 •.0156 
sd .0620 .0620 .0604 .0602 .1603 .0586 .0442 .0844 .0829 .0815 .0833 .0804 .0789 .0817 .0805 .0816 .0818 

25 4 100 .2 .R -.0043 -.0046 .0037 •.0010 -.0015 .0072 .1780 -.0314 ·.0229 -.0091 -.0253 -.0038 -.0002 -.0120 -.0085 -.0145 -.0108 
sd .0717 .0718 .0710 .0725 .0726 .0718 .0601 .0968 .0962 .0935 .0963 .0933 .0940 .0943 .0952 .0956 .0934 

.5 l! -.0068 -.0070 -.0018 -.0019 -.0021 .0033 .4796 -.0173 -.0120 -.0058 •.0135 -.0021 .0032 -.0067 -.0029 -.0067 •. oon 
sd .0701 .0702 .0694 .0701 .0702 .0694 .0572 .0939 .0933 .0925 .0935 .0921 .0921 .0927 .0923 .0928 .0926 

.8 .R •.0051 •.0052 •.0031 -.0019 -.0019 .0002 .7903 -.0079 -.0057 -.0035 -.0062 •.0019 .0015 -.0037 •.0020 •.0036 •.0041 
sd .0365 .0365 .0361 .0361 .0361 .0357 .0280 .0486 .0483 .0479 .0484 .0477 .0474 .0480 .0477 .0480 .0480 

(to be continued) 
N 
v-l 



Nip p n p' Bsm Bzcc Bwh Bolk Bpra Bel) P( Biol Blo2 Bbur Bdu Bbrl Bbr2 Bell Bcl2 Bro! Bro2 

2S 8 200 .2 ii. •.0031 -.0033 .0009 -.0016 •.0017 .0024 .1769 •.0206 •.0163 •.0071 -.0182 •.0049 •.0032 -.0097 -.0098 -.0121 •,0085 
sd ,0579 .0579 .0576 .0583 .0583 .0580 .0426 .0728 .0725 .0706 .0726 .0705 .0708 .0712 .072 .0723 .0705 

.5 ii. -.0029 -.0031 -.0004 -.0005 ·.0006 .0020 .4795 •.0078 •.0052 -.0017 •,0064 -.0003 .0023 •.0024 -.0011 •.0026 -.0028 
sd .0495 .0495 .0493 .0495 .0496 .0493 .0418 .0659 .0657 .0653 .0658 .0652 .0652 .0654 .0654 .0655 .0654 

.8 ii. -.0019 -.0019 •.0009 -.0003 -.0003 .0007 .7930 -.0051 -.0040 •.0029 -.0045 -.0023 -.0006 -.0030 •.0024 -.0030 -.0033 
...I n.,<., n?<? m<n .02<0 .0250 .0249 .017& .0324 .0323 .0321 .0323 .0321 .0319 .0322 .0321 .0322 .0322 

30 2 60 .2 .R •.0098 -.0103 .0037 -.0039 -.0051 .0102 .1978 -.0630 -.0486 -.0293 -.0510 •.0196 -.0132 -.0295 -.0230 -.0346 •.0311 
sd .0928 .0928 .0912 .0944 .0946 .0927 .0669 .1204 .1190 .1141 .1193 .1146 .I 160 .I 138 .1166 .1177 .1140 

.5 ii. •.0089 -.0092 -.0004 -.0004 -.0009 .0094 .4966 -.0403 ·.0313 -.0218 -.0328 -.0145 -.0056 -.0227 -.0152 •.0215 •.0233 
sd .0889 .0889 .0874 .0888 · ·.0890 · .0873 .0656 .I 176 .I 163 .1147 ;1165 · .I 138 .1137 .1149 .1140 · .I 150 .1149 

.8 ii. •.0001 -.0011 .0024 .0044 .0043 .0078 .791 I -.0058 -.0022 .0013 -.0028 .0043 .0099 .0011 ,0041 .0013 .0007 
sd .0503 .0504 .0495 .0494 .0494 .0485 .0364 ,0677 ,0069 .0661 .0671 .0655 .0647 .0662 .0656 .0662 .0063 

so 2 JOO .2 ii. .0020 .0000 .0082 .0037 ,0033 .0119 .2013 -.0335 •.0252 -.0156 •.0261 -.0088 -.0051 •.0166 -.0097 -.0171 -.0163 
sd .0700 .0700 .0693 .0708 .0708 .0700 .OSSO .0903 .0897 .0886 .0898 .0883 ,0889 ,0888 .0887 .0892 .0886 

.5 .R -.0094 -.0095 -.0043 •.0043 -.0045 .0009 .4912 -.0213 -.0160 -.0106 •.0166 -.0059 •,0007 -.0109 -.0062 -.0108 -.Olli 
sd .0695 .0695 .0688 .0695 .0695 .0688 .0531 ,0895 .0889 .0883 .0890 .0878 .0878 .0883 ,0878 .0883 .0883 

.8 .R -.0043 -.0043 -.0023 -.0011 -.001 I .0010 .7954 -.0080 •.0059 -.0038 •.0061 -.0019 .0015 -.0039 -.0019 •.0039 •.0040 
st! .0364 .0364 .0360 .0360 .0360 .0356 .0265 .0465 .0462 .0459 ,0462 .0456 .0453 ,0459 .0456 .0459 .0459 

50 4 200 .2 .R •.0025 -.0025 .0015 -.0009 -.0010 .0032 .1978 -.0246 •.0204 -.0150 -.0210 -.0117 -.0100 -.0158 -.0128 -.0163 -.0155 
sd .0542 .0542 .0539 .0545 .0545 .0542 .0416 .0682 .0680 .0673 .0680 .0672 .0675 .0615 .0676 .0677 .0673 

.s .R .0008 .0007 .0033 .0033 .0032 .0058 .4961 -.0104 -.0078 -.0051 •.0082 -.0029 -.0003 •,0053 •.0031 •.0053 •.0054 
sd .0496 .0496 .0494 .0496 .0496 .0494 .0353 .0634 .0632 .0630 .0633 .0628 .0628 .0630 .0628 .0630 .0630 

.8 .R -.0003 -.0003 .0007 .0013 .0013 .0023 .7967 ·.0030 •.0020 •.0010 -.0021 -.0001 .0016 •.0010 -.0001 • .()()10 -.0011 
sd .0241 .0241 .0240 .0240 .0240 .0239 .0182 .0302 .0301 .0300 .0301 .0299 .0298 .0300 .0299 .0300 .0299 

100 2 200 .2 ii. -.0019 -.0020 .0021 -.0003 -.0004 .0038 .1983 •.0164 -.0123 -.0079 -.0125 -.0042 -.0025 -.0082 -.0044 -.0083 •,0081 
sd .0505 .0505 .0503 .0508 .0508 .0505 .0365 .0646 .0644 .0641 .0644 .0639 .0641 .0641 .0640 .0642 .0641 

.s ii. .0005 .0005 .0030 .0031 .0030 .0056 .4978 -.0074 •.0048 •,0022 -.0049 .0001 .0027 -.0023 .0001 -.0023 •.0024 
sd ,0518 .0518 .0516 . .0518 .0518 .0516 .0378 .0665 .0663 .0661 .0663 .0659 .0659 .0661 .0659 .0661 .0661 

.8 .R .0004 .0004 .0014 .0020 .0020 ,0030 .7976 -.0012 -.0002 ,0008 •.0003 .0018 .0034 .0008 .0017 .0008 .0007 
sd .0266 .0266 .0265 .0265 .0265 .0263 .0176 .0326 .0325 .0324 .0325 .0323 .0322 .0324 .0323 .0324 .0324 

-N 
.J:>. 



Means and Standard Deviations of the Bias Obtained from Analytical Formulae (Multicollinearity r = .5) 

Nip p n pl Bsm Bue Bwh Bollc Bpra Bd3 P.' Biol Blo2 Bbur Bdar Bbrl Bbr2 Bell Bcl2 Bro! Bro2 

2.5 8 20 .2 .R .0031 -.0259 .0429 .0010 -.0194 .0480 .1085 -.3691 -.3061 .0758 -.6694 .0148 .0315 .0555 -.5208 -.2242 .0075 
sd .2580 .2673 .2451 .2750 .2872 .2588 .1022 .4245 .4047 .2549 .5194 .1746 .1&43 .1891 ;4723 .3792 .1672 

.5 .R -.0040 •.0223 .0212 .0069 -.0019 .0359 3255 -.1228 -.0829 .0579 -.3128 -.0013 .0276 .0316 •.2187 •.0312 -.0232 
sd .2177 .2257 .2069 .2241 .2317 .2109 .1620 .3828 .3673 .2652 .4585 .2552 .2596 .2625 .4207 .3473 .2531 

.8 .R -.0101 •.0178 .0004 .0004 -.0013 .0121 .6732 -.0055 .0111 .0439 -.0&47 -.0072 .0180 .0249 •.0455 .0327 -.0239 

"" .10R7 .1127 .1033 .1058 .1076 .0996 .1236 .2095 .2026 .1838 .2438 .1940 .1890 .1927 .2266 .1939 .1985 

5 4 20 .2 .R •.0084 -.0192 .0320 .0080 -.0062 .0546 .1463 -.2242 -.1703 .0217 -.2522 .0014 .0212 .0101 -.1469 -.1164 -.0096 
sd .1950 .1976 .1853 .2033 .2097 .1913 . 1167 .2829 .2711 .1924 .2891 .1822 .1906 . .1850 .2660 .2594 .1751 

-.5 .R -.0052 -.0119 · .0200 .0173 .0114 .0457 .4260 ·-.0997 · -.0660 -.0045 •.1172 -.0112 .0196' ·-.0215 •.0514 ·- .0323 -.0356 
sd .1828 .1852 .1736 .1830 .1870 .1721 .1531 .2821 .2719 .2388 .2874 .2374 .2378 .2415 .2675 .2619 .2389 

. . 8 .R -.0141 -.0169 -.0034 .0012 .0000 .0129 .7627 -.0481 -.0338 -.0166 -.0555 -.0216 -.0003 .023S -.0276 -.0196 -.0356 
sd .0970 .0983 .0922 .0923 .0934 .0869 .0813 .1528 .1474 .1394 .1557 . .1405 .1353 .1425 .1450 .1420 .1450 

s 8 40 .2 .R -.0085 -.0137 .0117 -.0032 -.0066 .0185 .1331 -.1555 •.1299 -.0020 -.1896 -.0110 •.0023 -.0164 -.1381 -.1033 -.0201 
sd .1405 .1414 .1370 .1447 .1459 .1408 .0926 .1982 .1943 .1454 .2034 .1479 .1411 .1403 .1956 .1903 .1356 

.5 .R -.0098 -.0131 .0029 .ooos -.0009 .0140 .4070 -.0517 -.0356 .0021 -.0732 -.0093 .0055 •.0124 -.0407 -.0188 -.0220 
sd .1208 .1215 .11,77 .1213 .1219 .1180 .1108 .1815 .1785 .1650 .1856 .1648 .1651 .1693 .1794 .1754 .1658 

.8 .R •.0079 •.0093 •.0027 -.0007 -.0010 .0047 .7526 -.0156 -.0090 .0002 -.0243 •.0071 .0031 -.0035 -.011 l •.0022 •.0135 
sd .0646 .0651 .0630 .063 .0633 .0614 .0629 .1046 .1030 .0999 .1068 .1013 .0996 .1012 .1035 .1013 .1027 

7.5 8 60 .2 .R -.0024 •.0045 .0110 .0020 .0006 .1601 .1300 -.0708 -.0552 .0066 -.0788 .0061 .0119 •.0064 -.0476 -.0394 •.0024 
sd .1056. .1059 .1039 .1076 .1079 .1057 .0744 .1398 .1381 .1162 .1407 .1153 .1171 .1172 .1372 .1363 .1141 

.s .R .0001 •.0012 .0084 .0075 .0070 .0162 .4450 -.0312 -.0214 -.0027 -.0362 •.0054 .0041 -.0092 •.0168 -.0116 •.0139 
sd .0990 .0992 .0973 .0991 .0993 .0974 .0774 .1405 .1389 .1330 .1413 .1328 .1329 .1351 .1382 .1373 .1337 

.8 .R -.0043 -.0048 -.0009 .0007 .0006 .0042 .7694 -.0089 -.0049 .0001 -.0109 •.0017 .0046 -.0015 -.0030 •.0009 -.0056 
sd .0489 .0481 .0481 .0481 .0481 .0472 .0434 .0683 .0676 .0664 .0687 .0667 .0659 .0668 .0672 .0668 .0674 

10 2 20 .2 .R .0022 •.0025 .0421 .0254 .1346 .7093 .1796 -.ISi i -.1025 .0436 •.1276 .0021 .0251 -.0054 •.0372 •.0572 -.0136 
sd .1668 .1678 .1585 .1720 .1766 .1619 .1214 .2339 .2253 .5457 .2297 .1899 .1968 .1866 .2139 .2174 .1863 

.s .R •.0196 -.0226 .0064 .0067 .0013 .0357 .4500 -.0827 -.051 I -.0127 -.0674 .0012 .0313 •.0185 •.0086 -.0216 •.0250 
sd .1781 .1792 .1692 .1768 .1803 .1664 .1356 .2621 .2528 .2366 .2576 .2342 .2329 .2378 .2407 .2444 .2381 

.8 .R •.0214 •.0227 •.0104 •.0043 •.00.53 .0077 .7919 •.0615 -.0481 •.0347 ·.OSSO •.0279 •.0084 -.0376 -.0300 -.0355 •.0412 
ad .0977 .0983 .0928 .0925 .0934 .0870 .0661 .1368 .1316 .1261 .1343 .1236 .1185 .1274 .1248 .1268 .1282 

(to be continued) N 
V, 



Nip p n p1 Bsm Bzcc Bwh Bolk Bpra Bcl3 P.1 Biol Blo2 Bbur Bdar Bbrl Bbr'.2 Bell Bcl2 Bro! Bro2 

10 4 40 .2 lt -.0145 -.0169 .0058 -.0064 -.0096 .0154 .1665 -.1091 -.0855 •.0247 •.1023 -.0203 -.0108 •.0328 -.0567 -.0625 -.0326 
sd .1217 .1220 .1186 .1247 .1256 .1213 .0985 .1686 .1657 .1452 .1678 .1451 .1477 .1459 .1623 .1630 .1431 

.5 lt -.0107 -.0122 .0020 .0013 .0001 .0148 .4630 -.0540 -.0392 -.0188 -.0497 -.0142 .0001 -.0242 ,.2111 -.0248 -.0272 
sd .1199 .120:Z .I 169 .1200 .1206 .I 167 .1065 .1722 .1695 .1633 .1715 .1625 .16:ZS .1651 .1662 .1669 .1640 

.8 lt -.0089 •.0095 -.0036 -.0009 -.0011 .0045 .7724 -.0141 -.008) -.0016 -.0124 .0003 .0095 -.0030 •,0007 -.0022 -.0057 
sd .0587 .0589 .0573 .0571 .0572 .0556 .0493 .0872 .0858 .0841 .0868 .0837 .0822 .0846 .0841 .0845 .0850 

12.5 8 100 .2 ii .0000 -.0001 .0080 .0029 .0025 .OJ 11 .1597 -.0413 .0325 -.0055 -.0403 -.0036 -.0001 -.0131 -.0229 •,0237 -.0098 
sd .0770 .0770 .0762 .0079 .0780 .0771 .0569 .0976 .0969 .0889 .0975 .0887 .0894 .0901 .0962 .0962 .0883 

.5 R .0003 -.0001 .0053 .0050 .0048 .0101 .4614 -.0121 -.0066 .0021 -.0114 .0030 .0084 -.0002 -.0006 -.0011 -.0021 
sd .0750 .0751 .0743 · ·· .01so·- ··.0151 .0743 .0589 .1025 · .1018 · .1000 · - .1024 .0999 .0999 .1007 · .1011 .1012 ·- ·:)004 · 

.8 R -.0022 -.0023 -.0001 .0009 .0009 .0030 .7868 -.0096 -.0074 -.0048 •.0094 -.0045 -.0010 -.0053 -.0050 -.0052 -.0067 
sd .0371 .0371 .0367 .0367 .0367 .0363 .0258 .0482 .0479 .0474 .0482 .0474 .0470 .0475 .0475 .0475 .0477 

JS 4 60 .2 ii .0020 .0010 .0153 .0076 .0064 .2151 .1734 -.0536 -.0390 •.0092 -.0459 -.0031 .0034 •.0148 -.0173 -.0246 -.0133 
sd .0986 .0970 .0970 .1003 . 1006 .0986 .0831 .1403 .1389 .1293 .1396 . .1296 .1311 .1303 .1367 .1375 .1288 

.5 R -.OOG3 -.0069 .0021 .0018 .0013 .0105 .4787 -.0372 -.0279 -.0163 -.0323 ' -.0 I 15 -.0024 -.0187 -.0141 -.0188 -.0201 
sd .0994 .0995 .0977 .0994 .0996 .0976 .0748 .1285 .1271 .1244 .1277 .1238 .1237 .1251 .1249 .1256 .1249 

.8 ii. -.0100 -.0103 -.0065 -.0046 -.0047 -.0010 .7873 -.0189 -.0151 -.0110 -.0169 -.0090 -.0030 -.0117 -.0094 -.0113 .0128 
sd .0482 .0483 .0474 .0473 .0474 ' .0465 .0387 .0662 .0655 .0647 .0658 .0643 .0635 .0648 .0644 .0648 .0650 

20 2 40 .2 JI -.0136 -.0147 .0067 -.0042 -.0071 .1756 .1838 -.0821 .0597 -.0257 -.0653 -.0139 -.0037 -.0267 -.0223 -.0381 •.0292 
sd .1148 .1149 .1119 .1174 .1181 .1.142 .0839 .1496 .1470 .1367 .1476 .1380 .1404 .1369 .1427 .1445 .1363 

.5 R -.0203 -.0210 -.0073 -.0074 -.0086 .0063 .4864 -.0608 •.0464 -.0310 -.0500 -.0208 -.0069 -.0331 -.0225 -.0326 -.0342 
sd .I 155 .1157 .1126 .1154 .1160 .1123 .0811 .1562 .1534 .1499 .1541 .1482 .1480 .1505 .1490 .1508 .1503 

.8 ii -.0058 -.0061 -.0007 .0023 .0021 .0077 .7920 -.0193 -.0136 •.0080 -.0150 -.0038 .0049 -.0086 -.0041 -.0081 •.0094 
sd .0601 .0601 .0586 .0584 .0585 .0568 .0438 .0796 .0782 .0768 .0786 .0758 .0744 .0770 .0760 .0769 .0772 

25 4 JOO .2 lt -.0015 -.0019 .0065 .0018 .0013 .0100 .1797 -.0301 -.0216 -.0075 -.0240 -.0023 .0013 -.0097 •.0073 -.0132 -.0093 
sd ,0755 .0755 .0747 .0763 .0764 .0956 .0580 .0950 .0944 .0909 .0946 .0910 .0917 .0914 .0933 .0938 .0909 

.5 lt -.0016 -.0019 .0034 .0033 .0031 .0084 .4827 -.0150 -.0097 -.0035 -.0111 .0001 .0054 -.0044 -.0007 -.0044 -.0050 
sd .0742 .0742 .0734 .0742 .0742 .0734 .0556 .0966 .0959 .0950 .0961 .0946 .0946 .0952 .0949 .0953 .0952 

.8 R -.0031 -.0032 -.0011 .0001 .0001 .0216 .7909 -.0644 -.0043 -.0021 -.0049 -.0005 .0028 -.0023 -.0007 -.0022 -.0027 
sd .0392 .0392 · .0388 .0387 .0388 .0384 .0271 .0479 .0476 .0472 .0477 .0470 .0466 .0473 .0470 .0472 .0473 

(to be continued) -Iv 
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Nip p n p' Bsm Bzoc Bwh Bolk Bpra Bcl3 p/ Biol Dlo2 Bbur Bdar Bbrl Bbr2 Bell Bcl2 Bro! Bro2 

25 8 200 .2 lt -.0010 -.0012 -.0012 .0030 .0005 .0046 .1761 -.0175 -.0133 -.0043 -.0152 -.0021 -.0004 -.0068 -.0068 -.0092 -.0057 
sd .0530 .0530 .0530 .0527 .0533 .0533 .4087 .0690 .0687 .0671 .0688 .0670 .0673 .0678 .06S4 .0685 .0671 

.5 lt -.0015 -.0016 .0010 .0009 .0008 .0034 .4824 -.0093 -.0066 -.0032 -.0078 -.0018 .0008 -.0038 s.0026 -.0040 -.0043 
sd .0546 .0546 .0543 .0546 .0546 .0543 .0374 .0692 .0689 .0685 .0691 .0684 .. 06S4 .0686 .0686 .0687 .0686 

.8 lt -.0022 -.0022 -.0012 -.0006 -.0006 .0004 .7941 -.0064 -.0054 -.0042 -.0058 -.0036 -.0020 -.0044 -.0037 -.0043 -.0047 
sd .0256 .0256 .0255 .0255 .0255 .0253 .0195 .0344 .0343 .0341 .0343 .0341 .0340 .0342 .0341 .0342 .0342 

30 2 60 .2 lt -.0032 -.0036 .0102 .0029 .0017 .1688 .1911 -.0492 -.0349 -.0164 -.0373 -.0065 .0001 -.0181 -.0096 -.0210 -.0182 
sd .0939 .0939 .0923 .0955 .0958 .0938 .0693 .1200 .1186 .1 149 .1189 .1148 .I 161 .I 156 .1163 .1173 .1148 

.5 lt -.0022 -.0025 .0062 .0063 .0058 .0150 .4884 -.0249 -.0160 -.0067 -.0175 .0005 .0095 -.0075 -.0001 -.0073 -.0081 
·sd- .0925 .0926 .0910 .0925 .0927 .0909 · .0721 .1235 .1222 .1206 .1224 .1196 .1195 ·.1208 .1198 .1209 .1208 -

.8 lt -.0081 -.0082 -.0046 -.0026 -.0027 .0009 .7919 -.0143 -.0106 -.0069 -.0112 -.0038 .0019 -.0072 -.0040 -.0070 -.0075 
sd .0514 .0514 .osos .0504 .0504 .0495 .3575 .0671 .0663 .0656 .0665 .0650 .0641 .0657 .0650 .0656 .0657 

so 2 100 .2 ii .0105 .0104 .0184 .0141 .0137 .0222 .1948 -.0164 -.0082 .0013 -.0090 .0080 .0118 .0003 .0071 -.0001 .0006 
sd .0757 .0757 .0749 .0765 .0766 .0757 .0536 .0951 .0944 .0931 .0945 .0928 .0935 .0934 .0932 .0938 .0931 

.5 lt -.0027 -.0028 .0023 .0023 .0021 .007~ .4926 -.0158 -.0105 -.0052 -.0110 -.0001 .0047 -.0055 -.0078 -.0054 -.0057 
sd .0701 .0701 .0694 .0701 .0701 .0693 .0520 .0887 .0881 .0874 .0882 .0870 .0869 .0875 .0870 .0875 .0875 

.8 ii -.0021 -.0021 -.0001 .0011 .0011 .0032 .7960 -.0072 -.0051 -.0030 -.0053 -.0012 .0021 -.0031 -.0012 -.0031 -.0033 
sd .0367 .0367 .0363 .0363 .0363 .0359 .0264 .0461 .0457 .0454 .0458 .0451 .0448 .0454 .0452 .0454 .0455 

so 4 200 .2 ii -.0023 -.0024 .0017 -.0007 -.0008 .0034 .1909 -.0174 -.0133 -.0079 -.Oi 39 -.0046 -.0029 -.0087 -.0057 -.0092 -.OOS4 
sd .0522 .0522 .0519 .0525 .0525 .0522 .0395 .0686 .0684 .0677 .0684 .0676 .0679 .0679 .0680 .0682 .0678 

.5 lt -.0008 -.0009 .0017 .0016 .0016 .0042 .4929 -.0089 -.0063 -.0036 -.0067 -.0014 .0012 -.0038 -.0016 -.0038 -.0039 
sd .0489 .0489 .0486 .0489 .0489 .0486 .0388 .0640 .0638 .0635 .0638 .0634 .0634 .0635 .0634 .0636 .0635 

.8 lt -.0022 -.0022 -.0012 -.0006 -.0006 .0004 .7968 -.0051 -.0041 -.0030 -.0042 -.0021 -.0005 -.0031 -.0022 -.0030 -.0032 
sd .0261 .0261 .0259 .0259 .0259 .0258 .0186 .0331 .0330 .0329 .0331 .0328 .0327 .0329 .0328 .0329 .0329 

100 2 200 .2 lt -.0026 -.0027 .0014 -.0010 -.0011 .0031 .1960 -.0148 -.0107 -.0063 -.0109 -.0025 -.0008 -.0065 .0028 -.0066 -.0065 
sd .0530 .0530 .0527 .0533 .0533 .0530 .0396 .0663 .066 1 .0658 .0661 .0656 .0659 .0659 .0657 .0659 .0658 

.5 lt -.0003 -.0003 .0022 .0022 .0022 .0048 .4983 -.0087 -.0061 -.0035 -.0062 -.0011 .0014 -.0036 -.0012 -.0036 •.0036 
sd .0517 .0517 .0514 .0517 .0517 .0514 .0370 .0636 .0634 .0632 .0634 .0630 .0630 .0632 .0630 .0632 .0632 

.8 lt -.0012 -.0012 -.0002 .0004 .0004 .0014 .7994 -.0047 -.0037 -.0027 -.0037 -.0017 -.0001 -.0027 -.0017 -.0027 -.0027 
id .0259 .0259 .0258 .0257 .0257 .0256 .0180 .0323 .0322 .0321 .0322 .0320 .0319 .0321 .0320 .0321 .0321 

-N 
--..J 



Note. Nip: Nip Ratio. p: Number of predictor variables. n: Sample Size. p2: Squared population multiple correlation 
coefficient. Smr: Squared sample multiple correlation coefficient Bsm: Bias for the Smith formula. Bez.e: Bias 
for the Ezekiel formula. Bwh: Bias for the Wheny formula. Bolk: Bias for the 01.kin and Pratt formula. Bpra: 
Bias for the Pratt estimation of the 01.kin/Pratt formula. Bcl3: Bias for the Claudy-3 formula. p/: (Estimated) 
population squared cross-validity coefficient Bio I: Bias for the Lord formula-I. Blo2: Bias for the Lord formula -
2. Bbur: Bias for the Burket formula. Bdar: Bias for the Darlington/Stein formula. Bbr 1: Bias for the Browne 

... formula with p
2 

estimated by the Ez.ekiel formula. Bbr-1: Bias for the Browne formula with p2 estimated by the 
Olk.in/Pratt formula. Bell: Bias for the Claudy formula-I. Bcl2: Bias for the Claudy fonnula-2. Bro 1: Bias for the 
Roz.eboom formula-I. Bro2: Bias for the Roz.eboom formula -2. 
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