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ABSTRACT

Estimating R Shrinkage in Multiple Regression:

A Comparison of Different Analytical Methods

by

Ping Yin, Master of Science

Utah State University, 1999
Major Professor: Xitao Fan, Ph.D.
Department: Psychology

This study investigated the effectiveness of various analytical methods used for

estimating R’ shrinkage in multiple regression analysis. Two categories of analytical
formulae were identified: estimators of the population squared multiple correlation
coefficient (p?), and estimators of the population cross-validity coefficient (p.?). To avoid
possible confounding factors that might be associated with a real data set such as data
nonnormality, lack of precise population parameters, different degrees of multicollinearity
among the predictor variables, and so forth, the Monte Carlo method was used to simulate
multivariate normal sample data, with prespecified population parameters such as the
squared multiple correlation coefficient (p?), number of predictors, different sample sizes,
known degree of multicollinearity, and controlled data normality conditions. Five hundred

replicates were simulated within each cell of the sampling conditions. Various analytical

formulae were applied to the simulated data in each sampling condition, and the “adjusted"




i
coefficients were obtained and then compared to their corresponding population
parameters (p? and p_’).

Analysis of the results indicates that the currently most widely used (in both SAS
and SPSS) “Wherry” formula is probably not the most effective analytical formula in
estimating p’. Instead, the Pratt formula appeared to outperform other analytical formulae
across most of these sampling conditions. Among the analytical formulae designed to
estimate p.’, the Browne formula appeared to be the most effective and stable in
minimizing statistical bias across different sampling conditions. The study also concludes
that it is the n/p (sample size/number of predictor variables) ratio that affects the
performances of these analytical formulae the most; different degrees of multicollinearity
among predictor variables do not have dramatic influence on the performances of these
analytical formulae. Further replications on both real and simulated data are still needed to

investigate the effectiveness of these analytical formulae.

(136 pages)
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CHAPTER I

INTRODUCTION AND PROBLEM STATEMENT

To answer many research questions in the social and behavioral sciences, it is
often useful to examine the relationship between a dependent (or criterion) variable and a
set of independent (or predictor) variables at the same time. Statistically, with multiple
regression, a dependent variable can be predicted from a set of independent variables. To
do so, a linear combination of the independent variables i1s maximally correlated with the
dependent variable. Ordinary least squares (OLS) is a method widely used to minimize
the sum of squared errors of prediction, which is equivalent to maximizing the correlation
between the observed and the predicted dependent variable. The maximized Pearson
correlation coefficient between the dependent variable and the set of independent variables
is called the multiple R (Stevens, 1996, p. 72).

In the process of optimizing the weighting of the independent variables for a
sample, sampling chance or random error tends to be capitalized. This optimizing
process from which the multiple regression equation is derived causes the sample multiple
correlation coefficient (R) to be systemically higher than the corresponding population
parameter p. When the equation is applied to an independent sample other than the one
from which the equation is obtained (i.e., cross-validation), the predictive power drops
off. This phenomenon is what the term “statistical bias” in multiple regression refers to
(Glass & Hopkins, 1996, Stevens, 1996). The smaller the sample size and the more

independent or predictor variables used, the greater the shrinkage in sample multiple R

when applied to a new sample (Cohen & Cohen, 1983; Stevens, 1996).
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To determine the generalizability or the predictive power of a sample regression
equation, different approaches of model validation have been developed (Cohen & Cohen,
1983; Darlington, 1968; Herzberg, 1969). There are two major categories: empirical
methods and analytical methods. The empirical methods usually involve the estimation of
average predictive power of a sample regression equation on other samples (cross-
validation). Typical empirical methods for this purpose are data splitting, multicross-
validation, jackknife, and bootstrap methods (Ayabe, 1985; Cummings, 1982; Kromrey &
Hines, 1995; Krus & Fuller, 1982). Analytical methods include several analytical
correction formulae for adjusting the statistical bias and yield corrected R’. Some major
correction formulae designed for this purpose are the Smith formula (presented by
Ezekiel, 1929), the Ezekiel formula (Ezekiel, 1929), the Darlington/Stein formula
(Darlington, 1968; Stein, 1960), the Browne formula (1975), the Olkin/Pratt formula
(1958), the Nicholson/Lord formula (Lord, 1950; Nicholson, 1960), and the Wherry
formula (1931).

However, there is little consensus in the literature on which method is most
appropriate under what circumstances for estimating “statistical bias” in multiple
regression. Some studies suggest that the Browne formula may be superior to other
estimates for estimating shrinkage in multiple regression (Kromrey & Hines, 1996), while
other studies suggest that both the Nicholson/Lord formula and the Olkin/Pratt formula
work equally well (Huberty & Mourad, 1980). Also, there are studies suggesting

multicross validation “to be the method of choice” (Ayabe, 1985, p. 450). Few studies

had specifically investigated these inconsistencies.
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Several factors contribute to the inconsistent findings. In the literature,
considerable confusion exists over various analytical formulae. For example, in several
studies the Ezekiel formula was mistakenly cited as the Wherry formula (Ayabe, 1985;
Kennedy, 1988, Krus & Fuller, 1982; Schmitt, 1982; Stevens, 1996). In other studies,
authors failed to distinguish between p* (the population squared multiple correlation
coefficient, or the population coefficient of determination) and p_* (the population squared
multiple correlation coefficient obtained with a specific sample equation, or the coefficient
of cross-validation). Such distinction between the two parameters is important because an
analytical method for shrinkage estimate of one of the two parameters might not be an
accurate estimate for the other.

Beyond those discrepancies, there are some problematic methodological issues for
estimating statistical bias in multiple regression. One problematic issue is that different
studies have employed different types of shrinkage estimates: one study only used
analytical formulae (Uhl & Eisenberg, 1970), while other studies used both analytical and
empirical methods (Claudy, 1978; Huberty & Mourad, 1980; Kromrey & Hines, 1996).
Different conclusions might have been drawn due to the limited shrinkage estimates that
an individual study utilized. Another problematic issue concerns using real data to
evaluate the performance of different estimating methods. One major limitation with real
data set is that there might be a combination of confounding factors that the researcher
could not control, such as different forms of data nonnormality, lack of precise population

parameters, different degrees of multicollinearity among the predictor variables, and so

forth. Therefore, a better assessment of the performance of different analytical methods




would be to use simulated data with prespecified parameters, known degree of
multicollinearity, and controlled data normality conditions.

Because of time constraints and project manageability, the present study focused
on comparing the effectiveness of different analytical formulae in estimating shrinkage in
multiple regression analysis. More specifically, the objectives in the present study were:

1. To compare the accuracy and usefulness of various analytical formulae for
estimating p° (the population squared multiple correlation coefficient).

2. To compare the accuracy and usefulness of various analytical formulae for
estimating p_’ (the population squared coefficient of cross-validation).

3. To assess the effects of sample size (»), number of predictor variables (p), the

n/p ratio, and the degree of multicollinearity among the predictors on the accuracy and

variability of the performances of the analytical formulae in estimating R* shrinkage.




CHAPTERII

LITERATURE REVIEW
Multiple Regression

In multiple regression, the linear relationship between one dependent variable and a
set of independent variables is being modeled. The general multiple regression model with
p independent variables could be explained as:

Y= Bor BXy+ B+ Bl + . + B A+ € [1]
where p stands for the number of predictors, {3, is the regression constant, f3,,..., 3, are
population regression weights to be estimated, and ¢, is the error of prediction.

In the model above, the criterion of least squares is used to establish the regression
line, in which the sample regression parameter estimates (b, and b,,..., b,) are selected so
that the sum of squared residuals (e, ), that is, the sample counterpart of the population
error term €; , is as small as possible. Such a procedure minimizes the sum of squared
errors of prediction, which is equivalent to maximizing the correlation between the
observed dependent variable (Y, ) and the predicted value Y, (Stevens, 1996). The
multiple R is a measure of association between the dependent variable and a set of two or
more independent variables. The coefficient of determination (R”) measures the

proportion of total variance in the predicted variable that is associated with the set of

predictor variables in the regression model (Stevens, 1996).




Statistical Bias

There are two major reasons for researchers to apply the multiple regression
procedure (Claudy, 1978): (a) to estimate the population multiple correlation coefficient
from a sample and (b) to predict the same criterion variable for new samples from the
same population other than the one from which the regression weights are derived. It has
long been recognized by quantitative researchers that when a multiple correlation
coefficient is derived from a given sample, its value tends to be “deceptively” large, and it
is a “positively biased” estimate of the population multiple correlation coefficient (Cohen
& Cohen, 1983; Larson, 1931). Furthermore, when such a multiple regression equation is
applied to an independent sample other than the original one, it usually would not fit a new
sample as well as it did for the sample from which it was derived (Cohen & Cohen, 1983;
Larson, 1931; Stevens, 1996). If the regression equation from a sample could neither
estimate the population parameter accurately nor predict well when applied to other
samples, the purposes of multiple regression are not fulfilled. Corresponding to the two
research purposes of multiple regression, there are also two types of “shrunken R”s
discussed in the literature. These two types will be described in the following section.
Estimates of Population Multiple
Correlation Coefficient (p)

One type of shrinkage occurs when estimating the population p* from a sample R’,

For this purpose of multiple regression, a linear model is utilized to model the relationship

between a dependent variable Y and the optimal linear composite of p independent




variables X, X,, ..., X,, (which could also be represented by the vector variate X) in the
population as a whole. Matrix algebra gives a compact explanation of multiple regression
model (Stevens, 1996):

Y=XB +¢€ (2]
where Y is the vector of the criterion variable, X is the #» x ( p + /) matrix, with one
intercept and p independent variables, 8 is the vector of regression weights, and € is the
vector of errors.

OLS is the statistical principle widely used to model the linear relationship between
the dependent variable and the set of independent variables. One of the basic assumptions
of the multiple regression model is that the values of the independent variables are known
constants and fixed by the researcher prior to the experiment. Only the dependent variable
is free to vary from sample to sample. Residuals in the regression model are assumed to
be i.i.d.: (a) identically distributed with mean of zero and equal variance, (b) independent
to each other, and (c) normally distributed (Hamilton, 1991). This widely used regression
model is also called the fixed linear regression model (Cohen & Cohen, 1983; Park &
Dudycha, 1974).

However, in applied situations in social and behavioral sciences, those assumptions
are rarely met completely: the values of independent variables are rarely fixed by the
researchers, and they are also subject to random errors. Therefore, Park and Dudycha
(1974) suggested a second regression model for applications in the behavioral sciences,

which is called the random model (or correction model). In this model, the independent

variables are allowed to vary freely, and the joint distribution of both dependent and
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independent variables is multivariate normal. However, this random model is so complex
that more research is needed before it can be accepted as the commonly used fixed linear
regression model. Therefore, the fixed model is usually applied even if the assumptions
are not met completely (Claudy, 1978). Such applications of the fixed regression model
with assumptions violated would cause “over-fitting” because of the random error
introduced from the less-than-perfect data. Also, the sample multiple correlation
coefficient obtained this way would tend to overestimate the real population multiple

correlation (Claudy, 1978; Cohen & Cohen, 1983; Cummings, 1982).

Estimates of Coefficient of Cross-Validation (p,)

The second type of shrinkage occurs when we want to predict the criterion
variable for new samples from the same population, but other than the one from which the
regression weights are derived. The cross-validity of the population p, is defined as the
population multiple correlation coefficient obtained with a specific sample equation.
When the regression weights derived from one sample are applied to a new sample from
the same population, a multiple correlation coefficient is obtained, and it is called R. R_is
the validity estimate of the original sample regression equation in another sample, and it is
an estimator of the population cross-validity coefficient p.. The expected value of R, [E
(R. )] over many samples would approach or equal p, [E (R, ) = p.] (Claudy, 1978;
Cummings, 1982; Herzberg, 1969).

Because the population regression equation in the population will usually function

better than the sample regression equation in the population, the value of p would tend to




be greater than p, (p. <p). Also, the sample multiple correlation coefficient is a
positively biased estimator of the population multiple correlation coefficient (p <R).
Thus, the relationship between values of the two population parameters (p and p.) and
two sample estimates R and R_) could be summarized as (Claudy, 1978; Cummings, 1982;
Herzberg, 1969):
ER.)= p.<p <R

As it is generally known, the sample multiple correlation coefficient R is used as
the estimator for both p_ and p, but it is actually larger than either p_or p. R is a positively
biased estimator of p, and an even more positively biased estimator of p, (Cummings,
1982). Therefore, the estimator R must be “shrunken” or “corrected” to adjust for the
positive bias for estimating either parameter in multiple regression analysis.
Estimating R® Shrinkage in
Multiple Regression

Estimating R” shrinkage and correcting for the statistical bias in sample multiple
regression have been suggested in many studies (Browne, 1975; Cohen & Cohen, 1983;
Huberty & Mourad, 1980; Krus & Fuller, 1982; Larson, 1931; Stevens, 1996, Wherry,
1931). These methods could be classified into two categories: empirical methods and
analytical methods (Kromrey & Hines, 1995)

A review of literature located 11 such studies involving applications of the
empirical and/or the analytical methods in estimating R’ shrinkage in multiple regression.

The following two major study characteristics were identified for these studies:

1. Estimating methods: studies may have used empirical (cross-validation, double
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cross-validation, multicross-validation, jackknife, bootstrap) and/or analytical (formula)
methods; and

2. Validation methods: studies may differ in terms of method used, data set

selection, sample size, number of predictor variables used, and population parameters.
Estimating Methods

Empirical Methods

Empirical methods for correcting statistical bias for sample multiple R in multiple
regression include the following approaches: cross-validation, double cross-validation,
multicross-validation, jackknife, and bootstrap. All these approaches share the logic of
cross-validation; that is, to estimate the shrinkage by applying the regression equation
derived from one sample to new data in the same population. For these approaches,
usually the squared population cross-validity coefficient (p.*) is what is being estimated.

Cross-validation. In cross-validation, the regression weights generated in one
sample (derivation or screening sample) are used to predict values for the same dependent
variable in another sample (validation or calibration sample). A cross-validation multiple
R, could thus be computed in the validation sample by correlating the observed dependent
variable (¥) with the predicted dependent variable ( ¥) obtained. It is important to note
this cross-validated R_ is not an estimator of the population multiple correlation coefficient

p, but rather the “cross-validated” p_ that tends to be smaller than p (Huberty & Mourad,

1980; Kromrey & Hines, 1995).

Cross-validation requires two equivalent samples (derivation and validation




11
samples) that come from the same population. However, in applied situations usually only
one sample is available for the researchers. In order to apply the cross-validation
approach, it had been suggested that the sample be split into two subsamples, and one
subsample of the data would be held in reserve while deriving the regression equation
from the other subsample. Cross-validity could be estimated by applying the regression
weights to the reserved subsample and calculate the cross-validation multiple R,
(Cummings, 1982). Typically, the reserved data is one third or one half of the total
sample (Cummings, 1982).

It has been noted that the major problem associated with such cross-validation
method is that the splitting of the data into two parts requires that some of the data be
withheld from the derivation of the regression equation. The regression weights are,
therefore, based upon part of the available data. It is well-known that the stability of the
regression weights would tend to decrease as the ratio of the sample size to the number of
variables decreases. Thus, not including all the available data in deriving a multiple
regression equation would probably lead to a significant loss of information, and,
therefore, introduce more instability into the regression equation (Huberty & Mourad,
1980; Newman, McNeil, Garver, & Seymour, 1979). The application of cross-validation
is restricted especially when the sample size is small.

Of the previous studies reviewed, four studies used the cross-validation procedure
in estimating population cross-validity coefficient (Cummings, 1982; Kromrey & Hines,

1995, 1996; Newman et al., 1979). Cummings (1982) indicated that the use of the cross-

validation procedure tended to underestimate the population cross-validity coefficient p.*.




Newman et al. (1979) concluded that cross-validation method “forces one to split the
sample in half which tends to produce less stability than one would get using the entire
sample”, and the results from cross-validation “shows no advantage over analytical
methods” (p. 11). It was also not recommended as a reliable estimate by Kromrey and
Hines (1995, 1996).

Double cross-validation. Double cross-validation was first developed by Mosier
(1951) to address the instability in simple cross-validation while deriving multiple
regression equations from only part of the available sample. In Mosier’s double cross-
validation, the available sample is first split in half and the regression equations are
calculated for both halves of the sample. The regression equation derived from one half of
the sample is then applied to the other half, and the cross-validation multiple R, is
calculated. The same procedure is repeated for the other half. Thus, two subsample
cross-validation multiple R s are then obtained. The double cross-validation coefficient
could then be calculated by averaging the two cross-validation multiple R.s. The formula
can be stated as:

p. = (R, + R,)2 El
where R, and R_, stand for the cross-validation multiple Z_s for both halves of the sample,
and P. stands for the estimation of p. .

Claudy (1978) also developed a new double cross-validation procedure based on
the Mosier’s double cross-validation method. In Claudy’s double cross-validation, first

the regression equation is calculated within one half sample and then apply to the other

half sample, and vice versa. The difference is that both the two cross-validity indices (X,




and R_,) and the two sample multiple correlation coefficients (R, and R,) are averaged to
provide an estimate of the population p. It is important to note that Claudy’s procedure
intends to estimate the population multiple correlation coefficient p, not the cross-validity

coefficient p,. The formula can be written as:

[4]

p=(R +R +R, +R, )

el

where R, and R , stand for the two subsample multiple correlation coefficients, Rc?and K.s
stand for the sample cross-validity coefficients for both halves of the sample, and  stands
for the estimation of p.

Claudy also developed another variation of double cross-validation to estimate p,,

which was called “double shrinkage estimate” (Claudy, 1978):
5
R, +R, + R g
2

+ R,
cl c-_R

P.=
where R, and R, stand for the two subsample multiple correlation coefficients, R, and R,
stand for the sample cross-validity coefficients for both halves of the sample, R is the
sample multiple regression coefficient, andp, stands for the estimation of p. .

Of the previous studies reviewed, three studies used a double cross-validation
procedure (Claudy, 1978; Cummings, 1982; Kennedy, 1988). Claudy’s study showed that
the Claudy’s double cross-validation procedure yielded more accurate estimates than the
analytical formulae for estimating the population multiple correlation p (Claudy, 1978). In

Cummings’ study, Mosier’s double cross-validation was found to underestimate p_*, and

the estimation also appeared to have excessive amount of variation (Cummings, 1982).
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Also, Claudy’s double cross-validation procedure showed no advantage over analytical
methods in estimating p. Finally in Kennedy’s study, no advantage was found for
Mosier’s double cross-validation over analytical methods (Kennedy, 1988).

Multicross-validation. Krus and Fuller (1982) first introduced multicross
validation as an extension of Mosier’s double cross-validation. The technique 1s based on
repeated double cross-validations to select subsamples of the data randomly. Regression
weights are then calculated in each subsample and used for predicting the criterion variable
of the other subsample. Cross-validated multiple R s are then computed between the
actual and the predicted values of the criterion variable in each subsamples.

The cross-validated multiple 2 s are then normalized through Fisher-Z
transformation:

Z = tanh™' R (6]

After each iteration, the mean of the Fisher Z-transformed cross-validated multiple R_ and
its corresponding standard error are computed. The procedure is repeated until a
prespecified number of iterations is reached, or after the mean of the cross-validated R s
appears to converge, that is, the difference between consecutive normalized cross-
validated multiple R s is less than an arbitrarily selected constant used as the criterion for
convergence.

At the termination of the iteration process, the resulting normalized cross-validated

multiple R, is transformed back to its original correlation scale as:

R, = tanh Z (7]

The mean of cross-validated R_s at convergence or after the last iteration is defined as the
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multicross-validated R, (Krus & Fuller, 1982)

The multicross-validation approach gives more analytical power to the researcher
with small data set, although this technique usually requires a large amount of computing.
Of the previous studies reviewed, four studies included the multicross validation
procedure (Ayabe, 1985; Kromrey & Hines, 1995, 1996; Krus & Fuller, 1982). Krus and
Fuller (1982) suggested that for random data sets, the multicross validation procedure
gave a more accurate estimate of the population multiple correlation coefficient p than
analytical formulae. They further suggested that an empirical rather than an analytical
approach should be used when data sets are small. Ayabe (1985) confirmed the findings
by Krus and Fuller, and suggested that the multicross validation method produced
“comparable or superior estimates of the analytical formula methods™ (Ayabe, 1985, p.
449). And the multicross validation method also performed better than the jackknife
method. In the study by Kromrey and Hines (1995), the only condition that the
performance of multicross validation was superior to both jackknife and bootstrap method
is when the population squared multiple correlation coefficient p* is very small (0.04).
Otherwise, both jackknife and bootstrap methods performed better than the multicross
validation procedure. In their 1996 study, there was no obvious advantage found for
multicross validation over the Browne formula, and it was found to be more difficult to
compute a multicross validity coefficient than to use the Browne formula.

Jackknife procedure. The jackknife procedure, first introduced by Quenouille

(1949), is a technique to reduce bias in estimation and to assess the stability or accuracy of

an empirically estimated parameter. The jackknife procedure first estimates the cross-
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validity coefficient R, by splitting the sample into two subsamples, where one of the
subsamples usually contains only one individual observation. The regression equation is
derived in the large sample which has n-/ subjects, and the regression weights are
applied to the sample with one observation to yield a predicted value. The procedure 1s
repeated » times with the exclusion of one different observation for each time to obtain
the regression weights and to calculate the predicted value for that observation. Thus
each observation has a predicted value on the criterion variable based on the regression
equation derived from the remaining n-/ subjects. A correlation coefficient between the
original criterion variable and the predicted values for the criterion variables is then
calculated. The cross-validity coefficient can then be calculated by either averaging the n
obtained coefficients, or by using the same Fisher-Z transformation in the multicross
validation method (Kromrey & Hines, 1995). Another name for the jackknife technique
was descriptively termed as the “leave-one-out” method (Huberty & Mourad, 1980).

One variation of the jackknife method is called predicted residual/error sum of
squares (PRESS), that was discussed by Stevens (1996), to assess the external
predictive power in multiple regression. However, no empirical study utilizing the PRESS
method for estimating cross-validity was found in the literature. Like jackknife, the
PRESS first predicts each subject’s criterion score based on the regression equation
generated from the other n-/ observations (Stevens, 1996). Then the PRESS residuals
are calculated using the following formula:

ey =Y ~ Ve 8]

where Y-y is the predicted value for subject i, when that subject is not used in the




derivation of the regression equation.
The PRESS statistic can be calculated using the following formula:

A2
2 Ze(‘l) [9]

20,5

RPRESS -

This PRESS value is a R’-like statistic that estimates the squared population cross-validity
coefficient p.* (Stevens, 1996).

The jackknife procedure can be applied to a variety of situations including small
sample size, and this procedure is also highly dependent on intensive computation. Of the
previous studies reviewed, four studies included the jackknife procedure in estimating
shrinkage in multiple regression (Ayabe, 1985; Huberty & Mourad, 1982; Kromrey &
Hines, 1995, 1996). The results in Ayabe’s study showed that the jackknife method did
not perform as well as multicross validation. The reason for this was jackknife’s
“inadequacy in handling outliers” (Ayabe, 1985, p. 449). In Huberty and Mourad’s study,
the “leave-one-out” method was used (Huberty & Mourad, 1982). This method was
found to be equally accurate to the Nicholson/Lord formula and the Darlington formula in
estimating p_.’, but tended to overestimate shrinkage slightly. Such a method was also
found to be very difficult to calculate in practice, and “leave-one-out” was suggested to be
“tentatively dropped as an estimator of p_*” (Huberty & Mourad, 1982, p. 108). In the
study by Kromrey and Hines (1995), the normalized or transformed jackknife was shown
to provide the best estimate when the sample size was relatively large (> 100). In their

1996 study, the jackknife performed less well than analytical formulae, and the normalized

jackknife tended to overestimate p_’.
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Bootstrap method. The bootstrap method was developed by Efron (1979). This
method is designed to assess the statistical accuracy or stability from an empirically
derived estimation of a population parameter. In the bootstrap method, many random
samples of sample size » are repeatedly drawn with replacement from the original sample
(Fan & Wang, 1996). Because of sampling with replacement, a typical bootstrap sample
could leave out some cases from the original data and include other cases more than once.
According to Kromrey and Hines (1995, 1996), to implement the bootstrap method in
estimating the cross-validity coefficient in multiple regression, for each random bootstrap
sample, the regression equation is computed and then applied to the original sample to
yield the predicted values for the criterion variable. A standard Pearson correlation
coefficient is then computed between the original and predicted values of the criterion
variable. The process is repeated for each bootstrap sample to generate a distribution of
the coefficients obtained from all the bootstrap samples, and the mean of the distribution of
all the bootstrap estimates is defined as the bootstrap multiple R, (Kromrey & Hines, 1995,
1996).

Of the previous studies reviewed, only two studies included bootstrap in estimating
shrinkage in multiple regression (Kromrey & Hines, 1995, 1996). In their 1995 study, the
bootstrap method only yielded acceptable estimate when sample size was relatively large

(> 100). In their 1996 study, the bootstrap performed less well than analytical formulae,

and it also tended fo overestimate p,’.
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Analytical Methods

An alternative to the empirical approach is the analytical approach represented by
various “shrinkage” formulae. All of these mathematical formulae are based on the entire
sample so that they would provide more stable results compared to those methods that are
only based on part of the sample (e.g., cross-validation). Different shrinkage formulae
have been proposed to estimate either p* (the population squared multiple correlation
coefficient) or p,? (the population squared coefficient of cross-validation).

In the literature, there has been some confusion about both the origins and the
purposes of these different formulae (Cummings, 1982; Huberty & Mourad, 1980;
Kromrey & Hines, 1996; Newman et al., 1979). For example, the popular “Wherry
formula” actually was not proposed by Wherry himself (Wherry, 1931). Also in some
studies, the Ezekiel formula was mistakenly cited as the Wherry formula (Ayabe, 1985;
Kennedy, 1988; Krus & Fuller, 1982; Schmitt, 1982; Stevens, 1996).

The present review of literature has identified 14 such shrinkage formulae. These
formulae have been categorized into two groups: estimator of p” and p,> .

Estimator of p% (a) the Smith formula (Wherry, 1931); (b) the Wherry formula-1
(1931); (c) the Wherry formula-2 (1931); (d) the Olkin and Pratt formula (1958); (e) the
Pratt formula (cited in Claudy, 1978); and (f) the Claudy-3 formula (1978).

Estimator of p.2 or p,: (a) the Lord formula-1 (1950); (b) the Lord formula -2
(1950); (c) the Burket formula (1964); (d) the Darlington formula (1968); (¢) the Browne

formula (1975); (e) the Claudy formula-1 (1978); (f) the Claudy formula-2 (1978); (g) the

Rozeboom formula-1 (1981); and (h) the Rozeboom formula-2 (1978).




These formulae are presented and reviewed based on the parameters they are
estimating. In the following presentation of these analytical formulae, N is the sample size;
R is the sample multiple correlation coefficient; p is the number of predictor variables; p is
the population multiple correlation coefficient; o, is the population cross-validity
coefficient; and R is the “corrected” R obtained from the analytical formula.

Estimator of pr. The Smith formula takes the form:

b [10]

N -P

R*=1 - (1 - RY

The formula was originally developed by Smith, and presented by Ezekiel in 1928
(Wherry, 1931). Larson (1931) empirically tested the formula on real data. The
regression equation derived from one group of subjects was used to predict the criterion
scores of a second group. However, the results indicated that the Smith formula tended to
result in greater shrinkage. Because the formula was originally proposed as an estimator
of p?, the Larson study was actually cross-validation that was estimating p.* instead. This
probably could explain why the Smith formula showed greater shrinkages in Larson’s
study.

Of the previous studies reviewed, only one study included this formula in
estimating shrinkage in multiple regression. In Cummings’ study (1982), no advantage
was found for the Smith formula over other analytical methods in estimating shrinkage in

multiple regression.

The Wherry formula-1 (1931) - estimator of p*, can be stated as:




R _ [11]
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The formula was actually proposed by Ezekiel as an estimator of p? (Ayabe, 1985;
Cohen & Cohen, 1983; Cummings, 1982; Huberty & Mourad, 1980; Kromrey & Hines,
1996; Newman et al., 1979). However, in the literature, it has been cited widely with
different names, mostly as the Wherry formula (Ayabe, 1985; Kennedy, 1988; Krus &
Fuller, 1982; Schmitt, 1982; Stevens, 1996), secondly as the Ezekiel formula (Huberty &
Mourad, 1980; Kromrey & Hines, 1996), the Wherry/McNemer formula (Newman et al.,
1979), and, finally, the Cohen/Cohen formula (Kennedy, 1988). It was also cited in one
study as estimator for cross-validation (Kennedy, 1988). One study mistakenly cited this
formula as “the analytical formula used in the most popular statistical programs (SPSS,
SAS, BMDP) to correct sample bias” (Kromrey & Hines, 1996, p. 242). However, this is
not the analytical formula used in both SAS and SPSS.

This formula is the most frequently used analytical method in the studies reviewed.
However, none of the studies recommended it as the most effective method in estimating
p? in multiple regression. Kennedy (1988) found that the formula gave the most biased
estimate in most situations. Cummings (1982) found it tended to overestimate p® but was
less variable. Only Huberty and Mourad (1980) and Kromrey and Hines (1996) suggested
that it gave a reasonable estimate of p°.

The Wherry formula-2 (1931) - estimator of p?, can be stated as:

g - [12]
pre g - B2y | my

N -P
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This formula is actually currently being implemented by both SAS and SPSS for
computing the adjusted R’ in multiple regression procedures (SAS/STAT User’s Guide,
1990, p. 1354 ). This formula was presented by Wherry (Wherry, 1931), but it was cited
in one study as the McNemer formula (Newman et al., 1979). In the literature, it is
usually confused with the Wherry formula-1 (formula [11]) above. Few studies have
correctly cited it as the Wherry formula (Cummings, 1982; Huberty & Mourad, 1980;
Kromrey & Hines, 1996, Uhl & Eisenberg, 1970). The formula was also developed as an
estimator of p*.

Of the previous studies reviewed, three studies included this formula in estimating
p? in multiple regression. It was found to be less accurate than other analytical methods in
two of the studies (Cummings, 1982; Uhl & Eisenberg, 1970). Newman et al. (1979),
however, found it to be a relatively stable estimate for p*.

The Olkin and Pratt Formula (1958) - estimator of p? is:

R\z - RZ . P~ 32 (l . RZ) _ ‘ 2(N i 3) (1 i RZ)Z [13-1]
N =p =1 N-P-1DWN-p+1)
i gty -0 - RY» 2N -3)1 - RY»?
N-p-1 N=-p-DWN-p+1) [13-2]
i ézzl_(N—B)(l—Rz){l+ 2(1—R2)}
(N-P-1) N-p+1 [13-3]

Equation [13-1], [13-2], and [13-3] are basically the same equation in different

forms, and they are all approximations of the Olkin and Pratt’s (1958) unbiased estimate

of the squared multiple correlation p*>. The original formula for the unbiased estimate
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developed by Olkin and Pratt (1958) is:
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where F is the hypergeometric function:

FeBryx)= 3 L@ * OTE + HT(y)x*
T o T@UBN(y + bk

Formulae [13-1] to [13-3] have been cited as the Olkin and Pratt formula in
several studies (Ayabe, 1985; Claudy, 1978, Huberty & Mourad, 1980; Krus & Fuller,
1982) and erroneously cited as Herzberg formula in one study (Cummings, 1982).

Of the previous studies reviewed, five studies used formula [13] in estimating p* in
multiple regression (Ayabe, 1985; Claudy, 1978, Cummings, 1982; Huberty& Mourad,
1980; Krus & Fuller, 1982). In two of these studies, results from this formula were found
to be less accurate than multicross validation (Ayabe, 1985; Krus & Fuller, 1982). In

Huberty and Mourad’s study (1980), the formula was found to be accurate in estimating

2

P

The Pratt formula (1964) - estimator of p*, another approximation of the unbiased

estimate has been used in two studies (Claudy, 1978; Cummings, 1982):

R e CRd ) B (et (14
(N-P -1 N-p-23

Of the previous studies reviewed, two studies included this formula in estimating

p? in multiple regression (Claudy, 1978; Cummings, 1982). Both of these studies showed

that this formula gave the most accurate estimate for p* in multiple regression.




The Claudy formula-3 was introduced in Claudy’s study (Claudy, 1978).

&l

W -aa -RYL 201 - RY L]
=P~ N-p+1

This formula was very similar to the Pratt approximation of the Olkin and Pratt formula
(formula [13-3]), except for some differences in the second term.

Of the previous studies reviewed, only one study used this formula in estimating
p? in multiple regression. Claudy (1978) suggested that this formula gave a better
estimation of the population multiple correlation coefficient than both the Pratt and the
Herzberg approximations of the Olkin and Pratt formula for estimating p2

Estimator of p,? or p. The Lord formula-1 (1950) can be represented as:

[16]

This formula was developed to estimate the population cross-validity coefficient
p.> (Newman et al., 1979; Uhl & Eisenberg, 1970). It had been cited mostly as the Lord
formula (Newman et al., 1979; Uhl & Eisenberg, 1970); however, in one study it was
referred to as the Uhl and Eisenberg formula (Cummings, 1982).

From the previous studies reviewed, three studies included this formula in
estimating p,” in multiple regression (Cummings, 1982; Newman et al., 1979; Uhl &
Eisenberg, 1970). All three studies found that it usually gave an accurate estimate of p.~.

The Lord formula -2 (1950) - estimator of p,’

52

=1 _(N+P+1)(N"1)(1_R2) [17]

(N -P - 1N
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was developed by both Lord and Nicholson independently, and it had been cited as
either the Lord formula (Kennedy, 1988; Newman et al., 1979) or the Nicholson formula
(Schmitt, 1982). It was also erroneously cited as the Herzberg formula in one study
(Cummings, 1982). This formula was developed also as an estimator for the population
cross-validity coefficient p.* .

Of the previous studies reviewed, six studies employed this method in estimating
p.> in multiple regression (Claudy, 1978; Cummings, 1982; Huberty & Mourad, 1980;
Kennedy, 1988; Newman et al., 1979; Schmitt, 1982). Schmitt (1982) found that it did
not provide an accurate estimate when the squared population multiple correlation
coefficient (p?) is less than .6. Huberty and Mourad (1980) found that it was one of the
most accurate estimates for p.2, but it tended to overestimate shrinkage. The other four
studies showed that its performance was neither excellent nor poor (Claudy, 1978;
Cummings, 1982; Kennedy, 1988; Newman et al.,1979).

The Burket formula (1964)- estimator of p, follows:
i (18]
RN - p)
This formula was first presented by Burket (1964) as a direct estimate of the population
validity coefficient rather than the squared population cross validity coefficient p.>. The
formula was also called “weight validity.”

Of the previous studies reviewed, two studies employed this formula in estimating

p. in multiple regression. (Claudy, 1978; Cummings, 1982). No significant advantage was

found for this formula than other analytical methods in estimating p, in multiple regression.




The Darlington (1968) or Stein formula (1960) - estimator of p_” is:

1?2:1_ N -1 N -2 N+1(1—RZ)
N-P-1)\N-p-2 N

The formula was developed as an estimator of cross-validation coefficient p.* and

it has been referred to as either the Darlington formula or the Stein formula (Cummings,
1982; Huberty & Mourad, 1980; Kennedy, 1988; Kromrey & Hines, 1996; Newman et al.,
1979; Schmitt, 1982; Stevens, 1996).

Six studies employed this formula in estimating p.* in multiple regression
(Cummings, 1982; Huberty & Mourad, 1980; Kromrey & Hines, 1995,1996; Newman et
al., 1979; Schmitt, 1982). Newman et al. (1979) found it to be a “fairly decent estimate of
the population p?, but tends to underestimate the population parameter” (p. 10). Kennedy
(1988) found that it yielded the best estimate of p.*>. Huberty and Mourad (1980) also
noticed that it tended to slightly overestimate shrinkage. Schmitt (1982) found that it
failed to give accurate shrinkage estimates for low levels of multiple correlation (R < .6).
Kromrey and Hines (1996) did not find any advantage of this formula over other analytical
methods.

The Browne formula (1975) can be stated as:

pr . N -p-3)p+p?
(N-2p-2p+p [20]

where p? is the squared population multiple correlation coefficient. It was suggested that
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p? to be estimated by either the Wherry formula-1(formula [11]), or the Olkin and Pratt
formula (formula [13]; Schmitt, 1982).
Compared to the original Browne formula, only the first part of the original formula

was used here (Browne, 1975). The original Browne formula is lengthy and complicated:

gw?) - Wp=3p'p® _ AN-p-2N-2p-6Xp-1p'UP) |, [y 1y
(N-2p-2)p+p N-p-4{N-2p-2p+pf e

It was noted by Cattin (1980) that the second part of the formula only yields
negligible values compared to the first part, and Darlington (1968) also stated that the first
part is more valuable when the sample is small, which is applicable in social and
behavioral sciences.

The Browne formula was developed as an estimator for cross-validity coefficient
p.>. It has been cited as the Browne formula with only the first part in two studies
(Kennedy, 1988; Kromrey & Hines, 1996), as the Cattin formula in one study (Schmitt,
1982), and as the Browne formula as the original form (formula [21]) in the same study
(Schmitt, 1982).

Of the previous studies reviewed, three studies employed this formula in estimating
p.” in multiple regression. Both Schmitt (1982) and Kromrey and Hines (1996) concluded
that this formula was the most appropriate estimator of p,> with the Wherry formula-1 as

the estimator for p?>. Kromrey and Hines (1996) also noted that the performance of the

Browne formula was excellent when sample size was relatively large (> 100). On the

contrary, Kennedy (1988) did not find that the Browne formula yielded estimates as




accurate as that of the Darlington formula. No advantage was found for the original
Browne formula (formula [21) over the commonly used Browne formula (formula [20]) in
estimating p.* (Schmitt, 1982).

The Claudy formula -1 (1978) - estimators of p.* is shown below. Claudy (1978)
proposed three different formulae for estimating either the population p* or p.>. The
Claudy formula-1 takes the form:

R* = (2p - RY? [22]

The formula was first introduced by Claudy as an estimator of p,* (Claudy, 1978).
It was also suggested that p be estimated by the Wherry formula-1 (formula [11])
(Cummings, 1982).

Of the previous studies reviewed, only one study employed this formula in
estimating p.* in multiple regression. Cummings (1982) found that it was the most
accurate and least variable estimate of p.* with the Wherry formula-1 as the estimator of p.
However, it had a slight tendency to overestimate p_*.

The Claudy formula -2 (1978) - estimators of p_* is shown below. In the same

study, Claudy proposed another formula for estimating either the population p_*.

22 _( N-1 ]( N-2 ](N—l](]_l,ez)
N—P‘] N—p—2 N [23]

In the original study, this formula was presented as “the Darlington formula” (Claudy,

1978). Compared to the original formula in Darlington’s study and several other similar

studies (equation [19]), the only difference between equation [23] and [19] is the minus

|(-)| or plus |(+)| sign in the second part. It is very likely such difference is due to either




misprint or miscitation.

Two studies used this Claudy formula-2 in estimating p_? in multiple regression.
Claudy (1978) concluded that this formula yielded the most accurate estimate of p..
Kennedy (1988), however, did not find that it yielded an estimate as accurate as that of the
Darlington formula.

In the literature, there are two forms of the Rozeboom formula which were
developed as estimators of cross-validity coefficient p.>. The Rozeboom formula-1 (1981)

takes the form:

R = - Nrp
N -P

(1 - RY

Of the previous studies reviewed, 2 studies used this formula in estimating p.* in
multiple regression. Kennedy (1988) found that it did not yield estimate as accurate as
that of the Darlington formula. Huberty and Mourad (1980) concluded it gave an estimate
as precise as the Darlington formula.

The Rozeboom formula-2 (1978) takes the form:

/ézzpz 1+ ( p )(l—p

2\ |} [25]
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Of the previous studies reviewed, only one study used the Rozeboom formula-2 in
estimating p.” in multiple regression (Schmitt, 1982). However, it was found to be less
satisfactory than the Browne formula.

After reviewing those various analytical formulae for correcting the statistical bias,

there are two possible reasons for the confusion in the literature about different analytical




formulae. The first reason is the large number of correction formulae and the names
associated with them. There are 14 formulae reviewed in the present study. For some of
those formulae, more than one name was found to be associated with the same formula in
the literature and more than one formula was associated with the same name. The second
reason is that some of the formulae are developed as the estimate of p*, and some of them
are developed as the estimate of p.>. But the distinction, however, is sometimes not

clearly made.

Validation Methods

Statistical Methods and Data Set Selection

Five of the studies reviewed utilized the Monte Carlo technique in the validation
procedure (Claudy, 1978; Kennedy, 1979; Kromrey & Hines, 1995, 1996; Newman et al_,
1979), and the remainder of the studies did not use the Monte Carlo method in the
validation procedure. However, suggestions for future Monte Carlo simulation studies
had been explicitly made in two such studies (Ayabe, 1985; Huberty & Mourad, 1980).

Three studies used simulated data for the estimating purpose (Claudy, 1978,
Kennedy, 1988; Newman et al., 1979). Four studies utilized real data (Cummings, 1982;
Huberty & Mourad, 1989; Kromrey & Hines, 1996; Uhl & Eisenberg, 1970). Two studies
used both prestructured data (adapted from other studies) and random data (simulated)

(Ayabe, 1985; Krus & Fuller, 1982). One study did not specify the origin of

the data set (Schmitt, 1982).




Sample Size

Sample sizes range from 14 to 325 in the studies reviewed. In most of the studies,
the number of the sample size was within 200. Sample sizes of 20, 40 or 60 or 80, 100,
and 200 were the commonly selected sample sizes in most of the studies reviewed, and
such a sample size was selected to be reasonably representative of sample sizes in current
applied multiple regression research (Kromrey & Hines, 1995, 1996; Schmitt, 1982).

Of the studies reviewed, Kromrey and Hines concluded that the estimation of p_*
was very poor for any of the analytical methods utilized in their study when the sample
size was smaller than 100 (Kromrey & Hines, 1996) Kennedy (1988) also concluded that
sample size was a primary factor, rather than the number of predictor variables, that
influenced R’ shrinkage in multiple regression the most. On the contrary, Newman et al.
(1979) did not find the association between large sample size and better estimate.
Population Squared Multiple
Correlation Coefficient

The population squared multiple correlation coefficients vary from .02 to .9, which
covers almost the entire possible range of the coefficient. In most of the studies, the
population squared multiple correlation coefficients were quite small, mostly lower than .5
(Kromrey & Hines, 1995, 1996; Newman et al.,, 1979). Results from Kromrey and Hines’

study (1996) showed that as the population p* increases, more estimating methods gave

better estimates for the population parameters.
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Number of Predictors

The number of predictors in multiple regression ranged from 2 to 25, and most of
the studies included fewer than 10 predictors. In the field of psychological and
educational research, 2 , 3, 4, and 5 were shown to be representative of the number of
predictors for real data (Claudy, 1978). No specific conclusion was found in the previous
studies on the implications of the number of the predictor variables on the performance of

these estimating methods in multiple regression analysis.

Multicollinearity

Collinearity refers to the linear correlation between two independent variables.
Multicollinearity, a more general term, refers to linear relationships between two or more
independent variables. In the presence of strong multicollinearity, the regression weights
from multiple regression are less useful in prediction because a strong relationship implies
redundancy. Stevens (1996) summarized three major problems with multicollinearity for
the researchers: (a) it limits the range of multiple correlation coefficient; (b) it confounds
the importance of a given independent variable; and (c) it increases the variances of the
regression coefficients.

Moderate to high multicollinearity among independent variables is not uncommon
in social and behavioral sciences. However, only two of the studies reviewed investigated
the performance of those analytical methods under the influence of multicollinearity. One

study did indicate that the intercorrelation among the independent variables in the

psychological and educational literature ranged from .01 to .65, but the effects of different




33

degrees of multicollinearity on the performance of these analytical formulae were not
clearly discussed (Claudy, 1978). In the other study, multicollinearity » was selected to
range from .13 to .82, with approximate .15 as the interval (Newman et al., 1979). The
author later concluded that multicollinearity had almost no detectable effect on the

accuracy of the shrinkage estimates (Newman et al., 1979).

Summary of Literature Review

The study characteristics and conclusions for all the studies reviewed previously
are summarized in Appendix A. This literature review has revealed little consensus
regarding which method is the most appropriate under what specific conditions for
estimating statistical bias in multiple regression. The inconsistencies in the studies’ results
are possibly due to: (a) inconsistent terminology of analytical formulae, (b) lack of
distinction of the two population parameter p* and p.” and their corresponding sample
estimates, and (c¢) different characteristics of the real data sets utilized in individual study.
Because of time constraints and project manageability, the present study only focused on

the analytical methods for estimating the population squared correlation coefficient p*

and the population cross-validity coefficient p,”.




CHAPTER III

METHODOLOGY AND PROCEDURE

Analytical Formulae

To compare the effectiveness of different analytical formulae in estimating both the
population squared correlation coefficient p* and the population cross-validity coefficient
p.’ in multiple regression, the analytical formulae reviewed in previous chapters are
categorized into two groups: estimators of p* and p.*>. To avoid confusion associated with
different names, the respective formula numbers in the present study are

also provided in Table 1.

Validation Method

The Monte Carlo simulation is a method widely used to evaluate substantive
hypotheses and statistical estimators by: (a) developing a computer algorithm to simulate a
statistical population with specified parameters, (b) drawing random samples from the
population, and (c) evaluating the behaviors of the sample estimates for the population
parameters (Johnson, 1987).

One of the major features in the Monte Carlo procedure is the control of relevant
population factors that includes the choice of population distributions and their

parameters, sample sizes, and other related variables. This feature usually could not be

easily obtained in real data sets because of the potential confounding effects from




Table 1

Analvtical Formulae Analyzed in the Present Study

Estimator

Analytical formulae

Formula number

5

0?

p.’ or p,

I
2
3
4.
5
6
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the Smith formula

. the Wherry formula-1
. the Wherry formula-2

the Olkin and Pratt formula

. the Pratt formula
. the Claudy-3 formula

. the Lord formula-1

. the Lord formula -2

. the Burket formula

. the Darlington formula

. the Browne formula-1*

. the Browne formula-2°

. the Claudy formula-1

. the Claudy formula-2

. the Rozeboom formula-1
. the Rozeboom formula-2

e e e e

[10]
[11]
[12]
[13-1], [13-2], [13-3]
[14]
[15]

N B LWKNOO YWD
L = [ "SNEN fy WSS [y UNSS [ SESSS [y W—" hy W— y S—

NN NN DI — — — —
—_—

* The Browne formula with p? being estimated by the Wherry formula-1 (formula [11]).
® The Browne formula with p* being estimated by the Olkin and Pratt formula (formula

[15]).

multiple extraneous factors (Johnson, 1987). One major limitation with real data is that

there might be a combination of confounding factors the researcher cannot control, such

as different forms of data nonnormality, lack of precise population parameters, different

degrees of multicollinearity among the predictor variables, and so forth. Such

confounding of multiple extraneous factors may make it very difficult, or nearly

impossible, for the researcher to assess the performance of different analytical methods

under different data conditions.

For this reason, it is often easier to assess the effectiveness of different analytical




methods if simulated data are used that have prespecified population parameters, known
degrees of multicollinearity, and controlled data normality conditions. Therefore, the
Monte Carlo method is employed in this study to simulate statistical populations with
prespecified parameters. Potential factors considered in the study include different
population p?, sample sizes, number of predictor variables, and different conditions of

multicollinearity among the predictor variables.
Simulation Design of Population Parameters

Squared Population Correlation Cocefficient o

From the literature reviewed for this study, the possible range of p* has been from
.1 to .9 in previous studies. The squared population correlation coefficient p?, or what is
also called the coefficient of determination, can also be interpreted as a measure of
strength or the magnitude of the relationships between the dependent and predictor
variables. That is, it can also be considered as a measure of effect size. According to
Cohen’s specification of small, medium, and large effect sizes in the form of squared
correlation coefficient based on typical findings in social and behavioral research studies,
.1 is usually considered to be small, .25 (.2 to .3) is considered to be medium, and .5 is
considered to be relatively large (Cohen, 1988). In the present study, the squared
population multiple correlation coefticients were selected to be .2, .5, and .8 to represent

what is considered to be the magnitude of between small and medium, relatively large, and

very large in the areas of social and behavioral research.
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Number of Independent Variables (p)
From the literature reviewed for this study, most studies included fewer than 10
predictors in the regression analyses. Also with respect to representativeness of the real
data and the project manageability, in the present study, the numbers of independent

variables were selected to be 2, 4, and 8.

Sample Size (n)

From the previous studies reviewed, the size of most samples selected was within
200. It was also noted that, in social and behavioral sciences, many applied studies that
utilized multiple regression analysis used relatively small samples (Claudy, 1978). Based
on the previous studies, and to represent the research characteristics as reported in the
psychological and educational literature, samples with sample sizes of 20, 40, 60, 100, and
200 were randomly selected from the simulated populations. Sample size (#7), number of

predictor variables (p), and the n/p ratio to be simulated are summarized in Table 2.

Multicollinearity

From the literature reviewed, the typical intercorrelation among the independent
variables in the psychological and educational literature ranged from .01 to .65 (Claudy,
1978). As can be suspected, most of the independent variables in the regression analysis
in education and psychological research are related in a variety of ways to different

degrees. However, because of time constraints and project manageability, in the present

study, three conditions of intercorrelation among the independent variables (.1, .3, .5)




Table 2

Summary of Sample Size (n). Number of Predictor Variables (p). and n/p Ratio

Number Sample size (1)

of predictors (p) 20 40 60 100 200
2 10 20 30 50 100
4 5 10 15 25 50
8 2.5 5 7.5 12.5 25

were simulated to represent typical multicollinearity conditions in the real data. Also
considering program manageability, the degree of multicollinearity among all the
independent variables is specified to be equal; that is, the correlation coefficients among

all the independent variables are the same.

Replications

From the previous studies that used simulated data, the number of replications
were chosen to be 100 (Kennedy, 1988; Newman et al., 1979) and 1000 (Kromrey &
Hines, 1995, 1996). In order to obtain stable estimates of sample statistics, a certain
number of replications are needed in the simulation process. In the present study, 500

samples were drawn under each of the cell conditions, which will be discussed later in

detail.




Simulation Design

The fully crossed experimental design of three conditions of population squared
multiple correlation coefficients (p*= .2, .5, .8), three conditions of predictor numbers (p=
2, 4, 8), five conditions of sample sizes (n= 20, 40, 60, 100, 200), and three conditions of
multicollinearity (.1, .3, .5) entails 135 cell conditions (3%3x5x3). Within each cell

condition, 500 samples were randomly drawn. This makes the total number of replications

The simulation design for one of the three multicollinearity conditions is

graphically illustrated in Figure 1
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Figure 1. Simulation design for one of the three muiticollinearity conditions.
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Data Generation
Generating Correlated Multivariate
Normal Data

Matrix decomposition procedure is used to generate correlated multivariate normal
data (Kaiser & Dickman, 1962). Using matrix decomposition, a specified correlation
matrix can be imposed on a set of random normal variables to yield correlated multivariate
normal data. In the present study, to generate multivariate normal data within each cell
condition, the following steps were implemented:

First, for each of the three multicollinearity situations (.1, .3, .5), the population
correlation coefficients among the independent variables were set to be either .1, .3, or .5.
Next, the correlation coetficients among the dependent variable and independent variables
were chosen to yield the desired population squared multiple correlation coefficient p* (.2,
.5, .8). Intotal, 27 population intercorrelation matrices (3x3x%3), three multicollinearity
conditions, three conditions of predictor number, and three population squared multiple
correlation coefficients were obtained. The SAS program files included the population
intercorrelation matrices and the output of the squared multiple correlation coefficients p*
are listed in Appendix B

Second, within each cell condition, uncorrelated random normal variables for the
required number of independent variables and required sample sizes were generated. The

SAS pseudorandom number generator (rannor) and the SAS MACRO language were used

for this purpose. This procedure was conducted through the IML (Interactive Matrix

Language) software of SAS (SAS/IML, 1990)
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Third, premultiply the uncorrelated data matrix generated in step 2 with the
principal component loadings matrix, which was obtained by applying the principal
component factorization to the population intercorrelation matrix obtained in step 1. The
resultant data matrix became a matrix of correlated multivariate normal data, which was
equivalent to data randomly sampled from a population with specified intercorrelation
patterns (Kaiser & Dickman, 1962). This procedure was also conducted through the IML
software of SAS (SAS/IML, 1990). The SAS program files for step 2 and step 3 are

selectively listed in Appendix C.

Estimating the Population Cross-Validity p,

Although the desired population squared multiple correlation coefficient p* can be
prespecified, the population cross-validity coefficient p.* is always unknown. As a result,
it can only be empirically estimated through repeated sampling from a prespecified
statistical population. In this study, the population cross-validity coefficient p_* was
estimated through the procedure similar to double cross-validation (Mosier, 1951).
Cross-validation needs two equivalent samples that came from the same population, and
the regression equation derived from one sample was applied to the other sample to
predict the dependent variable, and obtained a sample cross-validity coefficient. To
implement the estimation procedure through repeated sampling, the following steps were
followed.

First, the steps for generating correlated multivariate normal data with the matrix

decomposition procedure described above were followed to generate random samples of




correlated multivariate data.

Second, within each cell condition (shown in Figure 1), 500 random samples were
drawn from the corresponding simulated population with specified population parameters.

Third, the 500 random samples were randomly assigned into 250 pairs of random
samples. For each pair of random samples, regression analysis was conducted in each
sample and the sample regression weights were obtained.

Fourth, for each pair of random samples, the sample regression weights obtained
from one sample were then applied to the other sample to predict the corresponding
dependent variable, and vice versa.

Fifth, for each pair of random samples, Pearson correlation coefficients between
the predicted values obtained in step 4 above and the actual values of the dependent
variable were calculated for the two samples as the sample cross-validity coefficient. Two
Pearson correlation coefficients were obtained for each pair of these random samples. The
250 pairs of random samples yielded 500 such sample cross-validity coefficients.

Sixth, the obtained sample cross-validity coefficients were squared. The average
of these squared coefficients was the estimate of the population squared cross-validity
coefficient p ’.

The procedure was also conducted through the SAS/IML software (SAS/IML,

1990). The SAS program files for estimating the population squared cross-validity

coefficient (p.?) are selectively listed in Appendix D.
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Obtaining Sample Adjusted 0® and f)i

Estimator of the Population o°

Six analytical formulae were designed to estimate the squared population
correlation coefficient p>. These analytical formulae were applied to the multivariate
normal data generated with known population parameters (p?, number of predictors,
sample sizes, multicollinearity among predictors). The corrected or adjusted R’s based on
each of these six formulae were then obtained. The procedure was also conducted
through the SAS system, and the SAS program files for calculating the corrected R’

estimate p? are listed in Appendix E.

Estimator of the Population p,’

Nine analytical formulae were designed to estimate the squared population cross
validity coefficient p.>. These analytical formulae are also applied to the simulated data
with known population parameters (p?, number of predictors, sample sizes,
multicollinearity among predictors) and the corrected or adjusted R s based on these

formulae were obtained. The procedure was also conducted through the SAS system,

and the SAS program files for calculating corrected R, are listed in Appendix E.
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CHAPTER IV

RESULTS

Descriptive Statistics

Means and standard deviations of the 500 replicates for the sample adjusted R’
based on these six analytical formulae for estimating p?, and the sample adjusted R’ based
on the 10 analytical formulae for estimating p_.* in all the specified sampling conditions
(i.e., population squared correlation coefficient, number of predictors, different degree of
multicollinearity, and sample sizes) are obtained. To save space, means obtained from the
16 analytical formulae (for the 15 n/p ratio conditions across the three conditions of
multicollinearity), together with the population p? and estimated population p ?, are

summarized in Tables 3, 4, and S.

Estimating Statistical Bias

To guide the evaluation of the estimates of statistical bias, an unbiased estimate
was operationally defined as having means based on the 500 replicates to be within .01 of

the corresponding population parameters (Kromrey & Hines, 1996).

Population 7 and Unadjusted Sample R’
The bias in the unadjusted sample R’ across the 135 sampling conditions was

obvious, especially when n/p ratio was small. The sample R was almost always

consistently larger than the corresponding population p*. Only 2 out of 135 conditions




' Table 3

Summary of Means of the Adjusted R? and R.2 (Multicollinearity r = 1)

Np p n p R 1 2 3 4 5 6 pl 7 8 9 10 n 12 13 14 15 16
- - 536 127 145 165 -390 -098 119
25 8 20 530 216 187 25§ 215 195 261 119 -241 -179 190

693 494 476 S19 505 496 .43 315 200 240 378 008 318 347 340 .103 292 .29
‘874 790 783 801 .801 800 812 681 668 685 717 589 666 691 698 628 706  .649
s 4 20 354 193 182 233 209 .195 256  .159 -076 -022 .180 -104 .152 .172  .162 001 032 .42
594 493 486 .S18 SIS 509 S44 408 324 358 421 307 415 445 407 373 392 391
829 786 784 797 802 800 813 767 715 729 747 708 742 763 740 736 744 728
s 8 40 358 197 192 217 202 199 223 120 -016 010 .34 -049 126 .135  .125 002 036 .117
595 494 491 507 505 503 .S18 414 361 377 414 339 402 417 399 372 393 3%
833 791 190 796 798 198 804 749 736 743 752 127 744 1SS 748 740 749 138
4 819 an

75 8 60 298 190 188 203 194 .193 208  .141 050 066 130 042 130 .36  .120 07
564 496 495 505  .504 503  .S13 449 409 419 438 405 436 445 432 424 429 AZ)
823 796 195 799 801 800 804 772 761 765 770 759 768 714 768 767 769  .764
10 2 2 266 .84 179 225 207 .194 253 205 007 .0S6 171 031 166 .188  .166 .123 103 .152
542 491 488 .S17 518 512 546 481 381 412 448 396 462 492 443 453 440 436
805 784 782 794 801 800 812 780 737 750 763 743 770 789 760 767 762 156
10 4 40 278 198 196 218 206 203 228  .1S3 072 095 .IS1 079 156 .66  .146 .123 118 .143

540 489 488  .S02  .S01  .S00 SIS 449 409 424 444 413 449 463 439 442 438 436
811 7% 790 795 798 798 804 781 757 763 770 759 772 781 768 T 769 766

263 199 198 207 202 201 210 160 117 126 153 118 155 158 46 136 135 149
536 495 495 500 .S00 500  .S50S 466 444 449 458 445 459 465 456  AS6 4S5 A4
813 797 797 799 800 800  .802 785 716 778 781 776 181 785 780 781 781 179

125 8 100

15 4 60 253 200 .198 213 205 204 219 168 .17 132 161 125 167 174 156 153 .146  .157
523 488 488 497 497 496 505 A7l 436 445 45T 441 462 4TI 454 459 452 453
811 798 797 .801 .803 .803 .806 784 an .780 784 779 186 792 784 186 784 .783
. _ 803 o180 784 7 786 192
20 2 40 233192191 212 202 199 223 183 108 .131 165 125 176 187  .166 168 152 161
S14 489 488 502 502 500 SIS 487 436 450 465 446 475 489 463 AT3 463 462
810 800 799  80S 808 807 813 787 779 784 790 783 794 802 .89 793 190 188
25 4 100 228 .19 .19 204 .19 199 207 183 147 155 169 .153 174 178 166 170 .164 167
S09 489 489 494 494 494 499 4S8 4S8 463 469 461 463 478 468 AT2 468 468
805 797 797 799 800 800 802 790 784 786 789 786 790 794 788 790 789 788
25 8 200 227195195 199 197 196 201 176 1S4 158 168 15T .70 172 165 165 163 166
SIT 497 497 499 499 499 502 482 A2 414 AT8 4T3 419 AB2 AT 478 411 4T
- , 806 798 798 799 800 800 800 79 788 789 790 788 791 792 19 790 190 190
30 2 60 226199 198 212 205 204 219 194 144 158 177 186 ;

187 193 A74 184 072 075
A84 493 476 483 476 4715
788 793 784 787 784 784

il Biri oirio PR BN LV LD LD i L LD L

10 493 493 502 502 501 510 493 458 467 477
: . . . : ] : 466
98 91 191 795 797 197 800 195 177 781 784 780

P

(table continues)
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Np p n p R 1 2 3 4 5 6 p 7 8 9 10 11 12 13 14 15 16
50 2 100 2 201 192 192 200 196 195 204 195 159 .168 .178 .167 .84 .188  .177 .83 176 IAT]
S 506 496 496 501 501 501 506 497 475 480 486 480 490 496 485 490 486 48
8 799 795 795 797 799 799 .80l 79 787 789 791 789 793 797 791 793 .91 7191
04 200 2 213 197 197 201 199 199 203 191 173 177 182 176 186 187 182 18§ 181 182
S5 .501 497 496 499 499 499 502 492 48] 484 487 484 489  49] 486 489 486 486
& 800 796 796 797 798 798 799 798 190 791 792 791 793 795 192 193 192 92
100 2 200 2 208 200 200 204 201 201 205  .196 .184 .188 192 187  .196 .197  .192 196 192 192
S 502 497 497 500 500 500 503 498 487 490 492 490 495 497 492 49§ 492 49
8 800 798 798 799 799 799 800 797 794 795 79 795 7197 798 796 297 796 79

Note. N/p: N/p Ratio. p: Number of predictor variables. n: Sample size. p>: Squared population multiple correlation
coefficient. R’: Sample R’ without adjustment. 1: the Smith formula. 2: the Wherry formula-1. 3: the Wherry
formula-2. 4: the Olkin and Pratt formula. 5: the Pratt estimation of the Olkin and Pratt formula. 6: the Claudy-3
formula. p.’: (Estimated) population squared cross-validity coefficient. 7: the Lord formula-1 8: the Lord
formula-2. 9: the Burket formula. 10: the Darlington formula. 11: the Browne formula-1 with p* estimated by
the Wherry-1 formula. 12: the Browne formula-2 with p” estimated by the Olkin and Pratt formula. 13: the
Claudy formula-1. 14: the Claudy formula-2. 15: the Rozeboom formula-1 . 16: the Rozeboom formula-2.
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Table 4

Summary of Means of the Adjusted R%and R 2 (Multicollinearity r = .3)

Np p n p R 1 2 3 4 5 6 pd 7 8 9 10 11 12 13 14 15 16
- - .526 128 .145 155 -380 -090 .118
25 8 20 2 532 221 193 260 220 201 266  .121 -232 -170 .183 .5
S5 700 500 481 524  .S11 502 539 322 208 248 383 019 323 353 344 113 299 301
8 877 795 787 805 805 803 816 680 675 691 723 598 672 697 704 636 712 .65
i 2 . 152
S 4 20 2 367 209 .98 248 226 212 271 .15 -055 -002 .182 -082 163 .184  .179 021 051 .
S 578 472 465 499 495 489 525 417 296 332 3% 278 390 421 381 347 367 365
8 823 803 802 813 819 818 830 752 760 772 784 766 790 808 782 789 .84 .TI8
5 8 40 2 35 193 .18 312 198 .195 220 .25 -021 .005 .130 -055 .122 .13 J18 -003 032 .13
S 598 498 494  S10 508 507 521 409 365 381 417 344 406 421 403 376 397 393
8 936 795 794 800 802 .802 807 753 741 747 756 732 749 759 7153 745 154 742
75 8 60 2 299 191 189 204 195 194 209 .31 051 067 .133 043 .32 138 122 075 083 .124
5 564 497 495 .505 504 504 S13 440 410 420 439 405 436 445 432 424 430 427
8 .822 794 794 .798 199 799 .803 769 759 763 .768 a57 766 172 .7667“7 ”.7675 ) 767 762
102 20 2 271 .19 .18 231 213 200 259 205 014 063 012 378 174 195  am 129 109 162
5 525 473 470 499 499 494 528 493 358 390 429 373 443 473 421 433 420 A16
4 801 779 778, 790 797 796 809 780 131 745 758 738 765 184 55 163 751 182
10 4 40 2 270 .189 187 209 197 194 219 157 062 085 .148 068  .151 161 144 114 108 140
S 539 488 487 501 500 499 .SI13 452 408 423 443 412 448 462 438 441 437 435
_ -8 816 806 806 811 814 814 819 775 .78 791 796 790 800 809 796 800 196 795
125 8 100 2 262 198 197 206 201 200 209 .53 116 .125 .152 117 1S4 157 144 138 134 148
S 536 495 495 500 500 500 505 466 444 449 4S8 444 459 464  4S6 4S5 4SS 454
8 813 797 796 799 800 800 802 787 .776 778 .81 716 781 784 780 780 780 .779
15 4 60 2 253 200 .199 213 206 204 219 .75 .8 132 162 .25 168 174 156 154 147 157
S 526 492 492 501 500 500 .509 479 440 449 461 445 466 4TS 4S9 463 458 AST
8 806 799 799 802 805 804 808 784 785 789 793 788 796 .80l 792 795 193 192
20 2 40 2 238 198 197 218 208 205 229 183 .11S .37 171 .31 Jd82 193 172 174 158 167
S 519 494 494 507 507 506 520 478 442 456 471 452 480 494 468 488 469 467
4 804 793 793 798 801 801 807 797 7712 777 783 776 187 796 782 787 183 82
25 4 100 2 228 196 195 204 .199 199 207 178 147 155 169 .153 174 178 166 170 164 167
5 513 493 493 498 498 498 .503 480 462 468 473 466 476 483 A73 AT 473 AT2
8 803 799 799 801 802 802 804 790 791 793 795 793 797 800 795 797 195 79§
s 28 8 200 2 229 .197 197 201 .198 .198 202 177 .156 .161 .170 159 T2 174 167 167 165 .168
S S1T 497 497 500 499 500 502 479 472 474 478 413 479 482 471 418 4AT1 4T
8 806 798 798 799 800 .800 .801  .793 788 789 790 789 791 792 790 791 790 190
30 2 60 2 217 190 190 204 196 195 210 .198 135 .149 .168 .147 .178 .185 .168 175 .163 167
5 .508 491 491 .500 .500 499 .508 497 456 465 474 464 482 491 473 481 474 A73
8

806 799 799 802 804 804 .808 :791 785 789 792 788 795 801 792 795 :792 792

(table continues)
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Np p n p 3 4 5 6 ol 1 8 9 10 1 12 13 14 15 16
50 100 2 216 200 200 .208 204 203 212 201 168 176 186 175 192 196 185 191 184 185
5 .501 491 490 496 496 495 .501 491 470 A75 481 475 485 491 480 A8S A80 480
R .800 796 796 798 799 799 .801 195 787 790 792 789 J94 191 792 793 192 191
50 200 2 214 198 197 202 199 199 203 198 173 177 183 177 186  .188 182 185 181 .182
S Sl .501 501 .503 .503 .503 .506 496 486 488 491 488 493 496 491 493 491 491
3 .804 802 .802 _.803 .803 .803 .804 797 .798 799 .800 799 .801 .802 .800 .801 .800 .800
100 200 2 206 .198 .198 202 200 200 204 198 182 186 .190 .186 194 196 9% 194 190 190
S 506 .501 .501 .503 503 503 .506 498 490 493 496 493 498 501 496 498 496 495
3 .802 800 .800 .801 .802 802  .803 798 796 197 198 7197 799 801 798 799 798 7198
Note. N/p: N/p Ratio. p: Number of predictor variables. n: Sample size. p*: Squared population multiple correlation

coefficient. R’: Sample R’ without adjustment. 1: the Smith formula. 2: the Wherry formula-1. 3: the Wherry
formula-2. 4: the Olkin and Pratt formula. S: the Pratt estimation of the Olkin and Pratt formula. 6: the Claudy-3
formula. p % (Estimated) population squared cross-validity coefficient. 7: the Lord formula-1 8: the Lord
formula-2. 9: the Burket formula. 10: the Darlington formula. 11: the Browne formula-1 with p? estimated by
the Wherry-1 formula. 12: the Browne formula-2 with p* estimated by the Olkin and Pratt formula. 13: the
Claudy formula-1. 14: the Claudy formula-2. 15: the Rozeboom formula-1 . 16: the Rozeboom formula-2.
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Table 5

Summary of Means of the Adjusted R* and R.2 (Multicollinearity r = .5)

~

Np p n p R 1 2 3 4 5 6 pl 7 8 9 10 1n12 T R - B (1
25 8 20 2 52 203 .74 243 201 .81 248 109 -261 -198 184 -561  .123 140 162 -412 -116 .116
S 698 49 478 521 507 498 536 326 203 243 383 128 324 353 357 107 294 302
8 874 79 782 800 800 .788 812 673 668 684 717 588 666 691 698 628 706 .649
S 4 20 -2 353 192 181 232 208 .194 255  .146 -078 -024 .166 -106 .148 168  .157 -001 .030 .137
S 59 495 488 520 517 511 546 426 326 360 422 309 415 446 404 375 394 390
8 829 786 783 797 801 .800 813. 763 .71S 729 746 707 741 762 139 7S 743 .77
5 8 40 2 353 191 18 212 197 .193 219  .133  -022 003 131 -056 .22 131 119 -005 .030 .1I3
S 592 490 487 503 500 499 514 407 355 371 409 334 398 413 395 366 388 385
8 834 792 791 797 7199 799 805 753 727 .74 753 728 46 156 749 741 750 .739
75 8 60 2 305 198 195 211 202 201 216 130 059 075 137 051 136 .42 124 082 091 .128
5 567 500 499 508 .S08 507 516 445  4l4 424 442 409 440 449 436 428 433 43
8 823 796 795 799 801 801 804 769 760 764 769 758 .68 174 768 .66 768 .164
10 4 40 2 267 .185 183 206 .194 191 215 167 057 081 .142 064 .146 .15  .135 .1i0 .104 134
S5 540 489 488 502 .S01 .00 .S15 463 409 424 444 413 449 463 439 442 438 436
8 812 790 91 796 799 799 80s 772 758 764 770 60 773 182 769 772 770 167
10 2 20 2 282 202 198 242 225 213 271 .80 029 077 223 052 .82 205 174 .42 122 .166
S 532 480 477 506 507 501 536 450 367 399 437 383 451 4Bl 432 441 428 425
8 801 779 777 790 79 795 808 793 730 744 757 747 764 183 154 762 756 151
125 8 100 2 264 200 199 208 203 202 211 .60 .18 127 154 119 156 160  .147 137  .136  .150
5 540 500 500 505 505 .50 .S10 461 449 4SS 464 450 464 470 461 461 460 459
8 814 798 798 800 801 801 803 787 777 779 782 777 782 78 781 %2 782 .78
15 4 60 2 255 202 201 215 208 206 222 173 .20 .134 164 .128 170 177 159 156 149  .160
S 527 494 493 502 502 501 S0 479 442 451 462 446 46T 476 460 465 460 459
8 804 790 790 793 795 795 799 187 368 772 .76 70 718 184 .76 19 716 T4
20 2 40 2 227 186 U85 207 .19 193 218 184 102 124 158 119 170 .180  .157 162 146 .1S§
S 506 480 479 493 493 491 506 486 426 440 4S5 436 466 479 453 464  AS4 452
3 804 794 794 800 802 802 807 792 773 778 784 777 788 797 783 788 784 783
25 4 100 2 231 198 198 206 202 201 201 .80 .IS0 .1S8 172 .15 177 .81 170 172 166  .170
5518 498 498 503 503 503 .S08 483 468 473 479 472 483 488 478 482 478 478
8 805 797 797 799 800 .800 802 791 .785 787 789 .78 790 794 789 7190 789 .18
25 8 200 2 231 199 .19 203 200 200 205 176 .58 163 172 161 174 176 169, 169 167 170
3 519 499 49 01 501 501 503 482 4T3 476 4B0 4TS 4Bl 483 479 480 478 473
8 806 798 798 799 799 799 800 794 788 789 790 788 790 792 190 7% 190 789
302 60 2 224 197 19 210 203 202 217 91 42 1% .75 154 84 191 473 182 170 173
S SIS 498 498 506 506 506 SIS 488 463 472 482 471 489 498 481 488 481 480
B 79 792 792 795 797 797 801 792 798 781 785 781 788 794 785 787 785 784

(table continues)
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Np p n p R 2 3 4 5 6 pr 7 8 9 10 1 12 13 14 15 16
002 100 2 226 211 210 218 214 214 222 195 178 187 .19 186 203 207 195 202 .195  .195
S0 507497 497 502 502 502 50T 493 471 4B 487 482 492 497 487 492 487 487
~-..8 802 798 798 800 801 801 803 797 7% 792 794 792 796 199 194 19 194 195
0420 2 214 198 198 202 199 199 203 g1 7 178 183177 186 188 182 185 182 .1g2
S 509 499 499 502 502 502 504 493 484 487  4%9  ase 492 494 489 491 489 489
B 802798 798 799 799 799 800 797 792 793 794 793 795 196 194 795 794 794

100 2 ;
200 g ?3; 197197 200 199 99 203 o gy yss A9 185 193 195 189 193 189 19
- - 300 500 502 502 502 505 498 490 492  40a 492 497 500 495 497 495 495
8 . 799 799 800 800 800 801 799 795 16 97796 198 199 797 798 197 797

Note.  N/p: N/p Ratio. p: Number of predictor variables. n: Sample size. p*: Squared population multiple correlation
coefficient. R’: Sample R’ without adjustment. 1: the Smith formula. 2: the Wherry formula-1. 3: the Wherry
formula-2. 4: the Olkin and Pratt formula. 5: the Pratt estimation of the Olkin and Pratt formula. 6: the Claudy-3
formula. p  (Estimated) population squared cross-validity coefficient. 7: the Lord formula-1 8: the Lord
formula-2. 9: the Burket formula. 10: the Darlington formula. 11: the Browne formula-1 with p’ estimated by
the Wherry-1 formula. 12: the Browne formula-2 with p® estimated by the Olkin and Pratt formula. 13: the
Claudy formula-1. 14: the Claudy formula-2. 15: the Rozeboom formula-1 . 16: the Rozeboom formula-2.

(9]
(@]




51
where the sample R°s were minimally smaller than the corresponding population p? : (a)
multicollinearity » = .1, n/p = 30 (p = 2, n = 60) , population p* = .8, sample R’ = .798;
and (b) multicollinearity » = .1, n/jp = 50 (p = 2, n = 100), population p> = .8, sample
R*=.799. From these results, it was obvious that the statistical bias in multiple regression
was almost always positive, although not in every single case. Such results confirmed the
common concept of positive bias from previous studies (Cummings, 1982; Huberty &
Mourad, 1980; Kromrey & Hines, 1995), but differed in the sense that the “bias” was not

always positive.

Population p,° and Unadjusted Sample R’

From these tables, all the unadjusted sample R’s were greater than their
corresponding estimated population cross-validity coefficient p_* across the 135 sampling
conditions. Such results also confirmed the findings from previous numerous studies (e.g.,

Claudy, 1978; Cummings, 1982; Herzberg, 1969).

Population p° and Population p.?

From these tables, it was also observed that the estimated population cross-validity
coefficient p,> was almost consistently smaller than the corresponding population p%. Only
three instances where the estimated population cross-validity coefficient p s were
minimally greater than the corresponding population p’s: (a) for population p?> = 2, p.> =
205, while multicollinearity » = .1, and n/p = 10 (p = 2, n = 20); (b) for population p* =

2, p.2 = .205, while multicollinearity » = .3, and n/p = 10 (p = 2, n = 20); and (c) for

population p? = .2, p.> = 201, while multicollinearity » = .1, and n/p = 50 (p = 2, n = 100).




52

Such results confirmed the results from the previous studies (Claudy, 1978; Cummings,

1982; Herzberg, 1969), although p.* maybe larger than p? in a few rare cases.

Overall Summary

To help evaluate the performance of individual formula under different sampling
conditions, summary of frequencies of each analytical formula as an “unbiased estimate”
across different degrees of multicollinearity, population p?, and n/p ratio are listed in Table
6. Because there were too many »/p ratio conditions, for the sake of clarity, only S n/p

ratio conditions (5, 10, 25, 50, and 100) are presented in this table.

Best Estimator(s) of the Population o

Based on Table 6 and the relative rankings of percentages of unbiased estimates,
for the six analytical formulae estimating the population p?, several observations are made:

1. Across the three different conditions of multicollinearity, approximately 91% to
98% of the time the Pratt formula gave unbiased estimates of the population p? that gave
the best performance among the six analytical formulae.

2. Across the three different conditions of population p? approximately 93% to
96% of the time the Pratt formula gave unbiased estimates of population p?. Still, its
performance was the best among the six analytical formulae.

3. Across the five different conditions of #/p ratio, approximately 83% to 100% of

the time both the Pratt formula gave unbiased estimates of population p>. Again the

performance of the Pratt formula was the best among the six analytical formulae.




Table 6

n'p Ratio--Estimators of p?

Multicollinearity Population p? n p Ratio
Formula Rank1® .1 3 5 Rank 2° 2 5 8 Rank3! 5 10 25 50 100
Smith 3 8222 86.67 8222 3 84.44 7778 88.89 3 100 3889 9444 9444 100
Wherry-1 5 6222 7778 68.89 - 66.67 6222 80.00 5 66.67 2778 94.44 100 100
Wherry-2 4 7111 80.00 80.00 5 53.33 86.67 93.33 4 66.67 66.67 100 94.44 100
Olkin/Pratt 2" 9333 86.67 93.33 2" 91.11 91.11 95.56 2* 100 77.78 100 94.44 100
Pratt 1* 9778 91.11 91.11 1 95.56 93.33 93.33 1* 100 83.33 100 9444 100
Claudy-3 6 5778 60.00 57.78 6 4222 5333 80.00 6 33.33 2222 100 89.89 100

* Indicates the best two rankings.

® Rank1: performance ranking of the analytical formulae across different conditions of multicollinearity; lower ranking indicates better
performances.

¢ Rank2: performance ranking of the analytical formulae across different conditions of population p*; lower ranking indicates better
performances.

¢ Rank3: performance ranking of the analytical formulae across different n/p ratio; lower ranking indicates better performances.

W
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Table 7

Percentages of Cell Conditions in Which Unbiased Estimates Are Observed Across Multicollinearity Conditions, Population p? and n/p

Ratio -- Estimators of p.?

Multicollinearity Population p? 1/p Ratio

Formula Rank1® 1 3 5 Rank 2¢ 2 5 8 Rank3? 5 10 25 50 100
Lord-1 9 22.22 82.89 2444 10 0 20.00 S1.11 10 0 0 50.00 4444 66.67
Lord-2 8 28.89 26.67 31.11 8 2.22 2222 60.00 ) 33.33 556 55.56 5556 71.78
Burket 5 4444 5778 21.11 3 4444 5778 64.44 3 77.78 2222 88.89 77.78 100
Darlington 10 24.44 2222 2222 9 444 20.00 4444 9 0 0 50.00 55.56 77.78
Browne-1 1" 7333 77.78 77.78 I 75.56 71.11 80.00 I? 77778 50.00 9444 88.89 100
Browne-2 2*  T71.11 75.56 75.56 2 66.67 71.11 8444 2° 55.56 50.00 100 94.44 100
Claudy-1 4 4444 S51.11 57.78 5 40.00 46.67 064.44 4 66.67 2222 77.78 7222 100
Claudy-2 3 48.89 46.67 57.78 6 31.11 46.67 73.33 5 2222 2222 8333 89.89 100
Rozeboom-1 7 31.11 35.56 48.89 7 15.56 33.33 66.67 6 3333 556 66.67 72.22 100
Rozeboom-2 6 37.78 44.44 57.78 4 42.22 3333 60.00 8 I11.11 IL.11 8333 61.11 100

* Indicates the best two rankings.

Rank1: performance ranking of the analytical formulae across different conditions of multicollinearity; lower ranking indicates better
performances.

Rank2: performance ranking of the analytical formulae across different conditions of population p*; lower ranking indicates better
performances.

Rank3: performance ranking of the analytical formulae across different 7/p ratio; lower ranking indicates better performances.
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The overall performance of the most commonly used (in both SPSS and SAS) Wherry-2
formula was approximately the fourth or the fifth best among the six analytical formulae.
The Pratt formula, Olkin and Pratt formula, and the Smith formula all outperformed the
Wherry-2 formula. Based on the results obtained for estimating the population p?, the
Wherry-2 formula did not demonstrate any advantage over those formulae mentioned
above.
Best Estimator(s) of the Population Cross-
Validity Coefficient p,

From Table 7 and the relative rankings of percentages of unbiased estimates, for
the nine analytical formulae estimating population cross-validity coefficient p % the
following observations were made:

1. Across the three different degrees of multicollinearity, approximately 73% to
78% of the time the Browne formula (with p* estimated by the Wherry formula-1) gave an
unbiased estimate of the population cross-validity coefficient p.* that gave the best
performance among the nine analytical formulae.

2. Across the three different conditions of population p?, approximately 76% to
80% of the time the Browne formula (with p? estimated by the Wherry formula-1) gave an
unbiased estimate of the population cross-validity coefficient p.*. Still its performance
was the best.

3. Across the five different conditions of »#/p ratio, approximately 50% to 100% of

the time the Browne formula (with p?® estimated by either the Wherry formula-1 or the

Olkin\Pratt formula) gave an unbiased estimate of the population cross-validity coefficient
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p.2. Again, the performance of the Browne formula is the best among the nine analytical
formulae.
In all, the overall performance of the Pratt formula was the best among the six
analytical formulae estimating the population p*>. The Browne formula (with p? estimated
by either the Wherry formula-1 or the Olkin/Pratt formula) was the most effective

estimator of the population cross-validity coefficient p_*.
Descriptive Statistics for the Bias

Means and standard deviations for the biases from the 500 replicates across the
specified sampling conditions (population p?, #n/p ratio, and multicollinearity ) were
obtained. Because the amount of information obtained was large, these descriptive
statistics are presented in Appendix F, rather than in a table in the body of the text.

From the tables in Appendix F, the biases for these analytical formulae were
obvious, especially when the #/p ratio was relatively small. And most of the time, means
and standard deviations for the biases from the analytical formulae that estimated
population p? were much smaller than for those from the analytical formulae that
estimated population cross-validity coefficient p_2. This indicated that the formulae
estimating population p? tended to give a better estimate than those that estimated
population cross-validity coefficient p .

For an ideal analytical formula, the means of these biases approached zero

(accuracy) and the standard deviations was the smallest (stable), if it was effective in

adjusting for the R’ shrinkage in multiple regression. Across each of the sampling
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conditions, frequencies for each analytical formula with mean bias closest to zero and the
smallest standard deviation were recorded. The total frequencies for each analytical
formula were then summarized. Based on the frequency rankings obtained, the best
analytical formulae with means of bias closest to zero and the smallest bias standard
deviations were selected as the “recommended formulae” and summarized across different
sample sizes and number of predictor variable in Tables 8 and 9. The results indicated
that the Pratt formula was the best estimate among the analytical formulae estimating
population p?, especially when the » p ratio was relatively small.  Still the Browne
formula gave the best estimate for the population cross-validity coefficient p.* across
almost all these different 72/p ratio conditions.

Also based on the means and standard deviations from the sample statistical biases
obtained, analytical formulae with the largest mean biases and the largest bias standard
deviations were selected as the worst formulae and summarized across different sample
sizes and number of predictor variables in Tables 10 and 11 . The results indicated that
the Claudy-3 formula was the least effective analytical formula estimating the population
p?, while the Darlington formula and Lord-1 formula performed the worst in estimating
the population cross-validity coefficient p.>. Cautions should be warranted in using these

analytical formulae estimating statistical bias, and preferably, using the most effect

analytical formulae instead.




Table 8

Number Sample size (n)
of predictors (p) 20 40 60 100 200
2 Pratt formula Pratt formula Pratt formula & Wherry-2 formula Smith formula &
Claudy-3 formula Wherry-1 formula
4 Pratt formula Olkin/Pratt formula ~ Wherry-1 formula Pratt formula Claudy-3 formula
8 Pratt formula  Olkin/Pratt formula Pratt formula Pratt formula Wherry-2 formula

& Pratt formula

Table 9

Recommended Formulae for Estimating Population Cross-Validity Coefficient p.2 across Different

Predictor Variabl

Number ‘ Sample size (n)

of predictors (p) 20 40 60 100 200 .
2 Browne-2 formula Browne-2 formula Browne-2 formula Browne-2 formula Claudy-2 formula
4 Browne-2 formula Browne-2 formula Browne-2 formula Browne-2 formula Browne-2 formula
8 Browne-1 formula Browne-2 formula Burket formula Browne-2 formula Browne-2 formula

& Rozeboom-2 formula

(¥
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Table 10

Worst Formulae for Estimating p> Across Different Sample Size () and Number of Predictor Variables (p)

Number Sample Size (n)
of predictors (p) 20 40 60 100 200
2 Claudy-3 formula Claudy-3 formula Claudy-3 formula Claudy-3 formula Claudy-3 formula
4 Claudy-3 formula Claudy-3 formula Claudy-3 formula Claudy-3 tormula Claudy-3 formula
8 Claudy-3 formula Wherry-| formula Claudy-3 formula Claudy-3 formula Smith formula &
Wherry-1 formula
Table 11

Worst Formulae for Estimating p.2 Across Different Sample Size (n) and Number of Predictor Variables (p)

Number Sample Size (n)

of predictors (p) 20 40 60 100 200
2 Lord-1 formula Lord-1 formula Lord-1 formula Lord-1 formula Lord-1 formula
4 Darlington formula Lord-1 formula Lord-1 formula Lord-1 formula Lord-1 formula
8 Darlington formula Darlington formula Darlington formula Lord-1 formula l;ord—l formula

n
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Visual Representation--Boxplots
of the Estimates

Visual representation (side-by-side modified boxplots) comparing all the analytical
formulae across the 500 replicates were produced using the GPLOT option in the SAS
graphic procedure. The boxplot was chosen because it provided distributional information
of sample estimates. For the boxplot presented in the study, the box length equaled IQR
(Interquartile Range), with the lower end equal to the first quartile (25th percentile) and
the upper ends equal to the third quartile (75th percentile). The two lines (whiskers)
outside the box extend to 1.5xIQR beyond the quartiles, and any observations beyond the
range of these whiskers were considered outliers, and were plotted as individual dots
(Moore, 1993). In the boxplots shown in Figure 2, population parameters were indicated

by the horizontal lines.

Estimators of the Population g’

One hundred thirty-five box plots were produced for the six analytical formulae
estimating population p* across different conditions of multicollinearity, population p?,
and n/p ratio. Again, for the sake of clarity, only three #/p ratio conditions (5, 25, and 50)
are selectively presented in Figure 2. The numbers of sample size to the numbers of
predictor variables are 20/4, 100/4, and 200/4, respectively.

From these boxplots, it is obvious that the sample multiple 2” was almost
consistently greater than the corresponding population p*. This was shown from these

graphs that the third quartiles were almost always higher than the horizontal lines. Several

observations were made from these boxplots:
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1. Across the three different conditions of # p ratio, as n/p ratio increased (from 5
to 50), the IQRs for the six estimates decreased, which indicated that their performances
became more stable.

2. Across the three different conditions of population p?, the performances of
these formulae were comparable when p* was either small (.2) or moderate (.5). When p°
was relatively large (.8), the IQRs for the six estimates were the smallest, which indicated
that the performances were the most stable

3. Across the three different conditions of multicollinearity, all the boxplots were
similar in shapes, which indicated that multicollinearity did not seem to have any
significant effects on the distributions of these estimates
Estimator of the Population Cross-Validity
Coefficient p,;’

One hundred thirty-five modified box plots were also produced for the 10
analytical formulae estimating the population cross-validity coefficient p.* across different
conditions of multicollinearity, population p*, and 1 p ratio. Again, for the sake of clarity,
only three n/p ratio conditions (5, 25, and 50) are selectively presented in Figure 3. The
numbers of sample sizes to the numbers of predictor variables are 20/4, 100/4, and 200/4
respectively.

1. Across the three different conditions of » p ratio, as the n/p ratio increased

(from 5 to 50), the IQRs for the 10 estimates decreased, which indicated that their

performances became more stable.
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2. Across the three different conditions of population p*, the performances of
these formulae were comparable when p* was either small (.2) or moderate (.5). And
when p* was relatively large (.8), the IQRs for the six estimates were the smallest, which
indicated that the performances were the most stable.

Note that when p* was .2 and 22 p ratio was 35, all the outliers from these
distributions were located at the upper end. This indicated when the population p* and the
n/p ratio were both relatively small, there was some tendency for these analytical formulae
to overestimate the population cross-validity coefticient p.>. Among the 10 formulae, the
Burket formula produced more extreme large outliers.

When the population p* is either .2 or .5, the 10 analytical formulae could be
categorized into two groups: overestimator and underestimator of the population cross-
validity coefficient p.*>. For the overestimators, these formulae tended to have more large
positive outliers; the upper whiskers were longer than the lower whiskers, and usually the
75th percentiles were also larger than the population p.>. The Browne formula, the Burket
formula, and the Claudy formula-1 all belong to this category. For the underestimators,
these formulae tended to have more large negative outliers; the lower whiskers were
sometimes longer than the upper whiskers, and sometimes the 75th percentiles are smaller
than the population p.>. The Claudy formula-2, the Darlington formula, the Lord formula-

1 and -2, and the Rozeboom formula-1 and -2 all belong to this category. Such a

distinction cannot be clearly made when the population p* is relatively large (.8).
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3. Across the three different conditions of multicollinearity, the distributions for
the 10 analytical formulae across different multicollinearity conditions were similar in
shapes, which indicated that multicollinearity did not seem to have any dramatic effects

on the performances of these estimates.

Explaining the Variations of Sample Estimate Biases

Bias is defined as the difference between the corrected R” obtained by applying
each analytical formula to the sample and the population parameters; that is, the
population p* or the population cross-validity coefficient p.*. For the six analytical
formulae designed for estimating the population p*, biases were calculated by subtracting
the prespecified population p* (2, .5, 8) from the corrected ” obtained from each
formula. And for the 10 analytical formulae designed for estimating the population cross-
validity coefficient p_°, biases were calculated by subtracting the estimated population
cross-validity coefficient p_* from the corrected .

Factors that might have influenced the biases of these analytical formulae were
investigated using the analysis of variance (ANOVA) model to partition the variances of
sample estimated biases to different sources. These factors included: sample size,
population p?, degree of multicollinearity among the predictor variables, and number of
predictor variables. The two-way, three-way, and four-way interactions among these
factors were also considered potential sources in the analysis. Tables 12 and 13 present

the results of partitioning the variance of different sources of sample estimate biases for

the analytical formulae for either the population p? or for the population cross-validity




Table 12

Eta-Squares for Different Sources of Variance for the Analytical Formulae Estimating Population p?

Source Smith Wherry-1 ~ Wherry-2 Olkin\P'ratt Pratt Claudy-3
Sample size 061 284 335 0602 .002 1.522
Population p’ 029 010 435 0185 004 475
Sample size xpopulation p’ 066 019 364 0482 001 410
Multicolhnearity 000 000 .000 0003 .000 000
Sample size xmulticollinearity 020 019 020 0191 019 020
Population p* *multicollinearity 004 004 003 0034 003 003
Sample size =population p* xmulticollinearity 031 051 050 0302 030 029
Number of predictors () 022 001 021 0008 003 001
Sample size ~ p 062 003 059 0027 005 002
Population p* < p 005 006 004 V0S50 .009 000
Sample size * population p* x 019 014 019 0138 018 01+
Multicollinearty x p 002 002 001 0016 .002 001
Sample size ~multicollinearity » 018 018 016 0181 018 018
Population p* ~multicollinearity < p 011 0ll 01l 0109 011 011
Sample size *population p* xmulticollinearity = p 046 046 046 0457 046 045

NG}
o o]




Table 13

Eta-Squares for Different Sources of Variance for Analytical Formulae Estimating Population _Cross-Validity Coefficient p 2

Source Lord-1 Lord-2 Burket Darlington Browne® Browne” Claudyl Claudy2 Rozebooml Rozeboom?
Sample size 6.593 3991 018 1.183 049 463 069 6400 1.634 373
Population p* 3.747 2737 005 3.660 005 006 042 2073 1.76l 049
Sample size ~population p* 3300 2544 024 4522 040 043 165 3159 1.732 128
Mulucollinearity 001 001 003 001 004 004 004 001 001 003
Sample size xmulticollinearity 024 026 012 0106 0438 047 000 020 029 048
Population p* <multicollinearity 005 00S 007 003 009 009 009 004 005 009
Sample size -population p? x 048 051 029 054 074 073 077 040 055 074
Multicollincarity

Number of predictors (p) 182 154 002 2140 020 027 271 2083 070 039
Sample size = p 191 150 007 4.180 081 079 619 3961 041 090
Population p* = p 501 585 007 1297 016 008 014 1407 33 033
Sample size ~population p* = p 1717 802 030 2522 031 023 059 2457 711 041
Multicollinearity x p 009 009 006 007 011 012 010 008 010 010
Sample size <mulucollineanty=p 027 029 025 022 050 031 026 .025 031 028
Population p* ~multicollinearityxp 012 013 014 009 017 017 016 011 014 016
Sample size <population p* 055 059 057  .040 082 081 083 .047 064 082

Multicollinearity x p

* The Browne formula with p? estimated by the Wherry formula- |
* The Browne formula with p? estimated by the Olkin\Pratt formula.
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coefficient p.”. In the tables, eta-square was used as the percentage of variation accounted

for by a source, and the eta-square was obtained through:
n° = [(sum of squares due to a source)/(toal sum of squares)] x 100

From these tables, the amount that each source explained ranged from nearly zero
(.0002%) to 6.59% of the total variance in the sample estimate biases obtained from these
analytical formulae. The overall small amount of variance accounted for by different
sources in the model indicated that the variation of sample estimate biases was mainly due
to random vanation. Factor(s) or interactions that accounted for less than .1% of the total
variance were omitted from discussion because of the insignificant amount of variance

explained by these factors in the model.

Sample Size

Sample size contributed the most to the variation of three out of six analytical
formulae estimating population p*, and 5 out of the 10 analytical formulae estimating the
population cross-validity coefficient p.>. The proportion of variance accounted for by
sample size ranged from .06% to 1.32% for the formulae estimating population p-, and
from .16% to 6.59% for the formulae estimating the population cross-validity p.”. It
appeared that sample size might be of some importance to the total variation for the bias
obtained from the Wherry formula-2, the Claudy formula-3, the Lord formula-1 and -2,

the Browne formula (with p? estimated by the Olkin\Pratt formula), the Claudy formula-

2, and the Rozeboom formula-2.
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Population

Variances accounted for by the population p? ranged from .004% to .47% for the
formulae estimating population p>, and from .005% to 3.75% for the formulae estimating
the population p,>. Among all the sources of variation, this factor contributed the most to
the total variation for the Rozeboom formula-1 (1.76%) that estimated population cross-
validity p.>.

The Interaction Between Sample
Size and the Population ©*

Variances accounted for by the interaction term between sample size and the
population p? ranged from .01% to .41% for the formulae estimating population p*, and
from .04% to 4.52% for the formulae estimating the population p.>. Among all the sources
of variation, this interaction term contributed the most to the total variation for the Smith
formula (.07%) and to the Darlington formula (4.52%). For the six formulae estimating
population p?, it accounted for less than .4% of the total variation. For the Rozeboom-1
and Rozeboom-2 formula that estimated population cross-validity coefficient p 2, it

contributed the second most to the total variation (1.73% and .13%, respectively).

Number of Predictors (p)
The variances explained by the number of predictors accounted for less than .03%

of the total variation for the six analytical formulae estimating population p>. For the 10

analytical formulae estimating population cross-validity coefficient p 2 the variance
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accounted for by this factor ranged from .002% to 2.14% of the total variance. However,
the amount of variation this factor explained was relatively small among all the other
sources.

The Interaction Between Sample Size
and Number of Predictors (p)

The variances explained by the interaction term between sample size and number
of predictors accounted for less than .06% of the total variation for the six analytical
formulae estimating population p*, and it ranged from .007% to 4.2% for the 10 analytical
formulae estimating population cross-validity coefficient p.*. The interaction term
accounted the most for the total variation for the Claudy formula-1 (.62%), and the
second most for the Darlington formula (4.19%) and the Claudy formula-2 (3.96%).

The Interaction Between Sample
Size, the Population p°, and Number
of Predictors (p)

The three-way interaction term explained less than .02% of the total variance for
the analytical formulae estimating population p*, and it ranged from .02% to 2.46% for the
analytical formulae estimating the population cross-validity coefficient p.>. The effect of
this interaction term might be more related to the analytical formulae estimating the
population cross-validity coefficient p.* than for those estimating the population p*.

However, the overall percentage for this interaction term was relatively small, and no

definite conclusion can be drawn from the results.




CHAPTER V

CONCLUSIONS

When estimating - shrinkage in multiple regression, there is considerable
confusion and little consensus in the literature about which analytical formula should be
utilized under what circumstances. The present study utilized a Monte Carlo simulation to
generate correlated multivariate random data, and investigated the effectiveness of various
analytical formulae designed to estimate 1% shrinkage in multiple regression under the
influence of commonly encountered confounding factors such as different degrees of
multicollinearity among the predictor variables, population squared multiple correlation
conditions, number of predictors, and sample sizes. Five hundred replicates were
simulated within each cell of the sampling conditions. Then analytical formulae were
applied to the simulated data in each sampling condition, and the adjusted R’s and R ’s
were obtained and then compared to their corresponding population parameters (p*

and p.%).

Discussion for Objective |

The first objective of the stuidy was to compare the accuracy and usefulness of
various analytical formulae for estimating the population p* in the population from which
the sample was drawn. Among the six analytical formulae designed to estimate the

population p*, the performances of the Pratt formula were found to be the most stable and

satisfactory, especially when »n/p ratio is relatively small. When n/p ratio was relatively
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large (e.g., 100), almost all of the six analytical formulae gave unbiased estimates across
all these sampling conditions. The commonly known Wherry formula (the Wherry-2
formula in the present study), which is also the currently used “shrinkage formula” in both
SAS and SPSS, only performed as well as other analytical formulae when the n/p ratio
was relatively large (e.g., 100). Small n/p ratio is not uncommon in social and behavioral
researches. The results indicated that it might need more consideration in choosing the
most effective shrinkage formula for estimating ¢ shrinkage in multiple regression
analysis, especially when there were relatively large numbers of predictor variables, and at
the same time the sample size was relatively small. Practically, all these analytical

formulae were relatively easy to calculate and straightforward to apply.
Discussion for Objective 2

The second objective of this study was to compare the accuracy and usefulness of
various analytical formulae for estimating /” shrinkage for cross-validation purpose in
multiple regression. Among the 10 analytical formulae designed to estimate the
population cross-validity coefficient p_* the Browne formula (with p? estimated either by
the Olkin\Pratt formula or the Wherry formula-1) gave the best and most stable estimate
across different conditions of population p*, multicollinearity, and 7/ ratio. Biases
obtained from the Browne formula with p? estimated by Olkin/Pratt formula were slightly
less than the Browne formula with p* estimated by the Wherry formula-1. When »/p ratio

was relatively small or moderate, the Browne formula with p* estimated by the Wherry

formula-1 gave a slightly better estimate than the Browne formula with p* estimated by the
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Olkin/Pratt formula. Such results supported the conclusions from studies by Schmitt
(1982) and Kromrey and Hines (1996), that the Browne formula was the most appropriate
estimator of p.>. When n/p ratio was relatively large (e.g., 100), more analytical formulae
gave unbiased estimates across all these sampling conditions.

To calculate some of these analytical formulae (the Browne formula, the Claudy
formula-1, and the Rozebocm formula-2), two steps were needed, because there are
requirements for obtaining the population p or p* first. However, the overall application

of these analytical formulae was also relatively simple and straightforward.

Discussion for Objective 3

The third objective of the study was to assess the effects of sample size, number of
predictor variables, and degree of multicollinearity among the predictors on the accuracy
and variability of the performances of the analytical formulae in estimating R* shrinkage in
multiple regression. The results suggested that /2 p ratio, instead of either the number of
predictors or the sample size alone, was the most influential factor that affected the
performance of these analytical formulae. Both the accuracy and stability of these
adjusted Rs increased as n/p ratio increased, especially when »n p ratio was relatively large
(e.g., 100). Most of these analytical formulae give unbiased estimates across all these
sampling conditions.

Variance partitioning was performed for the sample biases obtained from these

analytical formulae based on the factors considered in the study (e.g., sample size, number

of predictors, degree of multicollinearity, and population p*). Although sample size
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seemed to be the most important factor in explaining the variation in the sample biases for
most of these analytical formulae, the amount of variance accounted for by all these
factors was relatively small, and thus no definite conclusion can be drawn from the results.
However, for those analytical formulae that performed relatively well across different
sampling conditions (e.g., the Olkin/Pratt formula and the Browne formula), the amount of
variation each factor accounted for was much smaller than for those analytical formulae
where performance was not very satisfactory (e.g., the Lord formula-1, the Lord formula-
2, and the Darlington formula). It could be inferred that the performances of those
analytical formulae such as the Lord-1 and -2 formula might indeed be related, to some
degree, to the confounding factors investigated in the study. Nevertheless, the greatest
amount of variation accounted for by any factor was only 6.59%. Random error
appeared to account for the majority of the fluctuation in the performances of these
analytical formulae. Results from both boxplots and variance partitioning analysis
indicated that multicollinearity did not seem to play an important role in affecting the

performances of these analytical formulae in the present study

Study Limitations

One limitation of the present study is that only multivariate normal data were
generated and analyzed, which might have simplified the usually nonnormal and more
complex distributions that researchers usually expect from real data. In the future,

generating multivariate nonnormal distributions may provide data that could be more

representative of real research data. Another limitation about the data generation design is
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that only three of the simplest conditions of multicollinearity were simulated. Also, all
possible correlations among independent variables were assumed to be equal. With real
data, different degrees of correlations among different independent variables are more
likely to be expected. In future studies, a more complex multicollinearity pattern may
provide researchers with a better understanding of the influence of multicollinearity on the
performance of these analytical methods. Besides, only three types of population p? were
generated in this study, which might only represent part of what might be expected from
the real data. Also the fixed linear regression model was used in the present study. As it
is known, the assumptions of the fixed linear regression model usually cannot be met
completely. In the future, more complex regression models will be useful in handling
distributions for which these assumptions are not met, and providing researchers with
more insights when working with real data. Another approach to deal with this issue is to
replicate the study under different situations in which these assumptions are violated, and
to investigate the robustness of the fix linear regression model under these conditions.
Another limitation of this present study is that only analytical methods are
investigated in estimating R’ shrinkage in multiple regression analysis due to time limit and
project manageability. A comparative study of both the empirical and analytical methods
will provide more comprehensive and complete information on all the available methods

for estimating R? shrinkage in multiple regression. Further replications on both real and

simulated data are still needed to investigate the effectiveness of these analytical formulae.
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Recommendations for Applications in Social and Behavioral Sciences

Studies of relationships among variables are common in social and behavior
sciences. Psychologists. educational researchers, and sociologists have been using
multiple regression extensively to answer different research questions about relationships,
with the ease and availability brought by the popular statistical software (e.g., SPSS and
SAS; Cohen & Cohen, 1983; Huberty & Mourad, 1980). As mentioned earlier, there are
two major reasons to apply the multiple regression procedure: to estimate the population
multiple correlation coeflicient from a sample, or to predict the same dependent variable
for new samples from the same population but other than the one from which the
regression weights are derived. From the results in this study, the following
recommendations for applications in social and behavioral sciences can be made.

. The purpose of the application should be clearly defined before using the
multiple regression procedure. Such a distinction is needed because each analytical
formula is designed for only one of the two purposes. An effective analytical formula for
one purpose might not be accurate for the other.

2. The commonly used statistical software only provides an adjusted R without
distinction between the two parameters based upon the two research purposes. Also the
currently used Wherry-2 formula for calculating the adjusted 2 was not found to be the
most effective analytical formula. Therefore, it is recommended that to obtain a more

accurate adjusted 2°, instead of simply relying on the statistical software, researchers use

the Pratt formula for the first purpose, the Browne formula for the second purpose, or
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refer to the more detailed “recommended formulae™ across sample sizes and number of
predictors in Tables 8 and 9 of the present study.

3. The ratio of sample size to the number of predictors appears to be a major
factor that affects the performance of these analytical formulae. Therefore, it is
recommended that sufficient sample size and relatively few predictors be used in the

multiple regression procedure in order to obtain a relatively accurate and stable estimate of

the population parameter.
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Appendix A

Summary of Studies on Estimating R* Shrinkage in Multiple Regression Analysis




Author/Year

Estimating Method Study Design
Analytical methods (formula) Empirical methods Statistical methods Data set
1. Uhl & Eisenberg 1. Wherry None Regression and Prediction Test scores from Army
(1970) 2. Modified Wherry Classification Battery and
3. Lord-1 Navy General Classification
Test T
2. Claudy (1978) 1. Larson/ Smith/ Wherry 1. Mosier’s Double cross- Monte Carlo Study Computer generated data with
2. Olkin /Pratt validation parameter chosen to be
3. Pratt 2. Claudy’s Double representative in social and
4. Herzberg approximation shrinkage estimate behavioral sciences
4. Lord-2 /Nicholson
5. Darlington
6. Burket
7. Claudy-3
3. Newman (1979) 1. McNemar/Wherry Cross-validation Monte Carlo Study Artificially generated data set
2. Wherry/McNemer/Ezekiel with known parameters
3. Lord-1
4, Darlington
5. Lord-2
4. Huberty & 1. Smith! “Leave-one-out” Regressions and prediction Real data set from freshmen
Mourad (1980) 2. Ezekiel (A) and college students (B)
3. Wherry at the University of Georgia in
4. Olkin/ Pratt 1968-69

5. Nicholson/Lord-2
6. Darlington/Stein
7. Rozeboom-1

(to be continued)




Author/Year

Study Design

Sample Size (N)

Population Parameters

Number of Predictors (p)

Results and Conclusions

1. Uhl & Eisenberg
(1970)

2. Claudy (1978)

3. Newman (1979)

4, Huberty &
Mourad (1980)

50, 100, 150, 250,
325

20, 40, 80, 160

14, 30, 50, 100

Calculate Composite R from
sample

16 independent multivariate
normal population of 500 sets of
observations with parameters
similar to psychological and
educational literature; with 400
samples drawn for each sizes

p,>=.06, 07, .06, .08

pi=31, .32, .33, 34

p1=.45, 47, 46, .55

with 100 replications for each
conditions

Determined for the population
(A), B)

2 through 13

2,3,4,5

(A)9,3
®)4

The Lord-1 formula gave more accurate estimates
of shrinkage during cross-validation, regardless of
sample size and number of predictors.

1. To estimate p?, the double cross validity estimate
was the most accurate in the empirical methods.
The Herzberg approximation of Olkin/Pratt
formula performed almost equally well.

2. To estimate p?, the Darlington formula yielded
the most accurate estimate.

1. The McNemar/Wherry formula and the
Wherry/McNemer/Ezekiel formula are more stable
for different sample sizes.

2. Cross-validation shows no advantage over
analytical methods.

3. The results might due to artificially generated
data in the present Monte Carlo Study.

1. The Ezekiel formula and the Olkin/ Pratt formula
are almost equally accurate in estimating p?.

2. The Nicholson/Lord-2 formula, the Darlington/
Stein formula, and “Leave-one-out” method are
nearly accurate in estimating p .

3. “Leave-one-out” method is less practically
useful.




Author/Year

Estimating Method

Study Design

Analytical methods (formula)

Empinical methods

Statistical methods

Data set

5. Schmitt (1982)

6. Cummings
(1982)

7. Krus & Fuller
(1982)

1. Wherry/Ezekiel
2. Nicholson/Lord-2
3. Darlington
4.'Rozeboom-2

5. Cattin/Browne

6. Browne

1. Larson/Smith

2. Wherty

3. Ezekiel/Wherry

4. Olkin/Pratt/Herzberg
S. Pratt

6. Barten

7. Lord-2/Nicholson

8. Darlington

9. UhVEisenberg/Lord-1 -

10. Burket

11. Claudy-1
12.1and 10
13.2and 10
14.3 and 10
15.4 and 10
16. 5 and 10
17.6 and 10
18.7 and 10

1. Wherry/Ezekiel
2. Olkin/Pratt

None

1. Half-sample cross
validation

2. One- third

cross validation

3. Mosier’s Double cross
validation

4. Claudy’s Double cross
validation

Multicross validation

Regression and prcdibtion

Regression and prediction

Regression and prediction

Not specified

Real data set from freshman at
a large university

1. Prestructured data set
(Thurstone’s box)
2. Random data

(to be continued) O




Author/Year

Study Design

Sample Size (N)

Population Parameters Number of Predictors (p)

Results and Conclusions

5. Schmitt (1982)

6. Cummings
(1982)

7. Krus & Fuller
(1982)

40 to 240 (40, 80,
240)

30, 60, 120

Random data:
100x20 matrix
Thurstone’s data:
20x4 matrix

1t0.9(1,.2,.4,.6,.8.9 51025 (5, 10, 25)

Calculated with BMDP and SPSS 4, 8

1. Random data: p=.462 1. Random data: not
2. Thurstone’s box: p=.917 specified

2. Thurstone’s box: 3

1. When n/p ratio increases, the estimations from
those analytical formulae become less stable.

2. The Browne formula is more appropriate for
cross-validation purpose. '

1. Of the double cross-validation methods,
Mosier’s method is more accurate than Claudy’s
estimate.

2. To estimate p_?, for multiple regression, the
combination of the Ezekiel formula and the Claudy-
1 formula is the most accurate; for stepwise
regression, the combination of the Barten formula
and the Claudy-1 formula is the most accurate.

3. To estimate p?, for multiple regression, the
Darlington formula is the most accurate; for
stepwise regression, the Smith formula, the
Ezekiel formula, and the Barten formula are almost
equally accurate, but all tend to over-estimate p*.

1. For Thurstone’s data set, both the analytical
formulae and multicross-validation work almost
equally well.

2. For random data, multicross validation estimate
is more accurate than the analytical methods.

o
o




Author/Year Estimating Method Study Design

Analytical methods (formula) Empirical methods Statistical methods Data set
8. Ayabe (1985) 1. Wherry/Ezekiel 1. Jackknife Regression and prediction 1. Prestructured data set
2. Olkin/Pratt 2. Multicross validation (Thurstone’s box)
2. Random data
9. Kennedy (1988) 1. Wherry/Ezekiel Double-cross validation Monte Carlo Study Hypothetically generated data
2. Browne from a nationally
3. Claudy-2 representative sample of high
4. Lord-2/Nicholson school students

5. Darlington/Stein
6. Rozeboom-1
7. Cohen/Cohen/Ezekiel

10. Kromrey & None 1. Cross-validation Monte Carlo Study Survey data from the National
Hines (1995) 2. Multicross validation Educational Longitudinal
3. Jackknife Study
4. Bootstrap
11. Kromrey & 1. Browne 1. Cross-validation Monte Carlo Study Survey data from the National
Hines (1996) 2. Darlington 2. Multicross validation Educational Longitudinal
3. Ezekiel 3. Jackknife Study
4. Bootstrap

(to_be continued)
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Author/Year

Study Design

Sample Size (N)

Population Parameters

Number of Predictors (p) Results and Conclusions
8. Ayabe (1985) Random data: 1. Random data: p=409 1. Random data: not specified 1. Multicrossvalidation method produces comparable
100x20 matrix 2. Thurstone’s box: 2. Thurstone’s box: 3 or superior estimates to the analytical formulae
Thurstone’s p=.878 methods.
data: 20x4 2. Both the empirical and analytical methods show
matrix greater shrinkage for the random data than the
prestructured data; multicross validation is better
than the others for random data.
9. Kennedy (1988) 30, 70, 150 2,000 simulated subjects 7,6, S 1. The Ezekiel formula gives the most biased
for each conditions estimate in most situations.
p =12 2. The Darlington/Stein formula performs better than
p,=.20 the Browne formula.
100 random samples for 3. Sample size is a primary factor in shrinkage than
each conditions the number of predictors.
10. Kromrey & Hines 20, 40, 60, 100, - p’=.04,.125, .25, .50 2,4,6,8,10 None of the empirical estimates consistently provide
(1995) 200 1000 random samples unbiased estimates and analytical methods thus
for each conditions recommended
11. Kromrey & Hines 20, 40, 60,100, p*=.04,.125, .25,.50

(1996)

200

1000 random samples
for each conditions

2,4,6,8,10

1. The Browne formula appears to provide the best
estimate of p,? compared to other methods.

2. The Ezekiel formula is an effective estimate of p?,
but not p.2.

3. The estimation of p,? is very poor when sample

size is less than 100 for both analytical and empirical
methods.

! The formula is actually

R21-—N_1-r?
N-p-1

which is mistakenly used as the Smith formula.

(=)
o




Appendix B

Population Correlation Matrices for Data Simulation




Multicollinearity r=.1; Population p’=.2; 2 predictor variables
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options linesize=80;
libname 1ib

‘defdsk: [sas.monte] ';
data a (type=corr);
_type ='corr';

input x1 x2 y;

cards;

1«00 % §
«10 1.00 "
«3317 3317 1.00;

proc reg;
model y=x1 x2;
run;

Qutput

Source DF
Model 2
Error 9997
C Total 9999

Root MSE
Dep Mean
€.V,

Analysis of Variance

Sum of Mean
Squares Square
2000.25250 1000.12625
7998.74750 0.80011
9999.00000
0.89449 R-square
0.00000 Adj R-sq

F Value
1249.978

0.2000
0.1999

Prob>F
0.0001

Multicollinearity r=.1; Population p'=.5; 2 predictor variables

(o]
1.00 5 .
.10 1.00 .
.5244 .5244 1.00;

Qutput *

R-square

0.5000

Note. a. To avoid repetition, the rest of the programs are omitted from the table (the rest of Appendices B).
b. To avoid repetition, the rest of the outputs are omitted from the table (the rest of Appendices B).

Multicollinearity r=.1;

Population p’=.8;

2 predictor variables

1.00 . .
.10 1.00 #
.66334 .66334 1.00;

Output

R-square

0.8000

Multicollinearity r=.3;

Population p’=.2;

5 predictor variables

1.00 .
.30 1.00 .
.3606 .3606 1.00;

OQutput

R-square

0.2000

Multicollinearity r=.3;

Population p’=.5;

2 predictor variables

1.00 . ¢
.30 1.00 .
: 5701 5701 1,00;

Qutput

R-square

0.5000

Multicollinearity r=.3;

Population p*=.8;

2 predictor variables

8AS Program

1.00 .

.30 1.00 5
<F2L1 47211 1,00

Qutput

R-square

0.8000

Multicollinearity r=.5;

Population p’=.2;

2 predictor variables

1.00 . .
=50 1.00 =
+3873 .3873 1.00;

Qutput

R-square

0.2000
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Multicollinearity r=.5; Population p'=.5; 2 predictor variables

SAS Prodram output
1.00 . .
+50 1.00 R-square 0.5000

.6124 .6124 1.00;

Multicollinearity r=.5;

SAS Program

1.00
.50
.7746

Population p'=.8; 2 predictor variables
Qutput

1.00
.7746 1.00;

R-square 0.8000

Multicollinearity r=.1; Population p’=.2; 4 predictor variables

SAS Program Qutput
1.00 s S
o 1.00 R-square 0.2000
ad o1 1.00
- sl o1 1.00 .
+25495 .25495 .25495 .25495 1.00;
Multicollinearity r=.1; Population p’=.5; 4 predictor variables
8AS Program Cutput
1.00 ¥ 3 =
o | 1.00 R-square 0.5000
o1 % 1.00
-1 - ol 1.00 .
.4031 .4031 .4031 .4031 1.00;
Multicollinearity r=.1; Population p’=.8; 4 predictor variables
SAS Program Qutput
1.00 §
<1 1.00 R-square 0.8000
o «1 1.00 .
o | - | o 1.00 2
5099 .5099 ,.5099 5099 1.00;
Multicollinearity r=.3; Population p’=.2; 4 predictor variables
SAS Program Qutput
1.00 3 3
| 1.00 o R-square 0.2000
w3 ) 1.00 . .
o3 .3 «3 1.00 2
.3082 .3082 .3082 .3082 1.00;
Multicollinearity r=.3; Population p’=.5; 4 predictor variables
SAS Program Qutput
1.00 .
-3 1.00 . R-square 0.5000
3 ) 1.00 .
3 o3 «3 1.00 .

.48735 .48735 .48735 .48735 1.00;




Multicollinearity r=.3; Population p’=.8; 4 predictor variables

Qutput
1.00 . 8 z v
«3 1.00 . . . R-square 0.8000
| .3 1.00 . .
<3 <] «3 1.00 .

.61645 .61645 .61645 .61645 1.00;

Multicollinearity r=.5; Population p’=.2; 4 predictor variables

SAS Prodram output
1.00 . v . .
+D 1.00 - ¥ - R-square 0.2000
«5 /5 1.00
5 5 o5 1.00

.35355 .35355 .35355 .35355 1.00 ;

Multicollinearity r=.5; Population p’=.5; 4 predictor variables

Qutpyt
1.00 . . . .
«8 100 . . R-square 0.5000
-9 -5 L.00 .
- D 8 1500 ¥
+589 .559 .559 .589 1.00;

Multicollinearity r=.5; Population p’=.8; 4 predictor variables

8AS Program Qutput

1.00 . . . .
5 1.00 . . . R-square 0.8000
«5 - 1.00 s .
5 5 -] 1.00 ¥

«7071 707X 7071 7071 1.00 ;

Multicollinearity r=.1; Population p’=.2; 8 predictor variable

8AS Program Output
1.00 . 5 . 5 % & o 8
-1 1.00 : . . 5 . M . R-square
«1 ol 1.00 5 5 : ) s « 0.2000
o | - I £ 1.00
i i ad, i B .1 1.00 . . .
o1 ol .1 -1 o 1.00 : : g
| i ! 5 | <l 26 3 o | 1.00 s "
.1 o1 - % L o1 od ol 1.00 3
.20615 .20615 .20615 .20615 .20615 .20615 .20615 .20615 1.00;

SAS Program OQutput
1.00 s ’ . 3 ] 5 . s
.1 1.00 . . » . " : . R-square
s1 1 1.00 . . . @ . . 0.5000
" | -4 <1 1.00 . 5 : : v
o P =1 oL 1.00 s . o .
ol arl! ~sl i - 1.00 2 s ’
ol L wid ek o & 51 1.00 .
ol 1 ol s X -1 oX 1.00
+32595 .32595 .32595 .32595 .32595 .32595 .32595 .32595 1.00;
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Multicollinearity r=.1; Population p'=.8; 8 predictor variables

S8AS Program Qutput
1.00 . . . . . . o .
el 1.00 ¥ 5 5 = A @ S R-square
od od 1.00 » . o . . . 0.8000
o1 o1 al 1.00 i # . = >
ol o:d ol o1 1.00 o - . .
ol 1 el ok 1 1.00 . . Z
ol od 30 «1 + 1 ol 1.00 . .
1 =i, % .1 ot o § o ¢ 1.00 .
.4123 .4123 .4123 .4123 .4123 .4123 .4123 .4123 1.00;
Multicollinearity r=.3; Population p’=.2; 8 predictor variables
SAS Program output
1.00 2 . . . . .
3 1.00 . R-square
e 3 1.00 5 SN a . & 0.2000
o3 -3 «3 1.00 . . . . ¥
@3 R | -3 3 1.00 5 .
o3 3 «3 -3 -3 1.00
.3 3 +3 3 +3 3 1.00 .
" | 3 o3 3 o3 5 «3 1.00 ‘
.2784 .2784 .2784 .2784 .2784 .2784 .2784 .2784 1.00;
Multicollinearity r=.3; Population p’=.5; 8 predictor variables
SAS Program OQutput
1.00 . . . . . . . .
3 1.00 . . . . . . R-square
3 3 1.00 ¢ " P . v . 0.5000
.3 <3 3 1.00 . . 3 5 s
o3 "3 -3 S 1.00 . . ’ .
3 3 «3 +3 B ) 1.00 5 . 3
3 ;e | 3 o | .3 .3 1.00 =
3 o 3 ) | «3 3 1.00 .
44019 .44019 .44019 .44019 .44019 .44019 .44019 .44019 1.00;
Multicollinearity r=.3; Population p’=.8; 8 predictor variables
SAS Program Output
1.00 5 % .
3 1.00 . . . R-square
3 3 100 ¢ 0.8000
3 3 3 1.00 .
= <3 +3 % 1.00 é :
e | e -3 o | o3 1.00 ¢ "
3 =3 "3 w3 3 <3 1.00
3 =3 | 3 3 “3 3 1.00 .
55678 .55678 .55678 .55678 .55678 .55678 .55678 .55678 1.00;
Multicollinearity r=.5; Population p’=.2; 8 predictor variables
SAS Program Qutput
1.00 . 5
5 1.00 . . H 5 v ¢ R-square
5 oD 1.00 o . . . . . 0.2000
) D 5 1.00 . o . . :
) o] «5 D 1.00 . ' . .
5 S »5 S5 +8 1.00
5 O +5 o5 «D =S 1.00 .
5 5 9 D «5 oD «5 1.00
3354 .3354 .3354 .3354 .3354 .3354 .3354 .3354 1.00;
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Multicollinearity r=.5; Population p'=.5; 8 predictor variables

Rrogram output
1.00 . . . . . . .
5 1.00 5 v s . . . . R-square
+5 5 1.00 . ’ . . . . 0.5000
D «5 5 1.00 . . : .
+5 «5 D 5 1.00 . . .
<5 5 5 «5 5 1.00 .
«5 5 =D «5 + 5 .5 1.00 .
5 5 -5 .5 «5 +5 «D 1.00 5
.53035 .53035 .53035 .53035 .53035 .53035 .53035 .53035 1.00;

Multicollinearity r=.5; Population p’=.8; 8 predictor variables

8AS Program Qutput
1.00 . s :
«5 1.00 . R-square 0.8000
-5 .5 1.00 .
WS +5 5 1.00 . .
.5 .5 "9 D 1.00 3
5 +5 D o9 N 1.00
+5 -] 5 5 +5 5 1.00
«5 «5 5 .5 -5 S 5 1.00
.6708 .6708 .6708 .6708 .6708 .6708 .6708 .6708 1.00;
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Appendix C

Basic SAS Program for Simulating Sample Data
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Multicollinearity r=.1; Population p'=.2, .5, .8; 2 predictor variables
SAS Prodral
options linesize=80 nonumber nodate;

libname lib 'c:\ping\sas\formula';

proc printto log='c:\ping\sas\formula\logfile.tmp';

/* Monte Carlo simulation for 2 predictors conditions*/
/* A22, A52, A82; population r quare=.2, .5, .8; p=2; coll r=.1 */
/* n=20, 40, 60, 100, 200; replicate=500 */

data t (type=corr):;
_type _='corr';
input x1 x2 y;

cards;

Insert the intercorrelation matrices

from Appendix A

/*Generate factor pattern*/
proc factor n=3 outstat=FACOUT;
data pattern;

set FACOUT ;

if TYPE ='PATTERN';

drop TYPE_ _NAME ;

run;

/*start regress module*/
proc iml;
start regress;

$macro a22;
$let N=500;

$do b=1 %to 5;
$if &b=1 %then %do; %let smpln=20; %end;
$if &b=2 %then %do; %let smpln=40; %end;
$if &b=3 %$then %do; %let smpln=60; %end;
$if &b=4 %then %do; t%let smpln=100; %end;
$if &b=5 %then %do; %let smpln=200; %$end;
%do I=1 %to &N;

/*Define necessary variables for analysis*/

nov=3; /*Number of variables*/

mcol=.1; /*Multicollinearity r */
/*Population multiple R

square*/

/*Population pi*=.2%*/ /*Population p?=.5%/ /*Population p?=.8*/

pmr=.2; pmr=.5; pmr=.8;

smpsize=&smpln;
NAMES=(rsq smpsize nov mcol pmr};
con=j (&smpln,1,1);

/*Generate data*/
use pattern;

read ALL VAR _NUM_ INTO F;
F=F";

data=rannor(j (&smpln, 3, 0));
data=data‘;

Z=F*data;

2=7";

Z=con| | Z;

x=Z[,{1 2 3}];
y=2[,41;
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/*Calculate sample R square*/
b=inv(x *x)*x *y;

vhat=x*b;

r=y-yhat;

sse=ssq(r);
dfe=nrow(x)-ncol (x);
mse=gse/dfe;
cssy=ssq(y-sum(y)/&smpln);
rsg=(cssy-sse)/cssy:;

/*Generate output matrix*/
tempdata=rsq| |smpsize||nov||mcol| |pmr;

if &b=1 & &i=1 then outp=tempdata;
else outp=outp//tempdata;

$end;
$end;
ftmend a22;
%a22;

/*Create SAS data file*/

/*1lib.a22, lib.a52, lib.a82*/

create lib.a22 from outp [colname=NAMES];
append from outp;

/*finish regress module*/
finish;

run regress;

quit; *

Note. a. To avoid repetition, the rest of the programs are omitted from the table.




Appendix D

Basic SAS Program for Estimating Population Cross-Validity Coefficient (p.*)
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Multicollinearity r=.1; Population p’=.2, .5, .8; 2 predictor variables
options linesize=80 nonumber nodate;

libname 1ib 'c:\ping\sas\cross';

proc printto log='c:\ping\sas\cross\cv2abc.tmp';

/*Cross-validation with 2 indepent samples*/
/* CVA22, CVAS52, CVA82; population r quare=.2, .5, .8; p=2; coll r=.1 */
/* n=20, 40, 60, 100, 200; replicate=500 */

data t (type=corr);
_type ='corr';
input x1 x2 y;

cards;

Insert the intercorrelation matrices

from Appendix A

/*Generate factor pattern*/
proc factor n=3 outstat=FACOUT;
data pattern;
set FACOUT ;

if TYPE_='PATTERN';

drop _TYPE_ _NAME ;
run;

/*start regress module*/
proc iml;
start regress;

$macro cva22;
$let N=250;

$do b=1 %to 5;
$if &b=1 %then %do; %let smpln=20; %end:
$if &b=2 %then %do; %$let smpln=40; %end;
$if &b=3 $then %do; %let smpln=60; %end;
$if &b=4 %then %do; %let smpln=100; %end;
$if &b=5 $then %do; $let smpln=200; %end;
$do i=1 %to &N;

/*Define necessary variables for analysis*/

nov=3; /*Number of variables*/
mcol=.1; /*Multicollinearity r */
/*Population multiple R
square*/
/*Population pi=.2%/ /*Population p?=.5%/ /*Population p?=.8%/
pmr=.2; pmr=.5; pmr=.8;

smpsize=&smpln;

/*create intercept matrix*/
con=j (&smpln,1,1);

/*create sample size matrix*/
smpsize=smpsize#con;

/*generate 2 groups of random data*/
use pattern;

read ALL VAR _NUM_ INTO F;

F=F";

datal=rannor(j(&smpln, 3, 0));
data2=rannor(j(&smpln, 3, 0));

datal=datal’;
data2=data2‘;

Zl=F*datal;
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Z2=F*data2;
21=21";
22=22";

/*add intercept*/
Zl=con| |21;
Z2=con| |22;

/*define dependent and independent variables*/
x1=Z11,{1 2 3}1:

yl=21[,4]):

x2=22[,{1 2 3}];

v2=22[,4);

/*calculate regression weights for each groups*/
bl=inv(x1 *xl)*xl *yl;
b2=inv(x2 *x2)*x2 ' *y2;

/*apply regression weights from one sample to another*/

/*calculate predicted y*/

/*yhatl2=predicted yl from regression weights derived from sample 2%/
/*yhat2l=predicted y2 from regression weights derived from sample 1*/
yhatl2=x1*b2;

vyhat21=x2*bl;

/*generate output matrices with predicted and original dependent variable*/
outp=yhatl2||yl||yhat2l]||y2||smpsize;
n=nrow(outp);

/*calculate sum of cross-product of y and predicted y */
vhatl2yl=yhatl2#yl;
sumyyl=yhatl2yl([+,];
yhat2ly2=yhat21#y2;
sumyy2=yhat2ly2(+,];

/*calculate sum of each column*/
s=outp(+,]:
suml=s[,1];
sum2=s(,2];
sum3=s[,3];
sumd=s[,4];

/*calculate sum of squares, standard deviations*/
ss=outp[##,];

sq=(sk#2)/n;

ssqg=ss-sq;

v=ssq/(n-1);

sd=sqgrt(v);

syhatl2=sd[,1];

syl=sd[,2];

syhat21l=sd[, 3];

SY2=Sd[,4],’

/*calculate correlation coefficient*/
ssyyl=sumyyl-suml*sum2/n;
ssyy2=sumyy2-sum3*sumd/n;
rl=ssyyl/((n-1)*syhatl2*syl);
r2=ssyy2/((n-1)*syhat2l*sy2);

/*square correlation coefficient*/
rsql=rl##2;
rsq2=r2##2;

/*calculate the average r square*/
rsgbar=(rsql+rsq2)/2;

smpsize=&smpln;
nov=3; /*Number of variables*/

mcol=.1; /*Multicollinearity r */
/*Population multiple R

square*/
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/*Population pl=.2*%/ /*Population pi=.5%/ /*Population p?=.8%/
pmr=.2; pmr=.5; pmr=.8;

/*create output matrix with estimated cross validity r square*/
tempr=rsql| | rsq2| | rsgbar| |smpsize| |nov| |mcol]| |pmr;

if &b=1 & &i=1 then out=tempr;
else out=out//tempr;

$end;

$end;

$mend cval2;
$cva22;

/*Create SAS data file*/

/*lib.cva22, lib.cva52, lib.cva82*/

create lib.cva22 from out[colname={rsql rsq2 rsgbar smpsize rov mcol pmr}];
append from out;

/*finish regress module*/
finish;

run regress;

quit; *

Note. a. To avoid repetition, the rest of the programs are omitted from the table.
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Appendix E

Calculating Adjusted R* and R_* with Analytical Formulae with SAS
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Multicollinearity r=.1; Population p’=.2, .5, .8; 2 predictor variables
7¥apply correction formulas to dilferent sample conditions ¥/
options linesize=80;

libname 1ib 'c:\ping\sas\data';

data lib.outa22; set 1ib.a22;

/*define necessary variables*/

R=1-RSQ;

N=SMPSIZE;

P=NOV-1;

mcol=.1;

pmr=.,2;

/*apply analytical formulae*/

RSMITH=1-N*R/ (N=-P); /*the Smith formula */
REZEK=1-(N-1)*R/ (N-P-1); /*the Ezekiel formula*/
RWHERRY=1-(N-1)*R/ (N-P); /*the Wherry formula */
RLORD1=1-(N+P+1)*R/ (N-P-1); /*the Lord-1 formula */
RLORD2=1-(N+P+1)* (N=1)*R/( (N=P=1)*N); /*the Lord-2 formula */
ROLKIN=1-(N=3)*R¥ (1+2*R/ (N-P+1))/ (N=-P-1); /*the Olkin formula */
RPRATT=1-(N=3)*R* (1+2*R/ (N-P-2.3))/ (N=P-1); /*the Pratt formula */
RBURKET= ((N*RSQ-P)/(sqrt(rsq)*(N=P)))**2; /*the Burket formula */
RDARLIN=1~(N=1)* (N=2)* (N+1)*R/((N=~P=1)* (N=P-2)*N); /*the Darlington form*/
RBROWNE1l=( (N-P-3) *REZEK**2+REZEK)/ ( (N=-2*P-2) *REZEK+P) ; /*the Browne+Ezekiel */
RBROWNE2=( (N=-P-3) *ROLKIN**2+ROLKIN)/ ( (N-2*P-2) *ROLKIN+P) ; /*the Browne+Olkin */
RCLAUDY1=(2*sqrt (REZEK) -sqrt (RSQ) ) **2; /*the claudyl formula*/
RCLAUDY2=1-(N-1)* (N=2)* (N-1)*R/ ((N=P=1)* (N=P=2)*N); /*the Claudy2 formula*/
RCLAUDY3=1~(N-4)*R* (1+2*R/ (N=-P+1))/ (N=P-1); /*the Claudy3 formula*/
RROZEl1=1-(N+P)*R/ (N=P); /*the Rozebooml formu*/
RROZE2=REZEK* (1+P* (1-REZEK)/ ( (N=-P=2) *REZEK) ) **=-1; /*the Rozeboom2 formu*/

data lib.outa221;
/*output n=20
4
set lib.outa22;
if smpsize=20;
proc means data=lib.outa22l1; run;

data lib.outa222;
/*output n=40
*/
set lib.outa22;
if smpsize=40;
proc means data=lib.outa222; run;

data lib.outa223;
/*output n=60
*e
set lib.outa22;
if smpsize=60;
proc means data=lib.outa223; run;

data lib.outa224;
/*output n=100
wy
set lib.outa22;
if smpsize=100;
proc means data=lib.outa224; run;

data 1lib.outa225;
/*output n=200
*/
set lib.outa22;
if smpsize=200;
proc means data=lib.outa225; run;
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Appendix F

Means and Standard Deviations of Bias Obtained from Analytical Formulae




Means and Standard Deviations of the Bias Obtained from Analytical Formulae (Multicollinearity r = . 1)

1

Np p n Bsm Bzee Bwh Bolk Bpra Bel3 [ R Blol Blo2 Bbur Bdar Bbrl Bbr2 Bell Bel2 Brol Bro2
25 g8 20 R 0158 -0128 0550 .0146 -.0051 .0608 192 -3598  -2977 0701  -6553 0079 0253 0460 -5090 -2172 -0007
sd 2540 2633 2413 2703 2822 2544 1089 4162 3968 2740 5092 .1816  .1901  .1989 -4630 3718  .1760
R -0060 -0244 0193 0052 -0035 .0343 3165 -.1151 -0751 .0638 -3058 .0034 .0326 .0271 -0211 -0231 -0I91
sd 2073 2149 .1970 2129 2199 2003 JA561 3789 3640 2801 4514 2619 2654 2742 4153 3449 2607
R -0098 -0175 .0007 .0007 -0009 .0124 6806 -0125 0041 .0368 -0916 -0146 0108 .0179 -0524 0257 -0312
sd 1062 .1100 .1009 .1036 .1053  .097S 1096 1992 L1923 1729 2337 1834 1783 1816 2164 .1834  .1879
S 4 20 R -0071 -0178 .0333 .0092 -0051 .0557 1592 -2353  -1815 0209 -2632 -0069 .0126 .0003  -1581 1277 -.1069
sd 2029 2056 .1928 2112 2177  .1987 J251 3006 2884 2450 3070 .1999 2077 2069 2831 2762 .1948
R -0069 -0137 .0184 0153 .0092  .0438 4083  .0842 -0504 0125 -1017 0064 0367 -0015 -0357 -0166 -0175
sd  .1936 .1961 1839  .1939  .1984  .1825 1590 2987 2879 2508 3044 2504 2508 2546 2832 2772 2516
2 -0136 -0164 -0029 0016 .000S  .0133 7667 -0516 -0373 -0201 -0580 -.0251 -0039 -0270 -0311 -0231 -03%0
sd 0988  .1001  .0938 . .0940 .0950  .0884 0839 .1526  .1471 1392 .1554 1403  .1350  .1423  .1448 1418 1448
5 8 40 R -0031 -0083 .0170 .0023 -0011 .23%90 1199 -1354 1100 0143 -1693 0064 0150 .0052 -1181 .0836 -0030
sd  .1451 (1460 1414 1492 .1504  .1451 .0870 2098 2057 .1526 2155 1465 .1501  .1474 2071 2014  .1435
%  -0056 -0089 .0070 .0047 .0033 .0180 4137 -0531 -0371 -0004 -0744 -0114 0034 -0144 -0422 -0205 -.0240
sd  .1235 1243 1204 .1239  .1245 , .1205 1029 L1815 .1783  .1641  .1858  .1638  .1641  .1688  .1793  .1750  .1649
%  -0088 -0102 -0036 -0016 -.0019 .0038 7493 -0134 -0068 0025 -0222 -0049 0054 -0013 -0089 .0001 -0113
sd 0653 0658 0637 .0638 0639 .0620 0606 .1031  .1014 0984 .1053 0998  .0980 0996 .1019  .0997 .1012
75 8 60 R  -0101 -0122 .0034 -0058 -0072 .0083 .1407  -0910 -0751 -0107 -09%0 -0112 -0055 -0211 -0676 -0592 -0195
sd 1047 .1049 .1030 .1067 .1071  .1048 0763 1422 1405  .1168  .1431 1159 1177  .1168  .1397 .1388 .l1145
R -0036 -0049 .0048 .0038 .0033 .0125 4495  -0400 -0302 -0111 -0450 -0139 -0044 -0177 -0254 -0203 -.0223
sd 0983 0985 0966 .0985  .0987  .0968 0885 .1463  .1448  .1389 1471 .1388  .1389  .1410 .1441 1433  .1396
R -0041 -0046 -0007 .0009 . .0008  .0044 7722 -0115  -0075 -0025 -0135 -0042 0020 -0041 -0056 -0035 -0082
sd 0512 .0513 .0503 .0503 .0504  .0494 0429 0751 .0743 0730 0755 .0732 .0724 0734 .0074 .0734 0740
10 2 20 X -0157 -0205 0250 .0067 -0057 .0534 2051  -1984 .1487 -0340 -1743 -0392 -0172 -0337 -0820 -1024 -0528
sd .1660 .1670 .1577 .1716 .1763  .1615 1278 2478 2392 2023 2437 2005 2089 .1950 2279 2313 .1901
R -0087 -0117 0167 .0176 .0l125  .0460 4812 -1007 -0697 -0328 -0857 -0190 .0113 -0389 -0281 -0408 0450
sd  .1705 J715 1620 1693 1726 1593 1252 2386 2299 2142 2343 2120 2109 2157 2183 2183 2155
%  -0163 -0176 -0055 .000S -0005 .0123 7805 -0439 .0308 -0177 -0376 -0111 .0081 -0206 -0131 -0185 -0241
sd  .0935 .0941 0889 .0883 .0892 .0831 0764 1381 1334 1284 1358 1262 J215 1296 1272 1291 1305

(to be continued)
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N/p P n Bsm Bzee Bwh Bolk Bpra Bel3 el Blol Blo2 Bbur Bdar Bbrl Bbr2 Bell Bel2 Brol Bro2

10 4 40 2 g 0021 -0044 0180 .0064 0034 .0278 1534 -0816 -0584 -0025 -0749 0030 0129 -0058 -0300 -0357 -.0101
sd 1244 1248 1213 .1273 1282 1238 0940 1676  .1646  .1436 1667  .1443  .1470  .1423  .1610 .1617  .1421
5 % -0108 -0122 .0020 .0013 .0001 .0148 4486 -0396 -.0248 -0044 -0354 0002 .0144 -0098 -0067 -0104 -0129
sd 212 216 1182 1213 L1219 L1181 013 L1767 1738 1674 1758 1665 © .1665  .1693  .1703  .1710  .1681
8 = -0098 -0104 -0045 -0018 -002 0036 815 -0243  -0182 -0116 -0225 -0098 -0005 -0131 -0108 -0123 -0158
sd  .0621 0623 .0605 .0604 0605  .0588 0515 0864 0850 .0833 0860 .0828 .0813 .0837 .0833 .0836 .0841
125 8 100 2 = -0011 -0018 .0069 .0019 .0014  .0101 1601 -0429 -0341 -0070 -0419 -0052 -0017 -0148 -0244 -0253 -0114
sd 0753 0753 0745 .0761 0762  .0753 0564 .0984 0577 0900 .0983 .0898 .0906 .0917 .0970 0971  .089S5
S5 % -0046 -0051 .0004 .0001 -0001 .0053 4656  -0127 -0161 -0073 -0211 -0064 -0010 .0097 -0101 -0106 -0115
sd 0726 0727 0189 .0727 .0727 .0719 0553 0974 0967 0949 0973 0978 .0948 0955 .0960 .0961  .0953
8 ® -0032 -0034 -0012 -0001 -0001 .0019 7847 -0086 -0064 -0038 -0084 -0035 .0000 -0043 -0039 -0042 -.0057
«d 0374 0374 0370 0370 .0370  .0366 0287 0501 .0498  .0494 0501 .0493  .0489  .0495 .0494 0495  .0496
15 4 60 2 ® -0006 -0016 .0127 0050 .0037 .0189 1682  -0513 -0366 -0072 -0435 -0009 .0055 -0123 -0148 -0222 -0113 -
sd 0992 0993  .0975 - .1008 .1011  .0991 0773 1370 1355 .1261 1362 1263 11279 1268 1333 .1340  .1256
S & -0116 -0122 -0031 -0034 -0040 .0054 4709 -0352 -0258 -0140 -0302 -0092 -0003 -0164 -0012 -0166 -0179
sd 0969 .0970 0953 .0970 .0972  .0953 0689  .1314 1299 1272 1306  .1265  .1265  .1279  .1277 .1284  .1276
8 ® 0024 -0027 .0010 .0028 .0028  .0063 7837  -0070 -0033 0006 -0050 .0026 .0084 .0000 .0022 .0004 -.001l
sd 0472 0473 0464 0463 0463  .0455 0366 0652 0644 0636 .0648 0633 0625 0638 .0634 .0638 .0640
20 2 40 2 r -0077 --0088 0125 .0019 -0010 .0234 1830 0747 -0524 -0177 -0580 -0067 ~.0036 -0167 -0154 .0311 -0216
sd 1142 1144 1114 1168 .1176  .1137 0844 1470  .1444 1325  .1451 1345 1370  .1320 .1402 .1420 .1322
S R <0112 -0119 0016 -.0016 .0005S .0151 4873 -0507 -0375 -0224 -0411 -0214 0014 -0245 -0141 -0240 -.0256
sd 1184 1186 1155  .1183  .1189  .1151 0849 1557 1529 1493  .1536  .1477  .1475 1500 .1484  .1503  .1498
8 ®  -0004 -0007 .0046 0076 .0074  .0128 7869  -0082 -0026 .0028 -0040 0069 .0154 .0022 .0066 .0027 .0014
«d 0558 0559 0544 0541 .0542 0527 0458 0763 0751 0739 0754 0730 .0716 .0740 .0731 .0739 .0742
25 4 100 2 R -0042 -0046 .0038 -0010 -0014 .0073 1829 -0362 -0277 -0138 -0301 -0086 -0049 -0168 -0133 -0193 -0156
sd .0737 0737 0729 0745 .0746 0737 0610 0972 0966  .0939 0967 .0938  .0944 .0947 0955 .0960  .0938
S5 & -0112 -0115 -0061 -0063 -0065 -0011 4880 -0304 -0250 -0188 -0265 -0150 -0097 -01% -0159 -0197 -0102
sd 0709 0709 .0702 .0709 .0710 .0702 0567 0930 .0924 0915 0930 .0912 0912 0917 0914 0918 0917
8 = 0034 -0034 -0013 -0002 -0002 .0019 J901  -0058 -0037 -0015 -0043 0001 .0035 -0017 .0000 -0016 -.0021
«d 0381 0381 0377 0377 .0377 .0373 0293 0492 0485 .0485 0490 0483 0480 .0486 .0484 0486 .0486

(to_be continued)
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Nip n Bsm Bzee Bwh Bolk Bpra Bcl3 Pe Blol Blo2 Bbur Bdar Bbrl Bbr2 Bell Bel2 Brol Bro2
25 200 R <0050 -0051 -0009 -0035 -0036 .0006 1758 -0214  -0172 -0080 -0190 -0058 -0041 -0106 -0106 -0130 -0094
sd 0518 .0s18 .0515 .0s21  .0521  .0518 0410 0683 0681 0665 .0682 .0665 0667 0671 .0677 .0679  .0665
f  -0031 -0032 -0005 -0006 -0007 .0019 4818 -0102 -0076 -0041 -0087 -0027° .0000 -0047 -0035 -0049 -0052
sd .0500 .0500 .0498 .0500 .0501  .0498 0405 0666 .0664 0660  .0065 .0659 0659 .0661 0661 .0662  .0661
R 0021 -0021 -0011 -0005 -0005 .000S 7904 -0026 -0016 -0004 -0020 .0002 .0018 -0006 .0001 -0005 -.0009
sd 0263 0263 .0262 0262 .0262  .0261 0195 0328 0326 .0325 0327 ..0325 0323 .0325 0325 .0325 .0326
30 60 R -0012 -0017 .0121 0048 .0036 .0188 1944 -0505 -0362 -0176 -0386 -0078 -0013 -0197 -0109 -0224 -0195
sd 0964 0965 .0948 0980 .0983  .0963 0733 1266  .1252  .1211  .1254 1211 1224 .1215 1227 .1238 .1210
% -0069 -0072 .0015 0015 .0010 .0103 4928 -0344 -0253 -0159 -0269 -0087 .0002 -0168 -0094 -0166 -0174
sd 0957 .0957 .0941 0956 0957  .0939 0717 1240 1226 .1210 - .1228 1200 1198 L1212 .1202 0212 L1212
X -008 -0087 -0051 0031 -0032 .0004 7950 -0179 -0105 -0105 -0148 -0074 -0017 -0108 -0076 -0106 -0l11
sd 0495 0495 0486 0485  .0486  .0477 0325 0637 .0622 .0622 0631 .0616 .0607 .0622 0616 0622 .0623
50 100 2 -0079 -0081 .0002 -0045 -0049 .0038 1953 -0360 -0276 -0178 -0285 -0109 .0074 -0184 -0120 -0194 -0185 .
sd 0703 .0703 0696 0711 .0703 .0703 0523  .0896 .0890 .0876 .0891 .0875 .0881 .0875 0879 .0885 0876
R -0043  -0044 0007  .0007 .0005 0059 4968 -0216 -0164 -0110 -0169 -0064 -0011 -0113 -0066 -0112 -0115
sd 0722 0722 0715 .0722 0722 0714 0536 0930 .0924 0917 .0925 .0912 0912 .0918 0913 .0918 .0918"
% -0046 -0046 -0026 -0013 -0014 .0007 7955 -0085 -0063 -0042 -0065 -0023 .0010 -0043 -0024 -0042 -0044
«d 0372 0372 0369 .0368 .0368  .0364 0283 0489  .0486  .0483 0487 0480 .0477 .0483 .0480 .0483  .0483
50 200 R -0028 -0029 0012 -0012 -0013 .0029 JA910 -0180 -0139 -0085 -0145 -0052 -0035 -0093 -0063 -0098 -.0090
sd 0500 .0500 .0497 0503 .0503  .0500 0376 0644 0642 0636 .0642 0635 .0637 .0638 0638 0640 .0636
R -0035 -0035 -0009 -0010 -0010 .0016 4920 -0106 -0080 -0053 -0084 -0031 -0050 -0055 -0033 -0055 -.0056
sd 0487 0483 0485 .0487 0488  .0485 0371 0642 064 0637 0640 0635 .0635 .0637 0636 .0638  .0637
%  -0038 -0038 -0028 @ -0022 -0022 -0012 .7975 -0075 -0065 -0054 -0066 -0045 -0029 -0055 -0046 -0054 -0056
sd  .0265 0265 0264 .0263 .0263  .0262 0181 0318 .0317 .0315 .0317 .0315 0313 0316 .0315 .0316 0316
100 200 % -0003 -0003 .0037 .0014 .0013 .0054 1964 -0129 -0088 -.0044 -0090 -0007 .0010 -0046 -0009 -0047 -0046
sd 0513 0513 0510 0516 .0516  .0513 0367 0646 0644 0641 0644 0639 .0642 0642 .064 0642 0641
R -0025 -0026 .0000 .0000 -0001 .002S 4981 -0107 -0082 -0056 -0083 -0032 -0006 -0057 -0032 -0056 -0057
sd 0498 0498  .0498 0496 .0498  .0496 0346 0616 0613 .0611 .0614 0609 0609 0611 0609 0611 0611
R -0022 -0022 -0012 -0006 -0006 -0004 .7970 -0033 -0022 -0012 -0023 -0002 .0014 -0012 -0002 -0012 -0013
sd 0267 0267 2656 0265 0265 .0264 0183 0321 .0312 0319 .0320 .0317 .0316 .0319 .0317 .0319 .0319




Means and Standard Deviations of the Bias Obtained from Analytical Formulae (Multicollinearity r = .3)

Np p n p Bsm Bzee Bwh Bolk Bpra Bel3 Pl Blol Blo2 Bbur Bdar Bbrl Bbr2 Bell Bel2 Brol Bro2

25 8 20 2 g 0211 -0072 .0601 0205 .0010 0664  .1205 -3525 -2909 0630 -6461 0072 0249 0347 -5008 -2109 -0021
d 2499 2590 2374 2659 2776 2503  .1009 4028 3937 2065 4945 .1675 1760 .1833 4490 3590  .1612

S % -0007 -0189 0244 0106 0021 0394 3221 -1141 -0745 0610 -3028 0013 0306 .0227 -2094 -0231 -0212

d 2071 2147 1968 2124 2194 2000 1508 3565 3417 2505 4285 2435 2467 2591 3926 3228 2427

8 R -0054 -0129 .0049 0050 .0034 0165 6798 -0048 0115 0431 -0822 -0077 0174 0246 -0439 0326 -0241

sd 1039  .1076 0987 1009 .1025 0950  .1243 2025 .1961 1794 2347 1901  .1849 1875 2185 .1880  .1945

54 20 2 = 008 -0017 0484 0257 0119 0712 1557 -2106 -1578 0262 -2380 0077 0281 0220 -1349 -1051 -0039
sd 2063 2091 1960 2146 2212 2019  .1291 3011 2887 2116 3076 2002 2086 .1993 2834 2765 .1929

S R <0277 -0347 -0013 -0049 -0113 0249 4175 1210 -0859 -0212 -1393 -0271 .0039 -0372 -0706 -0507 -.0521

“ttsd L1794 L1818 1704  .1800  .1841  .1694  .1541 2820 2721 2387 2872 2378 --2386 2429 2678 2623 2389

8 R -0213 -0243 -0102 -0058 -0070 .0063 .7524 -0475 -0328 -0147 -0552 -0197 0019 -0219 -0264 -0180 -0340

d  .1062  .1076 .1009 .1015 .1027 0956 0884 .I669 .1610 1516 .1701 .1527 1474 1552 .1584 1551 1573

S 8 40 2 R 0070 -0122 .0131 -0017 -0051 .0200 .1247 1453 -1198 0051 -1793 -0023 .0063 -0063- -1279 -0932 -0116
sd 1423 .1432 1387 1463  .1475 1424 0876 .1984  .1944  .1405 2038 .1371  .1405 .1388 .1957 .1902  .1343

5 = -0024 -0056 .0102 .0080 0066 2123 4009 -0443 -0284 0082 -0655 -0032 0116 -0061 -0334 -0119 -0158

sd 1225 .1233 L1194 1228 1235 .1195 1058 1881  .1849 .1712  .1924 .1710 1712 1758 1859  .1816  .1722

8 % -0051 -0064 .0000 0020 0018 . .0074 7527 -0120 -0056 .0035 -0207 -0037 0064 -0002 -0076 .0012 -0101

sd 0632 0636 0617 0617 0619 0601 0616 .1012 0996 0966 .1033 0980 0963 0978 .1001 0977  .0993

75 8 60 2 % -0091 -0112 0044 -0048 -0062 0093 1312 -0799 -0641 0016 -0879 0006 .0063 -0082 -0565 -0482 -0076
sd 1051 .1054 1034 .1072 .1076 .10S3  .0750 .1431 1413 1144 1439 1138 1156 .1127 .1405 .139% .1122

S R -0033 -0047 .0050 0041 .0036 0128 4398 -0300 -0202 -0011 -0350 -0038 0056 -0077 -0ISS -0103 -0124

sd 1001  .1003 0984 1003 .1005 0985  .0788 .1399 1383  .1323 .1407 .1322 1323 1344 1375 .1367 .1330

8 R -0059 -0065 -0025 -0009 -0010 0026 7687 -0101 -0011 -0011 -0122 -0028 0035 -0026 -0042 -0021 -0067

sd 0509 0510 0500 .0500 .0S00 0491 0428 0749 0728 0728 0753 0731 0722 0732 0737 0732 0738

10 2 20 2 R -0098 -0146 .0307 0127 .0004 0590 2050 -I1910 -1417 8611 1672 -0311 -0100 -0356 -0755 -0957 -0427
sd 1729 1739 L1642 1783 1831  .1678 1281 2436 2347 1796 2393 .1972 2042 .1946 2230 2266 .1947

5 R -0274 -0305 -0010 -0009 -0064 0286  .4971 -1393 -1072 -0685 -1237 -0542 -0238 -0766 -0641 -0T72 -0809

d 1730 L1940 .1643 1720 1754  .1619 1231 2419 2329 2168 2375 2145 2136 219 2210 2246 2180

8 R -0206 -0219 -0095 -0034 -0045 0085 .7800 -0486 -0352 -0218 -0421 -Q1S1 0044 -0248 -0171 -0226 -0283

d 0946 0952 0900 0900 0906 .0843 0728 1303 .1256 .1204 .1280 .1182 .1138 .1216 .1193 1212 .1224

(to be continued)
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Nip n Bsm Bzee Bwh Bolk Bpra Bel3 pl Blol Blo2 Bbur Bdar Bbrl Bbr2 Bell Bel2 Brol Bro2
10 40 R -0110 -0134 .0092 -0028 -0059 .0185 1567  -0952 -0717 -0087 -0885 -0053 .0043 -0139 -0430 -0488 -0170
sd  .1263  .1267 .1232 1296  .1305  .1261 0844 1675 .1644 1387 1666 1387  .1419 1334 .1605 .1613  .1359
R  -0117 -0132 .0011 .0004 -0009 .0139 4519 0440 -0292 -0088 -0398 -0042 .0101 -0142 -0111 -0148 -0173
sd 1201 1205 .1171 1202 .1208 .1170 0980 .1711  .1682 .1621 .1702 .1612 1612 .1639 .1648  .1655 .1629
R -0047 -0053 .0004 .0031 .0029  .0084 7745 -0115 -0055 .0008 -0098 .0026 .0117 -0006 .0017 .0002 -0032
sd .0589 .0591 .0574 .0573 .0574  .0557 .0481 .0831  .0817 .0801 .0827 .0797 .0781 .0805 .0801 .0804 .0810
12.5 100 R 0021 -0028 .0059 .0008 .0003  .0090 1535 -0374 -0286 -0014 -0364 .0005 .0040 -0094 -0189 -0198 -0057
i sd 0795 0795 .0787 .0804  .0805  .0795 0594 .1048  .1041  .0965 .1047 0963 .0970  .0982 .1033 .1033  .0960
8  -0047 -0052 .0003 .0000 -.0002 .0051 4657 -0219 -0164 -0076 -0213 -0067 -0012 -0100 -0103 -0108 -0O118
sd 0713 0713 =" ~0706 ° 0713 0714 .0706 0586 .0963 °-.0962° .0945 .0968 0944 0944 0951 - .0955° .0956  .0948
% -0035 --0037 -0015 -0004 -0004 .0167 7873  -0115 -0094 -0068 -0113 -0065 -0030 -0073 -0069 -0071 -.0087
sd 0405 .0405  .0401  .0401 .0401  .0396 0318 .0524 0520 .0516 .0523 .0515 .0s11 0517 0516 .0517 .0518
15 60 R .0008 -0009 .1342 0057 .0044  .0196 1749 -0572 -0425 -0133 -0495 -0071 -0006 -0188 -0208 -0282 -0175
sd 0948 0949 .0932 0964 0967 0947 0761 .1337 1323 1234 1329 1236 1250 1242 1302 1209 1229
R -0077 -0084 .0007 .0004 -0001 .0092 4788 -0389 -0296 -0179 -0339 , -0131 -0040 -0203 -0157 -.0204 -0218
sd 0938 .0939 .0922 .0938 .0940  .0921 0749 1298  .1284  .1260  .1291  .1253  .1253  .1266 .1264  .1271  .1264
% -0080 -0082 -0045 -0026 -0027_  .0009 7838 -0132  -0093 -0053 -0I11 -0033 .0026 -0060 -0037 -0056 -.0071
sd .0519 0519 0510 .0509 .0510 .0500 0383 0696 0688  .0679 .0692 .0675 .0666 .0680 .0676 .0680  .0682
20 40 R -0017 -0028 .0183 .0079 .0051  .0293 1828 -0679 -0458 -0117 -0514 -0005 .0100 -0106 -0090 -0246 -.0153
sd 1198 (1200 1168 1225  .1233  .1192 0830 .1587  .1559  .1438  .1566  .1456  .1482  .1249 1512 .1532 .1434
X -0058 -0065 .0068 .0069 .0058  .0203 4779 -0364 -0224 -0074 -0259 .0025 0162 -0095 .0008 -0090 -.0106
sd .1244 1246 1213 (1243 1249 .1210 0892 .1715  .1686 .1647 .1693  .1630 .1628  .1655 .1638  .1658  .1652
R -0067 -0070 -0015 .001S .0013  .0068 7973 -.025 -0198 0142  -0212 -0099 -0013 .0148 -0103 -0143 -0156
sd .0620 .0620 .0604 .0602 .1603  .0586 .0442 0844 0829 .0815 .0833 .0804 .0789 .0817 0805 .0816 .0818
25 100 R -0043 -0046 .0037 -0010 -0015 .0072 1780 -0314 -0229 -0091 -0253 -0038 -0002 -0120 -0085 ~-0145 -0108
sd 0717 0718 0710 - 0725 0726 .0718 0601  .0968 0962 .0935 .0963 .0933 0940 .0943 0952 .0956 .0934
%  -0068 -0070 -0018 -0019 -0021 .0033 4796 -0173  -0120 -0058 0135 -0021 0032 -0067 -0029 -0067 -0072
sd 0701 0702 .0694 .0701 .0702  .06%4 0572 .0939  .0933 .0925 .0935 .0921 0921 .0927 .0923 .0928 .0926
f  -0051 -0052 -0031 -0019 -0019 .0002 7903 -0079 0057 -0035 -0062 -0019 0015 -0037 -0020 -0036 -.0041
sd 0365 .0365 .0361 .0361 .0361  .0357 0280 .0486 .0483 .0479 .0484 0477 0474 0480 0477 0480 .0480

(to be continued)
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N/p n Bsm Bzee Bwh Bolk Bpra Bel3 P Blol Blo2 Bbur  Bdar Bbrl Bbr2 Bell Bel2 Brol Bro2
25 200 R -0031 -0033 .0009 -0016 -0017 .0024 .1769 -0206 -0163 -0071 -0182 -0049 -0032 -0097 -0098 -0121 -0085
sd 0579 0579 .0576 .0583 .0583 .0580  .0426 0728 0725 0706 0726 .0705 0708 0712 072 0723 0705
R -0029 -0031 -0004 -0005 -0006 .0020 4795 -0078 -0052 -0017 -0064 -0003 .0023 -0024 -0011 -0026 -0028
sd 0495 .0495 .0493 0495 .0496 0493  .0418 .0659  .0657 0653 .0658 .0652 .0652 .0654 0654 0655 0654
% -0019 -0019 -0009 -0003 -0003 .0007 .7930 -0051 -0040 -0029 -0045 -0023 -0006 -0030 -0024 -0030 -.0033
od o<y ns? nsn 0250 0250 0249 0178 0324 0323 0321 0323 .0321 .0319 .0322 0321 0322 0322
30 60 %  -0098 -0103 .0037 -0039 -0051 .0102 .i1978 -0630 -0486 -0293 -0510 -0196 -0132 -0295 -0230 -0346 -.0311
sd  .0928 0928 0912 .0944 0946 .0927  .0669 .1204  .1190 .1141 1193 .1146 .1160 .1138 .1166 .1177  .1140
R -0089 -0092 -0004 -0004 -0009 .0094 4966 -0403 -0313 -0218 -0328 -0145 -0056 -0227 -0152 -0225 0233
sd .0889 .0889 .0874 .0888 --.0890  .0873 0656 .1176  .1163  .1147 165 --.1138  .1137 .1149  .1140 -.1150  .1149 -~
%  -0001 -0011 .0024 .0044 0043 0078  .7911 -0058 -0022 .00!3 -0028 .0043 .0099 .0011 0041 0013  .0007
sd  .0503 0504 0495 0494 .0494 .0485 0364 0677 .0069  .0661 0671 0655 0647 0662 0656 .0662  .0063
50 100 R 0020 .0000 .0082 .0037 .0033 0119 2013 -0335 -0252 -0156 -0261 -0088 -0051 -0166 -0097 -0171 -0163
sd 0700 .0700 .0693 .0708 .0708  .0700 0550 .0903 0897 .0886¢  .0898 .0883 .0889 .0888  .0887 .0892  .0886
R -0094 -0095 -0043 -0043 -0045 .0009 4912 -0213 -0160 -0106 -0166 -0059 -0007 -0109 -0062 -0108 -0111
sd 0695 0695 .0688  .0695 0695  .0688 .0531 .0895  .0839  .0883 .0890 .0878 .0878  .0883 .0878  .0883 .0883
R -0043 -0043 -0023 -0011 -001 1 .0010 7954 -0080 -0059 -0038 -0061 -001% .0015 -0039 -0019 -0039 -.0040
ad 0364 0364 0360 .0360 0360 0356 0265  .0465 0462 0459 0462 0456 0453 0459 0456 0459 0459
50 200 R -.0025 .-.0025 0015 -0009 -.0010 .0032 1978 -0246 -0204 -0150 -0210 -0117 -0100 -0158 -0128 -0163 -.0155
sd 0542 0542 0539 0545 0545 0542 0416 .0682 .0680 .0673 .0680 .0672 0675 0675 0676 0677 0673
R 0008 0007 .0033 .0033 .0032 .0058 4961 -0104 -0078 -0051 -0082 0029 -0003 -0053 -0031 -0053 -.0054
sd 0496 0496 0494 0496 0496 0494 0353 0634 0632 .0630 .0633 .0628 0628 .0630 .0628 .0630  .0630
®  -0003 -0003 .0007 .0013 .0013 .0023  .7967 -0030 -0020 -0010 -0021 -0001 .0016 -0010 -0001 -0010 -0011
sd  .0241 0241 0240 .0240 .0240 .0239 0182 .0302 .0301 .0300 .0301 .0299 .0298  .0300 .0299 .0300 .0299
100 200 R -0019 -0020 .0021 -0003 -0004 .0038  .1983 -0164 -0123 -0079 -0125 -0042 -0025 -0082 -0044 -0083 -.0081
sd 0505 0505 .0503 .0508 .0508 .0505  .0365 0646 .0644 0641 0644 0639 0641 .0641 0640 0642  .0641
% .0005 .0005 .0030 .0031 .0030 .0056 4978 -0074 -0048 .0022 -0049 .0001 .0027 -0023 .0001 -0023 -.0024
sd 0518 0518 .0516. .0518 0518 .0516 0378  .0665 0663  .0661 0663 0659 .0659  .0661 0659 0661 L0661
R .0004 .0004 0014 0020 .0020  .0030 7976 -0012 -0002 .0008 -0003 .0018 .0034 0008 .0017 0008 .0007
sd 0266 0266 0265 0265 .0265 - .0263 0176 0326 .0325 .0324 0325 0323 0322 0324 0323 .0324 0324




Means and Standard Deviations of the Bias Obtained from Analytical Formulae (Multicollinearity r =_5)

Nip

1

Bsm

Bzee

Bwh

1

P Bolk Bpra Bel3 P, Blol Blo2 Bbur Bdar Bbrl Bbr2 Bell Bel2 Brol Bro2

25 8 20 2 r 0031 -0259 .0429 0010 -0194 0480  .1085 -3691 -3061 0758 -6694 0148 0315 0555 -5208 -2242 .0075
sd 2580 2673 2451 2750 2872 2588  .1022 4245 4047 2549 5194 .1746  .1843 1891 4723 3792 .1672

S o= <0040 -0223 0212 0069 -0019 .0359 3255 -1228 -0829 .0579 -3128 .-0013 0276 .0316 -2187 -0312 -0232

sd 2177 2257 2069 2241 2317 2109  .1620 3828 3673 2652 4585 2552 2596 2625 4207 3473 2531

8 R -0101 -0178 .0004 .0004 -0013 .0121 6732 -0055 0111  .0439 -0847 -0072 .0180 .0249 -0455 0327 -0239

24 1087 1127 1033  .1058 .1076  .0996 1236 2095 2026 .1838 2438 1940 1890  .1927 2266 .1939  .1985

S 4 20 2 = -0084 -0192 .0320 .0080 -0062 .0546  .1463 -2242 -1703 0217 -2522 0014 0212 .0101 -146% -1164 -0096
sd 1950 .1976 .1853 2033 2097 1913 1167 2829 2711 1924 2891 1822 .1906 . .1850 2660 2594  .1751

5 R <0052 -0119° 0200 .0173 .0l114 0457 4260 0997 * -0660 -0045 -.1172 -0112 .0196° °-0215 <0514 --0323 -.0356

sd  .1828 .1852 1736 .1830 .1870 .1721 531 2821 2719 2388 2874 2374 2378 2415 2675 2619 2389

- .8 R -0141 -0169 -0034 .0012 0000 .0129 7627 -0481 -0338 -0166 -0555 -0216 -0003 .0235 -0276 -019% -0356

sd 0970 .0983 0922 .0923 0934  .0869 0813  .1528  .1474 1394 1557 . 1405 1353 1425 - (1450  .1420  .1450

S & 40 2 = -0085 -0137 .0117 -0032 -0066 .0185  .1331 1555 -1299 -0020 -1896  -0110 -0023 .-0164 -1381 .1033 -0201
sd 1405 1414 1370 .1447 1459  .1408 0926 .1982  .1943  .1454 2034  .1479 .1411 .1403 .1956 .1903  .1356

S R -0098 -0131 0029 .0005 -0009 .0140  .4070 -0517 -0356 .0021 -0732 -0093 .0055 -0124 -0407 -0188 -0220

sd  .1208 J215 177 a213 1219 L1180 .1108  .1815 1785 1650  .1856 1648 1651 1693 1794 1754 1658

3 R <0079 -0093 -0027 -0007 -0010 .0047 7526 -0156 -0090 .0002 -0243 -0071 .0031 -0035 -0111 -0022 -0135

sd 0646 0651 .0630  .063 0633 .0614 0629 .1046  .1030  .0999  .1068 1013 0996 1012 1035  .1013  .1027

18 8 60 2 R -0024 -0045 0110 = .0020 .0006 .1601 1300 -0708 -0552 .0066 -0788 .0061 0119 -0064 -0476 -0394 -.0024
sd  .1056  .1059  .1039 .1076 .1079  .1057 0744 1398  .I1381 .1162 .1407 1153 .1171 .1172 1372 1363 .114]
S % 0001 -0012 .0084 0075 .0070 .0162  .4450 -0312 -0214 -0027 -0362 -0054 0041 -0092 -0168 -0116 -0139

sd 0990 0992 .0973 0991 0993 0974 0774 1405 1389 .1330  .1413 1328 1329 L1351 1382 1373 1337
8 & -0043 -0048 -0009 .0007 0006 .0042 7694 -0089 -0049 .0001 -0109 -0017 .0046 -0015 -0030 -0009 -.0056

sd 0489 0481 0481 0481 048] 0472 0434 0683 .0676 0664 0687 .0667 0659 0668 0672 0668 .0674
10 2 20 2 = 0022 -0025 .0421 0254 1346 .7093  .1796 1511 -1025 0436 -1276 .0021 0251 -0054 -0372 -0572 -0136
sd 1668 .1678  .1585 1720 .1766  .1619  .1214 2339 2253 5457 2297 .1899 .1968 .1866 2139 2174  .1863
S » 0 -0196 -0226 .0064 0067 .0013 .0357 4500 -0827 -0511 -0127 -0674 0012 0313 -0185 -0086 -0216 -.0250

sd  .1781 1792 11692 1768 .1803 1664 1356 2621 2528 2366 2576 2342 2329 2378 2407 @ 2444 2381
8 R -0214 -0227 -0104 -0043 -0053 .0077 7919 -0615  -0481 -0347 -0550 -0279 -0084 -0376 -0300 -0355 -0412

sd 0977 .0983 0928 0925 .0934 0870 0661 1368 1316 1261 1343 1236 1185 .1274 .1248 1268  .1282

(to be continued)




N/p

Bsm

Bzee

n Bwh Bolk Bpra Bel3 Pe Blol Blo2 Bbur Bdar Bbrl Bbr2 Bell Bel2 Brol Bro2

10 40 2 x -0145 -0169 .0058 -0064 -0096 0154 1665 -1091 -0855 -0247 -1023 -0203 -0108 -0328 -0567 -0625 -.0326
d 1217 1220 L1186 .1247 1256  .1213 0985 .1686  .1657  .1452 1678  .1451 1477 1459 .1623  .1630  .1431

S R -0107 -0122 .0020 .0013 .0001  .0148 4630 0540 -0392 -0188 -0497 -0142 .0001 -0242 .2111 -0248 -.0272

sd L1199 .1202  .1169  .1200 .1206  .1167 1065 1722 1695 .1633 L1715 1625 1625  .1651  .1662  .1669  .1640

8 R -0089 -0095 -0036 -0009 -0011 .004S J724  -0141 -008] -0016 -0124 0003 0095 -0030 -0007 -0022 -0057

sd 0587 .0589 .0573 .0S71 0572  .0556 0493 0872 0858 .0841 0868 0837 0822 0846 .0841 .0845 .0850

12,5 100 2 0000 -0001 .0080 .0029 .0025 .01l 1597 -0413 0325  -0055 -0403 -0036 -0001 -0131 -0229 -0237 -.0098
sd 0770 0770 0762 .0079 .0780  .0771 0569 0976  .0969 .0889 0975 .0887 .0894 .0901 .0962 .0962 .0883

S5 R .0003 -0001 .00S3 .0050 .0048 010l 4614 -0121 -0066 .0021° -0114 .0030 .0084 -0002 -0006 -0011 -0021

sd .0750 0751 .0743 -"~.0750°—".0751 .0743 0589 .1025 - .1018 -.1000-—.1024 .0999 .0999  .1007 -.1011 .1012 "=:1004"

8 R® -0022 -0023 -0001 .0009 .0009 .0030 7868 -0096 -0074 -0048 -0094 -0045 -0010 -0053 -0050 -0052 -.0067

sd 0371 0371 0367 .0367 0367 .0363 0258 0482 .0479 .0474 0482 0474 0470 0475 0475 0475 0477

15 60 2 » 0020 .0010 0153 0076 .0064 2151 1734 -0536  -0390 -0092 -0459 0031 .0034 -0148 0173 -0246 -0133
sd 0986 .0970 0970 .1003  .1006  .0986 0831 .1403 1389  .1293  .1396 ~ .1296 .1311 .1303 .1367 .1375 .1288

S & <0063 -0069 .0021 0018 .00I3 .010S 4787 -0372 -0279 -0163 -0323 - -0115 -0024 -0187 -0141 -0188 -0201

sd 0994 0995 0977 0994 0996 .0976 0748 .1285 1271 1244 1277  .1238 1237 .1251 .1249 .1256  .1249

8 Rr -0100 -0103 -0065 -0046 -0047 -0010 .7873 -0189 -0151 -0110 -0169 0090 -0030 -0117 -0094 -0113 .0128

sd .0482 0483 0474 0473 .0474 0465 0387 0662 .0655 .0647 .0658 .0643 .0635 0648 0644 0648  .0650

20 40 2 R -0136 -0147 0067 -0042 -0071 .1756 1838 -0821 .0597 -0257 -0653 -0139 -0037 -0267 -0223 -0381 .0292
«d 1148 1149 1119 1174 1181  .1142 0839 .1496  .1470 1367 .1476 1380  .1404  .1369  .1427 .1445  .1363

S % -0203 -0210 -0073 -0074 -0086 .0063 4864 -0608 -0464 -0310 -0500 -0208 -0069 -0331 -0225 -0326 -0342

sd L1155 1157 1126 1154 (1160  .1123 0811 .1562  .1534  .1499  .1541  .1482 .1480 .1505 .1490  .1508  .1503

8 R -0058 -0061 -0007 0023 .0021  .0077 7920 -0193  -0136 -0080 -0150 -0038 .0049 -0086 -0041 -0081 -.0094

sd 0601 .0601 .0586 .0584 .0585 .0568 0438 0796 .0782 0768 0786  .0758 .0744 0770 .0760 0769 .0772

25 100 2 = -0015 -0019 .0065 .0018 .0013 .0100 1797 .0301  -0216 -0075 -0240 -0023 .0013 -0097 -0073 -0132 -0093
sd 0755 0755 0747 0763 0764  .0956 0580 0950 .0944 0909 .0946 .0910 0917 0914 0933 .0938 .0909

S % -0016 -0019 0034 0033 .0031 .0084 4827 -0150 -0097 -0035 -OI11 .0001 .0054 -0044 -0007 -0044 -0050

sd .0742 0742 0734 0742 0742 0734 0556 0966 .0959  .0950 0961 0946 0946 .0952 0949  .0953  .0952

8 = -0031 -0032 -0011 .0001 .0001 .0216 J909  -0644  -0043  -0021 - -.0049 -0005 .0028 -0023 -0007 -0022 -.0027

sd 0392 .0392 - .0388 0387 .0388  .0384 0271 0479 0476  .0472 0477 0470 0466 0473 0470 0472 .0473

(to be continued)



N/ip n Bsm Bzee Bwh Bolk Bpra Bel3 Pe Blol Blo2 Bbur Bdar Bbrl Bbr2 Bell Bel2 Brol Bro2
25 200 R  -0010 -0012 -0012 .0030 .0005 .0046 1761 -0175 -0133 -0043 -0152 -0021 -0004 -0068 -0068 -0092 -.0057
sd .0530 0530 0530 0527 .0533  .0533 4087 0690 0687 .0671 0688 .0670 0673 .0678 .0684 .0685 .0671
R  -0015 -0016 .0010 .0009 .0008 .0034 4824 -0093 -0066 -0032 -0078 -0018 .0008 -0038 =-0026 -0040 -.0043
sd .0546 0546 .0543 0546 .0546  .0543 0374 0692 0689 .0685 0691  .0684 ..0684 .0686 .0686 .0687  .0686
R -0022 -0022 -0012 -0006 -.0006 .0004 7941  -0064 -0054 -0042 -0058 -0036 -0020 -0044 -0037 -0043 -.0047
sd 0256 0256 .0255 0255 .0255  .0253 0195 0344 0343 0341 0343 .0341 .0340 .0342 .034]1 .0342 .0342
30 60 R -0032 -0036 0102 .0029 .0017 .1688 J911 -0492  -0349 -0164 -0373 -0065 .0001 -0181 -0096 -0210 -0182
sd 0939 0939 0923 0955 .0958  .0938 0693  .1200 .1186  .1149  .118%9  .1148 1161 .1156 .1163 .1173  .1148
R -0022 -0025 .0062 .0063 .0058 0150 4884 -0249 -0160 -0067 -0175 .0005 .0095 -0075 -0001 -0073 -.0081
sd 0925 0926 0910 0925 .0927 0909  .0721 .1235 1222 1206 1224 1196 A195  -1208 1198 1209 .1208.-
R -0081 -0082 -0046 -0026 -0027 .0009 7919 -0143  -0106 -0069 -0112 -0038 .0019 -0072 -0040 -0070 -.0075
sd 0514 0514 .0505 .0504 .0504 0495 3575 0671 .0663 0656 .0665 .0650 0641 .0657 .0650 0656 0657
50 100 R .0105 .0104 0184 0141 0137 0222 .1948  -0164 -0082 .0013 -0090 .0080 0118 .0003 0071 -0001 .0006
sd 0757 0757 0749 0765 .0766  .0757 0536 .0951 .0944 0931 0945 .0928 .0935 .0934 .0932 0938 .0931
R -0027 -0028 .0023 .0023 .0021 .0074 4926 -0158 -0105 -0052 -0110 ’ -0001 .0047 -0055 -0078 -0054 -0057
sd .0701 .0701 0694 0701 0701 0693 .0520 .0887 .0881 .0874 .0882 .0870 0869 0875 .0870 0875 0875
S -0021 -0021 -0001 .0011 .0011 _ .0032 7960 -0072 -0051 -0030 -0053 -0012 .0021 -0031 -0012 -0031 -0033
sd 0367 0367 0363 0363 .0363 .0359 0264 0461 .0457 0454 0458 0451 0448 0454 0452 0454 0455
50 200 R <0023 -0024 .0017 -0007 -0008 .0034 1909 -0174  -0133 -0079 -0139 -0046 -0029 -0087 -0057 -0092 -0084
sd 0522 0522 .0519 0525 .0525  .0522 0395 0686 .0684 0677 0684 0676 0679 0679 .0680 0682 .0678
R  -0008 -0009 .0017 0016 .0016 .0042 4929 -0089 -0063 -0036 -0067 -0014 .0012 -0038 -0016 -0038 -.0039
sd 0489 0489 0486 .0489  .0489  .0486 0388 0640 .0638 0635 .0638 .0634 .0634 .0635 .0634 .0636  .0635
2 -0022 -0022 -0012 -0006 -0006 .0004 7968 -0051 -0041 -0030 -0042 -0021 -0005 -0031 -0022 -0030 -0032
sd  .0261 0261 0259 . .0259 .0259  .0258 018 .0331 0330 .0329 .0331 .0328 .0327 .0329 .0328 .0329 .0329
100 200 R -0026 -0027 .0014 -0010 -0011 .0031 1960  -0148 -0107 -0063 -0109 -0025 -0008 -0065 .0028 -0066 -.0065
sd 0530 0530 .0527 .0533 .0533  .0530 0396 0663 0661 0658 .0661 0656 0659  .0659 0657 .0659  .0658
R -0003 -0003 .0022 .0022 .0022 .0048 4983  .0087 -0061 -0035 -0062 -0011 .0014 -0036 -0012 -0036 -0036
d  .0517 0517 0514 0517 0517 0514 0370 .0636 .0634 0632 0634 0630 0630 0632 0630 0632 0632
R -0012 -0012 -0002 .0004 0004 0014 7994 0047 -0037 -0027 -0037 0017 0001 -0027 -0017 .0027 -.0027
sd 0259 .0259 A .0258 .0257 .0257 .0256 .0180 .0323 .0322 .0321 .0322 0320 .0319 0321 .0320 0321 .0321




Note.

N/p: N/p Ratio. p: Number of predictor variables. n: Sample Size. p* Squared population multiple correlation
cocfficient. Smr: Squared sample multiple correlation coefficient. Bsm: Bias for the Smith formula. Beze: Bias
for the Ezekicl formula. Bwh: Bias for the Wherry formula. Bolk: Bias for the Olkin and Pratt formula. Bpra:
Bias for the Pratt estimation of the Olkin/Pratt formula. Bcl3: Bias for the Claudy-3 formula. p 2 (Estimated)
population squared cross-validity coefficient. Blo]: Bias for the Lord formula-1. Blo2: Bias for the Lord formula -
2. Bbur: Bias for the Burket formula. Bdar: Bias for the Darlington/Stein formula. Bbrl: Bias for the Browne
~formula with p? estimated by the Ezekiel formula. Bbrl: Bias for the Browne formula with p? estimated by the
Olkin/Pratt formula. Bcll: Bias for the Claudy formula-1. Bcl2: Bias for the Claudy formula-2. Brol: Bias for the

Rozeboom formula-1. Bro2: Bias for the Rozeboom formula -2.
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