
Updated August 30, 2006 Page 1 of 3

Final Project and Final Project Documentation
Guidelines and Assessment Rubric

The project documentation has two purposes. The first is functional, and the goal here is to provide enough
information about your project that another developer or team of developers could easily come in and
make revisions or extensions (many of you discuss in the scope section of your work plan more features
and/or content than you intent to implement). The second purpose of your project documentation is to
serve as a portfolio piece when you go out and look for jobs. Following are some strong suggestions of
things that will be good to have in your project documentation:

• Give credit where credit is due, you should probably mention any subject matter experts you
worked with (most likely your clients) and any material, such as actionScript from an outside source
that you used or adapted as part of the project.

• In that same spirit if you are working on the final project as a group, talk about the team members
and the role(s) each of you played.

• Next steps – discuss the next logical area of development for your project. This should be pretty
easy to put together from the scope section of your work plan, but might also include ideas that
emerged as you put the project together. Finally, this is a great place to highlight things that were
promised in your work plan that did not get done due to time constraints.

The remaining sections are a little more technical. This portion can be more of a “living” document if you
choose, relying on good comments embedded within your code rather than a separate explanation of
what your code does (although in both cases you will need a still need a broad overview separate from
your .fla file of what is going on). Make the assumption that your end reader is familiar with Flash and
knows a little bit about ActionScript, but do not make the assumption that they are familiar with your code.
Some good things to include here:

• Timeline Structure – How is your project organized? (both in terms of layers, and major “events”).
• Flow chart – This can be an excellent means for diagramming some of the main system

interactions. Depending on the complexity of your project, you might want to use a series of small
flowcharts or one large flow chart. (If your layers are well organized and named well, you might
collapse the timeline into the flow chart, by providing the frame number(s) of the various portions
of your project). Pg. 54 in the option text has an example flow chart, in addition to the exemplar
project that is on the course web page.

• Naming conventions – What are your naming conventions for variables, layers, library items, etc . . .
Some of these might be general (all lower case, with subsequent words capitalized) and some
might be specific to particular items in your project (Dynamic text fields used to show text
feedback are given an instance name in of “feedBackTextXX”, where “XX” refers to the current
frame number)

• Important variables – List and discuss the key variables in your project (this will likely be limited to
any session, client, or application variables).

• Explanation of critical code segments (again, using comments is acceptable). Walk a
programmer through how your code works for complex sequences (such as drag and drop
interactions w/ feedback).

• Known bugs – Discuss known limitations of your program (ways that users can “break” it), or ways
that it performs in an unexpected manner.

• Video compression – If you use video in your project, write down the settings you selected when
you embedded it in your flash development file.

Other thoughts:
• Be concise, if you find you are repeating yourself—you should probably just explain it once and talk

about other times that it happens (for instance, don’t walk through how you implemented drag
and drop fifteen times).

• Similarly, don’t feel the need to give a blow by blow on precise pixels for where you placed
elements. If you set up your project timeline well and you have a good overview, someone can
figure out what they need to know.

• If you find yourself spending more than 2­3 hours on your project documentation you are probably
going into too much detail.

Updated August 30, 2006 Page 2 of 3

Project Documentation Front End – As you have seen with the exemplars, you will be responsible for
creating a simple web page (named index.html) that allows other class members (as well as other
interested parties) to take a look at your hard work. This front end should consist of the following parts:

• Project Title
• System requirements – you can pull this out of your work plan if you already wrote this into your

limitations section, but let your audience know this up front.
• Primary development platform – Was the work done on a PC or on a MAC? This is more for me as

a grader, so that I can look at your development file(s) through the same lens.
• Link to work plan
• Link to project documentation
• Link to related media files (assuming that you used graphics, sound, and/or video, this would just

be a link to a folder containing these files prior to import into flash so they can be edited and
adjusted). I have had at least two students as me for their full projects after taking the class, and
they were both grateful to have the original media as well.

• Link to development (.fla) file(s).
• Link to exported (.swf) file(s) – if you promised web delivery, then link them to a web page with the

.swf placed in­line. Flash will do this for you, but we did not cover this in class, I’m happy to help
with this and with the project documentation front end if you need it, either during class
consultation time or a scheduled time outside of class.

Final Project – These are the development files for your final project along with the exported .swf (or .swfs).
Most of what I want is described below in the rubric. I will say that although you won’t lose points for using
scenes as a way to break up your file this does cause performance problems. The preferred method is to
use movie clips as opposed to scenes.

• Deliverables: A folder (which will likely have sub­folders) of everything mentioned in the project
documentation front end section above.

• File Naming convention: Use the following naming convention for your folder name (zip archives
should have this folder at the top level, with all files and sub/folders contained within)
finalProjectYourName, so if your name was Sam Walker your folder would be named
finalProjectSamWalker.

Assessment Rubrics
Your final project documentation will be graded according to the following criteria:

Criteria Points
Is your project documentation complete (would someone be
able to recreate the structure of your project looking only at the
final .swf and your documentation—more importantly, would
they be able to easily find what they were looking for if they were
forced to come in and make changes?) Does it contain all of
the relevant portions as outlined above?

30 points

Is your project documentation accurate? 25 points
Is your project documentation professional (free of typographical
and grammatical errors)?

25 points

Does your project documentation contain a functional front­end
as described above?

20 points

Total 100 points

Your final project will be graded according to the following criteria:

Criteria Points
Do you use a consistent naming convention for layers, symbols,
and pseudo­symbols? Do all of your layers have a meaningful
name? (e.g. “layer 1” is not an option)

10 points

Is your project easy to change and update?
• you should have only the number of instances you

absolutely need for each symbol or element of the
project.

• you should use consistent tab stops for your code—don’t
be shy about using the autoformat button in the actions

50 points

Updated August 30, 2006 Page 3 of 3

window.
• Finally, you should not have any “magic numbers.” For

the purposes of this class, a magic number is defined as
a value in ActionScript that is used in more than one
piece of code, but not updatable in one place. If you
find yourself typing out a number in more than one
location, create a variable and grab the value from the
variable instead.

Do you have a well organized timeline (related layers are near
each other, elements are where they are promised).

30 points

Is your project free of all syntax errors, and major logic errors
(operating in ways that are unexpected)?

10 points

Total 100 points

