Date of Award:

2012

Document Type:

Dissertation

Degree Name:

Doctor of Philosophy (PhD)

Department:

Nutrition, Dietetics, and Food Sciences

Advisor/Chair:

Dr. Brian A. Nummer

Abstract

Most outbreaks of foodborne illness in the United States occur as a result of improper food-handling and preparation practices in homes or food establishments. Some food-safety recommendations that are difficult to incorporate into handling and cooking procedures have contributed to a gap between food-safety knowledge and the actual behavior. The first part (Chapter 3, 4) of this study sought to ensure microbial safety by establishing alternative processing of meat products that can be easily practiced by food-operators and consumers. In Chapter 3, a novel method was developed to thaw frozen chicken-breast by submersion in hot water at 60 °C, an appropriate temperature setting for foodservice hot-holding equipment. This method is rapid (compared to either refrigerator or cold-water thawing that also uses a significant amount of water), safe, and the final cooked-product sensory-quality was not different from refrigerator-thawed and cooked product (microwave thawing results in localized overheating). Chapter 4 developed marinade-cooking (91 °C) and holding (60 °C) procedures for hamburger-patties. Frozen patties were partially grilled and finished cooking in marinade. The moderate temperature of marinade cooking overcomes the chances of thick-patties being surface-overcooked while innermost portions remain undercooked as seen in high-temperature cooking methods (grilling and pan-frying). Consumers liked the marinade-finished cooked and held patties (up to 4 h) equally or more (holding-time dependent) compared to patties grilled and held in a hot-steam cabinet.

Reducing salt in perishable foods including cheese is microbial-safety concern especially in their distribution and storage. The second part (Chapter 5, 6) of this study sought to evaluate microbial safety of low-salt hard-type cheese. Aged Cheddar cheeses were inoculated with either Listeria monocytogenes (3.5 log CFU/g) or Salmonella spp. (4.0 log CFU/g) and their survival or growth was monitored at 4, 10, and 21°C for up to 90, 90, and 30 d, respectively. Low-salt (0.7% NaCl) Cheddar formulated at pH 5.1 or 5.7 exhibited no-growth or gradual reduction in L. monocytogenes and Salmonella counts. The results suggest that low-salt Cheddar is as safe as its full-salt counterparts (1.8% NaCl) and that salt may only be a minor food-safety hurdle regarding the post-aging contamination and growth of L. monocytogenes and Salmonella.

Comments

This work made publicly available electronically on April 10, 2012.

Included in

Nutrition Commons

Share

COinS