Date of Award:

5-2013

Document Type:

Dissertation

Degree Name:

Doctor of Philosophy (PhD)

Department:

Wildland Resources

Advisor/Chair:

Helga Van Miegroet

Abstract

In order to fully understand the magnitude of the benefits that forests provide, it is crucial to understand the full suite of ecosystem services that they offer. A southern Appalachian red spruce-Fraser fir forest was intensively analyzed using a variety of methodologies to determine the nature and quantity of some of these services. Many hypotheses exist regarding the future of these spruce-fir forests, which were heavily disturbed by the non-native balsam wooly adelgid during the 1980s. Direct measurements over the course of a decade assessed these hypotheses and indicate that this forest is recovering structure and function. The forest is accruing overstory biomass, with vegetation composition on a trajectory towards historic conditions. By using a total forest inventory of all vegetation from overstory trees to understory mosses, rates of productivity and nutrient cycling were determined. Productivity of this forest at low elevations has returned to pre-adelgid levels, while at high elevations productivity is approaching these levels. In the absence of an intact overstory, forest understory vegetation can compensate by disproportionately cycling and retaining nutrients such as nitrogen that would otherwise leach offsite. The understory of this forest provides an important service in nutrient cycling. Our ability to actively manage forests in order to manipulate levels and rates of carbon sequestration was assessed using stand data and the Forest Vegetation Simulator Growth and Yield Model. Silvicultural intervention proved effective at sequestering additional carbon over a no action alternative by the end of our simulation period. This forest provides a variety of ecosystem services and has retained its ability to recover their function after catastrophic disturbance.

Share

COinS