Date of Award:


Document Type:


Degree Name:

Doctor of Philosophy (PhD)



Committee Chair(s)

James P. Evans


James P. Evans


Peter Mozley


Susanne Janecke


Don Best


Joel Pederson


This research characterizes the nature of fractures in Paleozoic and Mesozoic caprock seal analogs exposed in central and south-eastern Utah. The results of this research show evidence for fluid flow and mineralization in the subsurface as well as reactivation of fractures suggesting that the fractures act as a loci for fluid flow through time. The heterolithic nature of the caprock seals and meso-scale (cm to m) variability in fracture distributions and morphology highlight the strong link between the variation in material properties and the response to changing stress conditions. The variable connectivity of fractures and the changes in fracture density at the meso-scale plays a critical role in subsurface fluid flow. The presence or formation of new fractures can result in seal bypass systems, which can cause failure of hydrocarbon traps, CO2 geosequestration sites, waste and subsurface fluid repositories. An integrated approach of field, borehole geophysical, burial and stress history modeling, rock strength testing, and numerical modeling are used to understand the effects changing material properties, rock strength, and stress history have on sealing capacity. Simplified stress history models derived from burial history curves are combined with laboratory derived rock properties to understand the importance variations in rock properties and differential and effective mean stress have on the mechanical failure of fine-grained clastic sedimentary rocks. Burial history and rock strength data show that in units that experience similar burial depths and changing mechanical property exert a control on deformation type. Geomechanical models reveal changes in local strain magnitudes at locked mechanical interfaces, suggesting that elastic mismatch between layers results in differential strain distribution. Characterization of fracture patterns, rock strength variability and the modeled changes in subsurface strain distribution is especially important for understanding the response of low-­‐permeability rocks to changing stress in the subsurface, and is applicable to multiple geo-engineering scenarios such as exploitation of natural resources, waste disposal, and management of fluids in the subsurface. The analyses presented in this dissertation provide analog fracture data for fine-grained clastic rocks and a dataset for better understanding the importance of heterogeneity in low permeability rocks.



Included in

Geology Commons