Date of Award:


Document Type:


Degree Name:

Master of Science (MS)


Watershed Sciences

Committee Chair(s)

Patrick Belmont


Patrick Belmont


Nicolass Bouwes


Tammy Rittenour


Eco-geomorphic interactions occur across a range of spatial and temporal scales from the level of the entire watershed to an individual geomorphic unit within a stream channel. Predicting the mechanisms, rates and timing of sediment production and storage in the landscape are fundamental problems in the watershed sciences. This is of particular concern given that excess sedimentation is considered a major pollutant to aquatic ecosystems. Rates of sediment delivery to stream networks are characteristically unsteady and non-uniform. Because of this, conventional approaches for predicting sediment yield provide incomplete and often inaccurate information. Terrestrial cosmogenic nuclides (TCNs) provide an estimate of spatially averaged rates of sediment yield from 101 to 104 km2 and temporally integrated from 103 to 105 years. Here, I used TCNs to constrain unsteadiness and non-uniformity of sediment yield within specific catchments of the Columbia River Basin (CRB). This is in combination with GIS analysis optically stimulated luminescence (OSL), Carbon-14 (C14) dating of fluvial deposits, and rapid geomorphic assessments.

Results showed an order of magnitude spatial variability in the rates of millennial-scale sediment yield at the scale of the entire CRB. At the broadest scale long-term rates of sediment yield generally are poorly predicted from topographic and environmental parameters. A notable exception is the observed positive correlation between mean annual precipitation and sediment yield. Where functional relationships exist, the nature of those relationships are scale and situation-dependent. In addition to the broadest scale, each smaller watershed (e.g., ~ 10 – 2,000 km2) has a distinct geologic, geomorphic, and disturbance history that sets the template for the modern sediment dynamics and the physical aspects of aquatic habitat. Chapter 2 presents results of broad-scale trends while Chapter 3 is comprised of case studies from smaller watersheds. Finally, Chapter 4 explores the relationship between long-term sediment yield and modern channel form.