Date of Award:


Document Type:


Degree Name:

Master of Science (MS)



Committee Chair(s)

John Robert Dennison


John Robert Dennison


D. Mark Riffe


Jan J. Sojka


James P. Shaver


The physisorption of Kr on graphitic amorphous carbon (g-C) has been investigated using a statistical approach. The interaction energy calculation process (i) established a structural model of g-C and (ii) determined the adsorbate-adsorbate and the adsorbate-substrate interaction potentials on g-C.

The structural model of g-C was divided into three regions. For the interaction potential between a Kr atom and a carbon atom the short and medium range order of g-C was described with a discrete medium model based on three ring clusters using ring statistics from Beeman's continuous random network C1120 model of g-C. For the intermediate distance region, Beeman's radial distribution function was used to model g-C. A homogenous and isotropic continuous medium model was used at large distances.

The Kr-Kr and Kr-g-C interaction potentials used for Kr on g-C, which are pair-wise Lennard-Jones 6-12 potentials, are similar to Kr on graphite potentials. the validity of the model for g-C and the potentials were verified though calculations for Kr on graphite. Results compared favorably with recent literature values.

The interaction energy calculation results for Kr on a g-C substrate assert that (i) Kr adlayers will form on g-C, (ii) the structure of the Kr adlayer is governed by the substrate corrugation at low coverage and by the Kr-Kr interaction at high coverage, and (iii) there is no direct relation between the structure of Kr adlayers on g-C and those on graphite. The average binding energy of Kr on g-C is comparable with that on graphite, but the corrugation of g-C is perhaps six times that of a graphite substrate. The wrinkling of the g-C surface, due to the presence of a distribution of 5-, 6-, and 7- membered rings, is responsible for this large corrugation of the g-C substrate.



Included in

Physics Commons