Date of Award:


Document Type:


Degree Name:

Master of Science (MS)


Wildland Resources

Committee Chair(s)

Julie K. Young


Julie K. Young


Frank P. Howe


Mary M. Conner


The decline of greater sage-grouse (Centrocercus urophasianus) populations across western North America has intensified conservation, research, and management efforts. Predator-prey interactions have been the focus of widespread scientific study, but little research has been conducted on the effects of predation and predator removal on sage-grouse ecology. This study had three main objectives: 1) identify the types of predators impacting hen survival and nest success, 2) compare the effect of predator removal on vital rates, and 3) evaluate habitat selection and movement. Over two years (2011-2012), an observational study and field experiment were used to test the effects of predation and predator removal on sage-grouse survival, nest success, and spatial ecology in Bighorn Basin, Wyoming. In year one, I quantified the impacts of predators on sage-grouse demographics and developed a basis for monitoring sage-grouse and predator populations. In year two, predator removal was modified to remove the primary nest and hen predator in this system: coyote (Canis latrans). I evaluated the impact of anthropogenic features and management on sage-grouse home range size, seasonal movement, and habitat selection for potential behavioral responses. Resource selection functions (RSFs) were used to determine habitat selection and identify differences at multiple spatial extents (seasonal and annual scales). Hen survival was improved in sites treated with coyote removal over the nesting period (P = 0.05) but no improvement was seen in annual hen survival (P = 0.19). Observed nest success was higher at the site without coyote removal (P < 0.0001). RSF modeling showed sage-grouse to be sensitive to predator removal, avoiding areas close to roads, with high well density, and steep slopes. While this study suggests predator removal does not benefit observed nest success, provides only short-term enhancement to survival, and may disrupt habitat selection, potentially benefits to other life stages could exist and be detected with more time and monitoring. By taking an experimental approach to examining the effects of predation and predator removal, this study advances our knowledge of sage-grouse ecology by identifying changes in demographic vital rates and habitat selection, propagating the best management possible for sage-grouse populations.