Date of Award:

5-2014

Document Type:

Thesis

Degree Name:

Master of Science (MS)

Department:

Civil and Environmental Engineering

Committee Chair(s)

Blake P. Tullis

Committee

Blake P. Tullis

Committee

Michael C. Johnson

Committee

Paul J. Barr

Abstract

A hydraulically undersized control structure could result in water overtopping a dam or channel banks. To increase hydraulic capacity and reduce flooding risk, nonlinear spillways are frequently replacing linear weirs. This study investigates four subjects to further knowledge for two types of nonlinear weir, the piano key and labyrinth. Weir submergence is a condition when the downstream water level of a weir exceeds the weir crest elevation, and can influence the head-discharge relationship of the structure. The effects of submergence on laboratory-scale piano key weir head-discharge relationships were evaluated experimentally and compared to published submergence data for linear and labyrinth weirs. For relatively low levels of submergence, the piano key weir requires less upstream head relative to the labyrinth weir (<6%). This increase in efficiency was reversed at higher levels.

Checksum

c079228bf4d2f8fb92c242533d97a507

Share

COinS