Date of Award:


Document Type:


Degree Name:

Master of Science (MS)


Wildland Resources

Committee Chair(s)

Frederick D. Provenza


Frederick D. Provenza


Dale Gardner


Jim Pfister


Mark Thorne


Fireweed (Senecio madagascariensis) is a noxious and invasive weed affecting pastures in Hawaii, Australia, and South America. Fireweed contains compounds called pyrrolizidine alkaloids that are toxic to most grazing mammals. Toxic effects to cattle include irreversible damage to liver cells, hardening of the liver, and loss of liver function, which may lead to jaundice, swelling, and the accumulation of fluids in the stomach and other physiological malfunctions. External effects include rough appearance, diarrhea, low energy and dullness, photosensitization, and abnormal behavior, many of which can lead to death. Fireweed also can reduce pasture productivity by as much as 30-40%, particularly in Hawaii. As a result of these adverse effects on cattle and pasture production, people are seeking ways to manage fireweed and cattle.

Condensed tannins, which are common in many forage legumes, bind with other molecules such as protein and alkaloids. Complementarities among secondary compounds such as condensed tannins and alkaloids can allow animals to consume more of plant material they would otherwise avoid due to toxicity; however, there is very little information on whether tannins actually protect animals from the toxic effect of alkaloids like the ones found in fireweed. The effects of condensed tannins on the toxicity of fireweed to cattle were examined in two stages of a research project that included studies in the lab (in vitro) and in live animals (in vivo). The in vitro studies showed that tannins bound pyrrolizidine alkaloids in cattle rumen fluid and binding was highest when mixed with tannins at 8%, with some effect at 12% as well, by weight of fireweed. The in vivo studies were inconclusive as animals from both the Fireweed and Fireweed-Tannin group demonstrated ill-effects brought on by the fireweed. The data gathered in the form of blood tests and liver tests did not identify a clear protective effect provided by having tannin in the diet, but the results likely were affected by the way we conducted the research, which involved dosing animals daily with large amounts of plant material. The findings also illustrate how strongly cattle avoid eating fireweed while grazing on pasture. In summary, management to reduce fireweed effects on cattle should focus on improving pasture diversity and resiliency, on multi-species grazing to take advantage of the innate resistance of sheep and goats to fireweed’s toxicity, and on ways to enable cattle to utilize fireweed.