Date of Award:


Document Type:


Degree Name:

Master of Science (MS)


Electrical and Computer Engineering

Committee Chair(s)

Reyhan Baktur


Reyhan Baktur


Charles M. Swenson


Jacob Gunther


Conformal antennas have widespread applications in communication systems for vehicular bodies, aircrafts, and spacecrafts etc. They are non-protruding and can arbitrarily take any shape on the surface where they are etched. This thesis is a summary of two main projects. The first project employs a conformal array of four S-band and four GPS-band antennas for sub-payload of a sounding rocket. The sub-payload is a small cylinder and therefore the eight conformal antennas are based on curved patch geometry. The second project employs a conformal antenna for a CubeSat. The antenna is based on a cavitybacked slot and therefore can be conveniently integrated around the surface-mount solar cells of the CubeSat. Such an integration has enormous merits for CubeSat because there is no competition between the antennas and solar cells for the limited surface real estate. The antenna design operates UHF band with circular polarization, making it the first UHF nondeployed antenna for CubeSats. For both projects, problems such as isolation, impedance bandwidth, axial ratio bandwidth, and EMI shielding have been analyzed and resolved. This thesis work yields a prototype-ready design for the first project, and a final prototype and measurements for the second project.