Date of Award:

5-2000

Document Type:

Thesis

Degree Name:

Master of Science (MS)

Department:

Nutrition, Dietetics, and Food Sciences

Department name when degree awarded

Nutrition and Food Sciences

Committee Chair(s)

Marie K. Walsh

Committee

Marie K. Walsh

Committee

Donald McMahon

Committee

Daren Cornforth

Abstract

Bovine lactoferrin (BLF) and bovine transferrin (BTF) are major-iron transport and regulation proteins found in bovine whey. BLF and BTF must interact with the eukaryotic cell surface to mediate their biological function of iron delivery and cellular functions of inflammatory and immunological modulation. As common components of the eukaryotic cell surface, gangliosides were used for affinity purification of BLF and BTF.

Bovine gangliosides were isolated from fresh buttermilk and covalently immobilized onto controlled-pore glass beads (66 μg/g beads). After the matrix was loaded with whey protein (WPI or WPC), lactoferrin was eluted with 1 M NaCl and identified by N-terminal protein sequencing. Pretreated whey isolate (1% wt/vol) showed the highest lactoferrin purity with 40% among protein sources, and whey protein isolate (10% wt/vol) showed the highest recovery with 105%.

Bovine transferrin was eluted with sodium phosphate buffers at pH 7 after the immobilized matrix was loaded with a 2% (wt/vol) whey solution. The ganglioside column resulted in a 74.2% recovery of BTF from whey, and the BTF was enriched to 61% purity after Mono-Q chromatography. Bovine transferrin was identified by SDS-PAGE analysis, Western analysis, and isoelectrofocusing. In conclusion, immobilized gangliosides can be used to purify BLF and BTF from bovine whey.

Checksum

2f85878af3687983c22246d94b409dfc

Share

COinS