Date of Award:

12-2018

Document Type:

Thesis

Degree Name:

Master of Science (MS)

Department:

Mechanical and Aerospace Engineering

Advisor/Chair:

Stephen Whitmore

Abstract

Three-dimensional, additive printing has emerged as an exciting new technology for the design and manufacture of small spacecraft systems. Using 3-D printed thermoplastic materials, hybrid rocket fuel grains can be printed with nearly any cross-sectional shape, and embedded cavities are easily achieved. Applying this technology to print fuel materials directly into a CubeSat frame results in an efficient, cost-effective alternative to existing CubeSat propulsion systems. Different 3-D printed materials and geometries were evaluated for their performance as propellants and as structural elements. Prototype "thrust columns" with embedded fuel ports were printed from a combination of acrylonitrile utadiene styrene (ABS) and VeroClear, a photopolymer substitute for acrylic. Gaseous oxygen was used as the oxidizer for hot-fire testing of prototype thrusters in ambient and vacuum conditions. Hot-fire testing in ambient and vacuum conditions on nine test articles with a combined total of 25 s burn time demonstrated performance repeatability. Vacuum specific impulse was measured at over 167 s and maximum thrust of individual thrust columns at 9.5 N. The expected ΔV to be provided by the four thrust columns of the consumable structure is approximately 37 m/s. With further development and testing, it is expected that the consumable structure has the potential to provide a much-needed propulsive solution within the CubeSat community with further applications for other small satellites.

Checksum

8003d23061c3255e17484176e1a99987

Share

COinS