Date of Award:

12-2018

Document Type:

Dissertation

Degree Name:

Doctor of Philosophy (PhD)

Department:

Computer Science

Advisor/Chair:

Heng-Da Cheng

Abstract

A major impediment to scientific progress in many fields is the inability to make sense of the huge amounts of data that have been collected via experiment or computer simulation. This dissertation provides tools to visualize, represent, and analyze the collection of sensors and data all at once in a single combinatorial geometric object. Encoding and translating heterogeneous data into common language are modeled by supporting objects. In this methodology, the behavior of the system based on the detection of noise in the system, possible failure in data exchange and recognition of the redundant or complimentary sensors are studied via some related geometric objects. Applications of the constructed methodology are described by two case studies: one from wildfire threat monitoring and the other from air traffic monitoring. Both cases are distributed (spatial and temporal) information systems. The systems deal with temporal and spatial fusion of heterogeneous data obtained from multiple sources, where the schema, availability and quality vary. The behavior of both systems is explained thoroughly in terms of the detection of the failure in the systems and the recognition of the redundant and complimentary sensors. A comparison between the methodology in this dissertation and the alternative methods is described to further verify the validity of the sheaf theory method. It is seen that the method has less computational complexity in both space and time.

Checksum

9360eb84da95383cab6f11c9f6eef7ce

Share

COinS